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Analysis of the Brylinski–Kostant Model for
Spherical Minimal Representations
Dehbia Achab and Jacques Faraut

Abstract. We revisit with another view point the construction by R. Brylinski and B. Kostant of min-
imal representations of simple Lie groups. We start from a pair (V,Q), where V is a complex vector
space and Q is a homogeneous polynomial of degree 4 on V . The manifold Ξ is an orbit of a covering
of Conf(V,Q), the conformal group of the pair (V,Q), in a finite dimensional representation space. By
a generalized Kantor–Koecher–Tits construction we obtain a complex simple Lie algebra g, and fur-
thermore a real form gR . The connected and simply connected Lie group GR with Lie(GR) = gR acts
unitarily on a Hilbert space of holomorphic functions defined on the manifold Ξ.

Introduction

The construction of a realization for the minimal unitary representation of a simple
Lie group by using geometric quantization has been the topic of many papers during
the last thirty years ( see [20, 23], and more recently [1, 16]). In a series of papers
[6–9], R. Brylinski and B. Kostant introduced and studied a geometric quantization
of minimal nilpotent orbits for simple real Lie groups that are not of Hermitian type.
They have constructed the associated irreducible unitary representation on a Hilbert
space of half forms on the minimal nilpotent orbit. This can be considered as a Fock
model for the minimal representation. In this paper we revisit this construction with
another point of view. We start from a pair (V,Q), where V is a complex vector
space and Q is a homogeneous polynomial on V of degree 4. The structure group
Str(V,Q), for which Q is a semi-invariant, is assumed to have a symmetric open
orbit. The conformal group Conf(V,Q) consists of rational transformations of V
whose differential belongs to Str(V,Q). The main geometric object is the orbit Ξ of
Q under K, a covering of Conf(V,Q), on a space W of polynomials on V . Then, by
a generalized Kantor–Koecher–Tits construction, starting from the Lie algebra k of
K, we obtain a simple Lie algebra g such that the pair (g, k) is non-Hermitian. As a
vector space g = k⊕ p, with p = W. The main point is to define a bracket

p⊕ p→ k, (X,Y ) 7→ [X,Y ]

such that g becomes a Lie algebra. The Lie algebra g is 5-graded:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.
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In the fourth part one defines a representation ρ of g on the space O(Ξ)fin of poly-
nomial functions on Ξ. In a first step one defines a representation of an sl2-triple
(E, F,H). It turns out that this is only possible under a condition (T). In such a case
one obtains an irreducible unitary representation of the connected and simply con-
nected group G̃R whose Lie algebra is a real form of g. The representation is spherical.
It is realized on a Hilbert space of holomorphic functions on Ξ. There is an explicit
formula for the reproducing kernel of H involving a hypergeometric function 1F2.
Further the space H is a weighted Bergman space with a weight taking in general
both positive and negative values.

The pairs satisfying (T) are the following:

Classical pairs
(

(sl(n,R), so(n)
)
,
(

so(p, p), so(p)⊕ so(p)
)
,

Exceptional pairs
(

e6(6), sp(8)
)
,
(

e7(7), su(8)
)
,
(

e8(8), so(16)
)
.

If Q = R2 or Q = R4 where R is a semi-invariant, then by considering a covering of
order 2 or 4 of the orbit Ξ, one can obtain 1 or 3 other unitary representations of G̃R.
They are not spherical. If the condition T is not satisfied, by a modified construction,
one still obtains an irreducible representation of G̃R that is not spherical. This last
point is the subject of a paper in preparation by the first author.

The construction of a Schrödinger model for the minimal representation of the
group O(p, q) is the subject of a recent book by T. Kobayashi and G. Mano [15]. We
should not wonder that there is a link between both the Fock and the Schrödinger
models, and that there is an analogue of the Bargmann transform in this setting.

1 The Conformal Group and the Representation κ

Let V be a finite dimensional complex vector space and Q a homogeneous polynomial
on V . Define

L = Str(V,Q) =
{

g ∈ GL(V ) | ∃γ = γ(g),Q(g · x) = γ(g)Q(x)
}
.

Assume that there exists e ∈ V such that

(i) the symmetric bilinear form 〈x, y〉 = −DxDy log Q(e) is non-degenerate;
(ii) the orbit Ω = L · e is open;
(iii) the orbit Ω = L · e is symmetric, i.e., the pair (L, L0), with L0 = {g ∈ L |

g · e = e}, is symmetric, which means that there is an involutive automorphism
ν of L such that L0 is open in {g ∈ L | ν(g) = g}.

We will equip the vector space V with a Jordan algebra structure. The Lie algebra
l = Lie(L) of L = Str(V,Q) decomposes into the +1 and −1 eigenspaces of the
differential of ν : l = l0 + q, where l0 = {X ∈ l | X · e = e} = Lie(L0). Since the orbit
Ω is open, the map q → V, X 7→ X · e, is a linear isomorphism. If X · e = x (X ∈
q, x ∈ V ), one writes X = Tx. The product on V is defined by xy = Tx ·y = Tx◦Ty ·e.

https://doi.org/10.4153/CJM-2012-011-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-011-9


Analysis of the Brylinski–Kostant Model for Spherical Minimal Representations 723

Theorem 1.1 This product makes V into a semi-simple complex Jordan algebra:

(J1) for x, y ∈ V, xy = yx;
(J2) for x, y ∈ V, x2(xy) = x(x2 y);
(J3) the symmetric bilinear form 〈 · , · 〉 is associative: 〈xy, z〉 = 〈x, yz〉.

Proof The product is commutative. In fact

xy − yx = [Tx,Ty] · e = 0,

since [q, q] ⊂ l0.
Let τ be the differential of γ at the identity element of L: for X ∈ l,

τ (X) =
d

dt

∣∣∣
t=0
γ(exp tX).

Claim 1.2

(i) (Dx log Q)(e) = τ (Tx),
(ii) (DxDy log Q)(e) = −τ (Txy),
(iii) (DxDyDz log Q)(e) = 1

2τ (T(xy)z).

The proof amounts to differentiating at e the relation log Q(exp Tx · e) = τ (Tx) +
log Q(e) up to third order. (See [21, Exercise 5, p. 38].) Hence by (ii), 〈x, y〉 = τ (Txy),
and, by (iii), the symmetric bilinear form 〈 · , · 〉 is associative.

Define the associator of three elements x, y, z in V by

[x, y, z] = x(zy)− (xz)y = [L(x), L(y)]z.

Then identity (J2) can be written as [x2, y, x] = 0 for all x, y ∈ V . It can be shown
by following the proof of [21, Theorem 8.5, p. 34], which is also the proof of [13,
Theorem III.3.1, p. 50].

The Jordan algebra V is a direct sum of simple ideals:

V =
s⊕

i=1
Vi , and Q(x) =

s∏
i=1

∆i(xi)
ki (x = (x1, . . . , xs)),

where ∆i is the determinant polynomial of the simple Jordan algebra Vi and the ki

are positive integers. The degree of Q is equal to
∑s

i=1 kiri , where ri is the rank of Vi .
The conformal group Conf(V,Q) is the group of rational transformations g of V

generated by the translations τa : z 7→ z + a (a ∈ V ), the dilations z 7→ ` · z (` ∈ L),
and the inversion j : z 7→ −z−1. A transformation g ∈ Conf(V,Q) is conformal in
the sense that the differential Dg(z) belongs to L ∈ Str(V,Q) at any point z where g
is defined.

Let W be the space of polynomials on V generated by the translated Q(z − a) of
Q. We will define a representation κ on W of Conf(V,Q) or of a covering of order
two of it.
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Case 1: In case there exists a character χ of Str(V,Q) such that χ2 = γ, then let
K = Conf(V,Q). Define the cocycle

µ(g, z) = χ(Dg(z)−1) (g ∈ K, z ∈ V ),

and the representation κ of K on W,

(κ(g)p)(z) = µ(g−1, z)p(g−1 · z).

The function κ(g)p belongs actually to W. In fact the cocycle µ(g, z) is a polynomial
in z of degree≤ deg Q and

(κ(τa)p)(z) = p(z − a) (a ∈ V ),

(κ(`)p)(z) = χ(`)p(`−1 · z) (` ∈ L),

(κ( j)p)(z) = Q(z)p(−z−1).

Case 2: Otherwise, the group K is defined as the set of pairs (g, µ) with g ∈
Conf(V,Q), and µ is a rational function on V such that

µ(z)2 = γ(Dg(z))−1.

We consider on K the product (g1, µ1)(g2, µ2) = (g1g2, µ3) with µ3(z) = µ1(g2 ·
z)µ2(z). For g̃ = (g, µ) ∈ K, define µ(g̃, z) := µ(z). Then µ(g̃, z) is a cocycle:

µ(g̃1g̃2, z) = µ(g̃1, g̃2 · z)µ(g̃2, z),

where g̃ · z = g · z by definition.

Proposition 1.3

(i) The map K → Conf(V,Q), g̃ = (g, µ) 7→ g is a surjective group morphism.
(ii) For g ∈ K, µ(g, z) is a polynomial in z of degree≤ deg Q.

Proof It is clearly a group morphism. We will show that the image contains a set of
generators of Conf(V,Q). If g is a translation, then (g, 1) and (g,−1) are elements in
K. If g = ` ∈ L, then Dg(z) = `, and (`, α), (`,−α), with α2 = γ(`)−1, are elements
in K. If g ·z = j(z) := −z−1, then Dg(z)−1 = P(z), where P(z) denotes the quadratic
representation of the Jordan algebra V : P(z) = 2T2

z−Tz2 , and γ(P(z)) = Q(z)2. Then
( j,Q(z)), ( j,Q(−z)) are elements in K.

Let Pmax denote the preimage in K of the maximal parabolic subgroup L n N ⊂
Conf(V,Q), where N is the subgroup of translations. For g ∈ Pmax, µ(g, z) does not
depend on z, and χ(g) = µ(g−1, z) is a character of Pmax. If g = (`, α) with ` ∈ L,
then χ(g)2 = γ(`).

Observe that the inverse in K of σ = ( j,Q(z)) is σ−1 = ( j,Q(−z)). If K is con-
nected, then K is a covering of order 2 of Conf(V,Q). If not, the identity component
K0 of K is homeomorphic to Conf(V,Q).
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The representation κ of K on W is then given by(
κ(g)p

)
(z) = µ(g−1, z)p(g−1 · z).

In particular (
κ(g)p

)
(z) = χ(g)p(g−1 · z) (g ∈ Pmax),(

κ(σ)p
)

(z) = Q(−z)p(−z−1).

Hence p0 ≡ 1 is a highest weight vector with respect to the parabolic subgroup Pmax,
and Q = κ(σ)p0 is a lowest weight vector. The representation κ is irreducible, since
every highest weight vector in W is proportional to p0.

Example 1 If V = C, Q(z) = zn, then Str(V,Q) = C∗, γ(`) = `n, and
Conf(V,Q) ' PSL(2,C) is the group of fractional linear transformations

z 7→ g · z =
az + b

cz + d
, with g =

(
a b
c d

)
∈ SL(2,C).

Furthermore,

Dg(z) =
1

(cz + d)2
, γ

(
Dg(z)−1

)
= (cz + d)2n, µ(g, z) = (cz + d)n.

Hence, if n is even, then K = PSL(2,C), and, if n is odd, then K = SL(2,C).
The space W is the space of polynomials of degree ≤ n in one variable. The

representation κ of K on W is given by

(
κ(g)p

)
(z) = (cz + d)n p

( az + b

cz + d

)
, if g−1 =

(
a b
c d

)
.

Example 2 If V = M(n,C), Q(z) = det z, then Str(V,Q) = GL(n,C) × GL(n,C)
acting on V by

` · z = `1z`−1
2 ` = (`1, `2).

Then γ(`) = det `1 det `−1
2 , and γ is not the square of a character of Str(V,Q). Fur-

thermore, Conf(V,Q) = PSL(2n,C) is the group of the rational transformations

z 7→ g · z = (az + b)(cz + d)−1, with g =

(
a b
c d

)
∈ SL(2n,C),

decomposed in n× n-blocks. To determine the differential of such a transformation,
let us write (assuming c to be invertible)

g · z = (az + c)(cz + d)−1 = ac−1 − (ac−1d− b)(cz + d)−1,

and we get
Dg(z)w = (ac−1d− b)(cz + d)−1cw(cz + d)−1.
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Notice that Dg(z) ∈ Str(V,Q):

Dg(z)w = `1w`−1
2 , with `1 = (ac−1d− b)(cz + d)−1c, `2 = (cz + d).

Since det(ac−1d− b) det c = det g = 1,

γ
(

Dg(z)−1
)

= det(cz + d)2.

It follows that K = SL(2n,C) and µ(g, z) = det(cz + d).
The space W is a space of polynomials of an n × n matrix variable, with degree

≤ n. The representation κ of K on W is given by

(
κ(g)p

)
(z) = det(cz + d)p

(
(az + b)(cz + d)−1

)
, if g−1 =

(
a b
c d

)
.

2 The Orbit Ξ and the Irreducible K-invariant Hilbert
Subspaces of O(Ξ)

Let Ξ be the K-orbit of Q in W: Ξ = {κ(g)Q | g ∈ K}. Then Ξ is a conical variety.
In fact, if ξ = κ(g)Q, then, for λ ∈ C∗, λξ = κ(g ◦ ht )Q, where ht · z = e−t z (t ∈ C)
with λ = e2t .

A polynomial ξ ∈W can be written

ξ(v) = wQ(v) + terms of degree < N = deg Q (w ∈ C),

and w = w(ξ) is a linear form on W that is invariant under the parabolic subgroup
Pmax. The set Ξ0 = {ξ ∈ Ξ | w(ξ) 6= 0} is open and dense in Ξ. A polynomial
ξ ∈ Ξ0 can be written

ξ(v) = wQ(v − z) (w ∈ C∗, z ∈ V ).

Hence we get a coordinate system (w, z) ∈ C∗ ×V for Ξ0.

Proposition 2.1 In this system, the action of K is given by

κ(g) : (w, z) 7→
(
µ(g, z)w, g · z

)
.

Observe that the orbit Ξ can be seen as a line bundle over the conformal compact-
ification of V .

Proof Recall that, for ξ ∈ Ξ,(
κ(g)ξ

)
(v) = µ(g−1, v)ξ(g−1 · v),

and if ξ(v) = wQ(v − z), then

= µ(g−1, v)wQ(g−1 · v − z) = µ(g−1, v)wQ(g−1 · v − g−1g · z).
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By [12, Lemma 6.6],

µ(g, z)µ(g, z ′)Q(g · z − g ′ · z ′) = Q(z − z ′).

Therefore

(κ(g)ξ)(v) = µ(g−1, g · z)−1wQ(v − g.z) = µ(g, z)wQ(v − g · z)

by the cocycle property.

The group K acts on the space O(Ξ) of holomorphic functions on Ξ by(
π(g) f

)
(ξ) = f

(
κ(g)−1ξ

)
.

If ξ ∈ Ξ0, i.e., ξ(v) = wQ(v− z), and f ∈ O(Ξ), we will write f (ξ) = φ(w, z) for the
restriction of f to Ξ0. In the coordinates (w, z), the representation π is given by(

π(g)φ
)

(w, z) = φ
(
µ(g−1, z)w, g−1 · z

)
.

Let Om(Ξ) denote the space of holomorphic functions f on Ξ, homogeneous of de-
gree m ∈ Z:

f (λξ) = λm f (ξ) (λ ∈ C∗).

The space Om(Ξ) is invariant under the representation π. If f ∈ Om(Ξ), then its
restriction φ to Ξ0 can be written φ(w, z) = wmψ(z), where ψ is a holomorphic
function on V . We will write Õm(V ) for the space of the functions ψ corresponding

to the functions f ∈ Om(Ξ), and denote by π̃m the representation of K on Õm(V )
corresponding to the restriction πm of π to Om(Ξ). The representation π̃m is given by(

π̃m(g)ψ
)

(z) = µ(g−1, z)mψ(g−1 · z).

Observe that (π̃m(σ)1)(z) = Q(−z)m.

Theorem 2.2

(i) Om(Ξ) = {0} for m < 0.
(ii) The space Om(Ξ) is finite dimensional, and the representation πm is irreducible.

(iii) The functions ψ in Õm(V ) are polynomials.

Proof (i) Assume that Om(Ξ) 6= {0}. Let f ∈ Om(Ξ), f 6≡ 0, and φ(w, z) =
ψ(z)wm its restriction to Ξ0. Then ψ is holomorphic on V , and(

π̃m(σ)ψ
)

(z) = Q(−z)mψ(−z−1)

is holomorphic as well. We may assume that ψ(e) 6= 0. The function h(ζ) =
ψ(ζe)(ζ ∈ C) is holomorphic on C, h(ζ) =

∑∞
k=0 akζ

k, together with the function

Q(ζe)mψ
(
−1

ζ
e
)

= ζmN h
(
−1

ζ

)
= ζmN

∞∑
k=0

ak

(
−1

ζ

) k
(N = deg Q).
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It follows that m ≥ 0 and that ak = 0 for k > mN.
(ii) The subspace

{ f ∈ Om(Ξ) | ∀a ∈ V, π(τa) f = f }

reduces to the functions Cwm, hence is one dimensional. By the theorem of the high-
est weight [14], it follows that Om(Ξ) is finite dimensional and irreducible.

(iii) Furthermore it follows that the functions in Om(Ξ) are of the form wmψ(z),
where ψ is a polynomial on V of degree≤ m · deg Q.

We fix a Euclidean real form VR of the complex Jordan algebra V , denote by z 7→ z̄
the conjugation of V with respect to VR, and then consider the involution g 7→ ḡ of
Conf(V,Q) given by: ḡ · z = g · z̄. For (g, µ) ∈ K define

(g, µ) = (ḡ, µ̄), where µ̄(z) = µ(z̄).

The involution α defined by α(g) = σ ◦ ḡ ◦ σ−1 is a Cartan involution of K (see
[19, Proposition 1.1.]), and

KR := {g ∈ K | α(g) = g}

is a compact real form of K.

Example 1 If V = C, Q(z) = zn, then VR = R, and z 7→ z̄ is the usual conjugation.
We saw that K = PSL(2,C) if n is even, and SL(2,C) if n is odd. For g ∈ SL(2,C),

g =

(
a b
c d

)
,

we get

α(g) =

(
0 1
−1 0

)(
ā b̄
c̄ d̄

)(
0 −1
1 0

)
=

(
d̄ −c̄
−b̄ ā

)
.

Hence KR = PSU (2) if n is even, and KR = SU (2) if n is odd.

Example 2 If V = M(n,C), Q(z) = det z, then VR = Herm(n,C) and the conju-
gation is z 7→ z∗. We saw that K = SL(2n,C). For g ∈ SL(2n,C),

g =

(
a b
c d

)
,

we get

α(g) =

(
0 I
−I 0

)(
a∗ b∗

c∗ d∗

)(
0 −I
I 0

)
=

(
d∗ −c∗

−b∗ a∗

)
.

Hence KR = SU (2n).
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We will define on Om(Ξ) a KR-invariant inner product. Define the subgroup K0

of K as K0 = L in Case 1, and the preimage of L in Case 2, relatively to the covering
map K → Conf(V,Q), and also (K0)R = K0 ∩KR. The coset space M = KR/(K0)R is
a compact Hermitian space and is the conformal compactification of V . There is on
M a KR-invariant probability measure for which M \V has measure 0. Its restriction
m0 to V is a probability measure with a density that can be computed by using the
decomposition of V into simple Jordan algebras.

Let H(z, z ′) be the polynomial on V ×V , holomorphic in z, anti-holomorphic in
z ′ such that

H(x, x) = Q(e + x2) (x ∈ VR).

Put H(z) = H(z, z). If z is invertible, then H(z) = Q(z̄)Q(z̄−1 + z).

Proposition 2.3 For g ∈ KR,

H(g · z1, g · z2)µ(g, z1)µ(g, z2) = H(z1, z2),

and

H(g · z)|µ(g, z)|2 = H(z).

Proof Recall that an element g ∈ KR satisfies σ ◦ ḡ ◦ σ−1 = g, or σ ◦ ḡ = g ◦ σ.
Recall also the cocycle property: for g1, g2 ∈ K, µ(g1g2, z) = µ(g1, g2 ·z)µ(g2, z). Since
µ(σ, z) = Q(z), it follows that, for g ∈ KR,

(2.1) µ(g, σ · z)Q(z) = Q(ḡ · z)µ(ḡ, z).

By [12, Lemma 6.6], for g ∈ K,

(2.2) Q(g · z1 − g · z2)µ(g, z1)µ(g, z2) = Q(z1 − z2).

For g ∈ KR,

H(g · z1, g · z2) = Q(ḡ · z2)Q(g · z1 − σḡ · z̄2) = Q(ḡ · z̄2)Q(g · z1 − gσz̄2),

and, by (2.2),

= Q(ḡ · z̄2)µ(g, z1)−1µ(g, σ · z̄2)−1Q(z1 − σ · z̄2).

Finally, by (2.1),

= µ(g, z1)−1µ(ḡ, z̄2)−1H(z1, z2).

We define the norm of a function ψ ∈ Õm(V ) by

‖ψ‖2
m =

1

am

∫
V
|ψ(z)|2H(z)−mm0(dz),

with

am =

∫
V

H(z)−mm0(dz).
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Proposition 2.4

(i) This norm is KR-invariant. Hence, Õm(V ) is a Hilbert subspace of O(V ).

(ii) The reproducing kernel of Õm(V ) is given by K̃m(z, z ′) = H(z, z ′)m.

Proof (i) From Proposition 2.3 it follows that for g ∈ KR,

‖π̃m(g−1)ψ‖2
m =

1

am

∫
V
|µ(g, z)|2m|ψ(g−1 · z)|2H(z)−mm0(dz)

=
1

am

∫
V
|ψ(g−1 · z)|2H(g−1 · z)−mm0(dz)

=
1

am

∫
V
|ψ(z)|2H(z)−mm0(dz) = ‖ψ‖2

m.

(ii) There is a unique function ψ0 ∈ Õm(V ) such that, for ψ ∈ Õm(V ),

(ψ | ψ0) = ψ(0).

The function ψ0 is K0-invariant, therefore constant ψ0(z) = C . Taking ψ = ψ0, one

gets C2 = C , hence C = 1. It means that, if K̃m(z, z ′) denotes the reproducing kernel

of Õm(V ),
K̃m(z, 0) = K̃m(0, z ′) = 1.

Since K̃m(z, z ′) and H(z, z ′) satisfy the following invariance properties: for g ∈ KR,

K̃m(g · z, g · z ′)µ(g, z)mµ(g, z ′)
m

= K̃m(z, z ′),

H(g · z, g · z ′)µ(g, z)µ(g, z ′) = (z, z ′),

it follows that K̃m(z, z ′) = H(z, z ′)m.

Since Om(Ξ) is isomorphic to Õm(V ), the space Om(Ξ) becomes an invariant
Hilbert subspace of O(Ξ), with reproducing kernel

Km(ξ, ξ ′) = Φ(ξ, ξ ′)m,

where
Φ(ξ, ξ ′) = H(z, z ′)ww ′

(
ξ = (w, z), ξ ′ = (w ′, z ′)

)
.

Theorem 2.5 The group KR acts multiplicity free on O(Ξ). The irreducible KR-invari-
ant subspaces of O(Ξ) are the spaces Om(Ξ) (m ∈ N). If H ⊂ O(Ξ) is a KR-invariant
Hilbert subspace, the reproducing kernel of H can be written

K(ξ, ξ ′) =

∞∑
m=0

cmΦ(ξ, ξ ′)m,

with cm ≥ 0, such that the series
∑∞

m=0 cmΦ(ξ, ξ ′)m converges uniformly on compact
subsets in Ξ.
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This multiplicity free property means that KR acts multiplicity free on every
KR-invariant Hilbert space H ⊂ O(Ξ).

Proof The representation π of KR on O(Ξ) commutes with the C∗-action by dila-
tions and the spaces Om(Ξ) are irreducible and mutually inequivalent. It follows that
KR acts multiplicity free.

In case of a weighted Bergman space there is an integral formula for the numbers
cm. For a positive function p(ξ) on Ξ, consider the subspace H ⊂ O(Ξ) of functions
φ such that

‖φ‖2 =

∫
C×V
|φ(w, z)|2 p(w, z)m(dw)m0(dz) <∞,

where m(dw) denotes the Lebesgue measure on C.

Theorem 2.6 Let F be a positive function on [0,∞[, and define

p(w, z) = F(H(z)|w|2)H(z).

(i) Then H is KR-invariant.
(ii) If

φ(w, z) =

∞∑
m=0

wmψm(z),

then

‖φ‖2 =

∞∑
m=0

1

cm
‖ψm‖2

m,

with
1

cm
= πam

∫ ∞
0

F(u)umdu.

(iii) The reproducing kernel of H is given by

K(ξ, ξ ′) =

∞∑
m=0

cmΦ(ξ, ξ ′)m.

Proof (i) Observe first that the function defined on Ξ by

(w, z) 7→ |w|2H(z),

is KR-invariant. In fact, for g ∈ K,

κ(g) : (w, g) 7→
(
µ(g, z)w, g · z

)
and, by Propositiion 2.3, for g ∈ KR,

|µ(g, z)|2H(g · z) = H(z).
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Furthermore, the measure h(z)m(dw)m0(dz) is also invariant under KR. In fact under
the transformation z = g · z ′,w = µ(g, z ′)w ′ (g ∈ KR), we get

H(z)m(dw)m0(dz) = H(g · z ′)|µ(g, z ′)|2m(dw ′)m0(dz ′)

= H(z ′)m(dw ′)m0(dz ′).

(ii) Assume that p(w, z) = F
(

H(z)|w|2
)

H(z). Then

‖π(g)φ‖2 =

∫
C×V

∣∣φ(µ(g−1, z)w, g−1 · z
) ∣∣ 2

F
(

H(z)|w|2
)

H(z)m(dw)m0(dz).

We put
g−1 · z = z ′, µ(g−1, z)w = w ′.

By the invariance of the measure H(z)m(dw)m0(dz), we obtain

‖π(g)φ‖2 =∫
C×V
|φ(w ′, z ′)|2F

(
H(g · z ′)|µ(g−1, g · z ′)|−2|w ′|2

)
H(z ′)m(dw ′)m0(dz ′).

Furthermore,

H(g · z ′)|µ(g−1, g · z ′)|−2 = H(g · z ′)|µ(g, z ′)|2 = H(z ′),

and, finally, ‖π(g)φ‖ = ‖φ‖.
(iii) If φ(w, z) = wmψ(z), then

‖φ‖2 =

∫
C×V
|w|2m|ψ(z)|2F

(
H(z)|w|2

)
H(z)m(dw)m0(dz).

We put w ′ =
√

H(z)w, then

‖φ‖2 =

∫
C×V

H(z)−m|w ′|2m|ψ(z)|2F(|w ′|2)m(dw ′)m0(dz)

= am‖ψ‖2
m

∫
C

F(|w ′|2)|w ′|2mm(dw ′)

= am‖ψ‖2
mπ

∫ ∞
0

F(u)umdu.

3 Decomposition into Simple Jordan Algebras

Let us decompose the semi-simple Jordan algebra V into simple ideals:

V =
s⊕

i=1
Vi .
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Denote by ni and ri the dimension and the rank of the simple Jordan algebra Vi , and
by ∆i the determinant polynomial. Then Q(z) =

∏s
i=1 ∆i(zi)ki . Let Hi(z, z ′) be the

polynomial on Vi ×Vi , holomorphic in z, antiholomorphic in z ′, such that

Hi(x, x) = ∆i(ei + x2)
(

x ∈ (Vi)R

)
,

and put Hi(z) = Hi(z, z). The measure m0 has a density with respect to the Lebesgue
measure m on V

m0(dz) =
1

C0
H0(z)m(dz),

with

H0(z) =
s∏

i=1
Hi(zi)

−2 ni
ri , C0 =

∫
V

H0(z)m(dz).

The Lebesgue measure m will be chosen such that C0 = 1.

Proposition 3.1 (i) The polynomial Q satisfies the following Bernstein identity

Q
( ∂

∂z

)
Q(z)α = B(α)Q(z)α−1 (z ∈ C),

where the Bernstein polynomial B is given by

B(α) =
s∏

i=1
bi(kiα)bi(kiα− 1) · · · bi(kiα− ki + 1),

and bi is the Bernstein polynomial relative to the determinant polynomial ∆i .
(ii) Furthermore,

Q
( ∂

∂z

)
H(z)α = B(α)Q(z)H(z)α−1.

Proof (i) The Bernstein identity for Q follows from [13, Proposition VII.1.4].
(ii) For z invertible H(z) = Q(z̄)Q(z̄−1 + z), and then, by (i),

Q
( ∂

∂z

)
H(z)α = Q(z̄)αB(α)Q(z̄−1 + z)α−1

= Q(z̄)B(α)H(z)α−1.

Example 1 If V = C, Q(z) = zn, then( d

dz

) n
znα = B(α)zn(α−1),

with B(α) = nα(nα− 1) · · · (nα− n + 1).

Example 2 If V = M(n,C), Q(z) = det z, then

det
( ∂

∂z

)
(det z)α = B(α)(det z)α−1,

with B(α) = α(α + 1) · · · (α + n− 1).
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Recall that we have introduced the numbers

am =

∫
V

H(z)−mm0(dz).

Proposition 3.2 The numbers am are given by

am =
s∏

i=1

ΓΩi (2 ni
ri

)

ΓΩi (
ni
ri

)

s∏
i=1

ΓΩi (mki + ni
ri

)

ΓΩi (mki + 2 ni
ri

)
,

where ΓΩi is the Gindikin gamma function of the symmetric cone Ωi in the Euclidean
Jordan algebra (Vi)R.

Proof If the Jordan algebra V is simple and Q = ∆, the determinant polynomial, by
[13, Proposition X.3.4],

am =

∫
V

H(z)−mm0(dz) =
1

C0

∫
V

H(z)−m−2 n
r m(dz)

= C

∫
Ω

∆(e + x)−m−2 n
r m(dx).

By [13, Exercice 4, Chapter VII] we obtain

am = C ′
ΓΩ(m + n

r )

ΓΩ(m + 2 n
r )
.

In the general case

am =
1

C0

s∏
i=1

∫
Vi

Hi(zi)
−mki−2

ni
ri mi(dzi),

and the formula of the proposition follows.

4 Generalized Kantor–Koecher–Tits Construction

From now on, Q is assumed to be of degree 4. The group of dilations of V : ht · z =
e−t z (t ∈ C) is a one parameter subgroup of L, and χ(ht ) = e−2t . Put ht = exp(tH).
Then ad(H) defines a grading of the Lie algebra k of K: k = k−1 + k0 + k1, with
k j = {X ∈ k | ad(H)X = jX}, ( j = −1, 0, 1). Notice that

k−1 = Lie(N) ' V, k0 = Lie(L), Ad(σ) : k j → k− j ,

and also that H belongs to the centre z(k0) of k0. The element H also defines a grading
of p := W:

p = p−2 + p−1 + p0 + p1 + p2,

where p j = {p ∈ p | dκ(H)p = j p} is the set of polynomials in p, homogeneous of
degree j+2. The subspaces p j are invariant under K0. Furthermore, κ(σ) : p j → p− j ,
and

p−2 = C, p2 = C Q, p−1 ' V, p1 ' V.

Let g = k⊕ p. Put E = Q, F = 1.
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Theorem 4.1 There exists on g a unique Lie algebra structure such that:

(i) [X,X ′] = [X,X ′]k (X,X ′ ∈ k),
(ii) [X, p] = dκ(X)p (X ∈ k, p ∈ p),
(iii) [E, F] = H.

Proof Observe that (E, F,H) is an sl2-triple, and that H defines a grading of

g = g−2 + g−1 + g0 + g1 + g2,

with

g−2 = p−2, g−1 = k−1 + p−1, g0 = k0 + p0, g1 = k1 + p1, g2 = p2.

It is possible to give a direct proof of Theorem 4.1 (see [2, Theorem 3.1.]). It is also
possible to see this statement as a special case of constructions of Lie algebras by [5].
We will now describe this construction in our case.

(a) Cayley–Dickson process
Let x 7→ x∗ denote the symmetry with respect to the one dimensional subspace

Ce:

x∗ =
1

2
〈x, e〉 e− x.

Observe that
〈x, e〉 = τ (Tx) = Dx log Q(e), 〈e, e〉 = 4.

On the vector space W = V ⊕V , one defines an algebra structure. If

z1 = (x1, y1), z2 = (x2, y2),

then z1z2 = z = (x, y) with

x = x1x2 − (y1 y∗2 )∗, y = x∗1 y2 + (y∗1 x∗2 )∗,

and an involution
z̄ = (x, y) = (x,−y∗).

This involution is an antiautomorphism: z1z2 = z̄2z̄1. For a, b ∈W , one introduces
the endomorphisms Va,b and Ta given by

Va,bz = {a, b, z} := (ab̄)z + (zb̄)a− (zā)b,

Taz = Va,ez = az + z(a− ā).

By [5, Theorem 6.6] the algebra W is structurable. This means that, for a, b, c, d ∈W ,

(4.1) [Va,b,Vc,d] = VVa,bc,d −Vc,Vb,ad.

Moreover the structurable algebra W is simple. By (4.1), the vector space spanned
by the endomorphisms Va,b (a, b ∈ W ) is a Lie algebra denoted by Instrl(W ). This
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algebra is the Lie algebra g0 in the grading, and its subalgebra k0 is the structure
algebra of the Jordan algebra V . The space S of skew-Hermitian elements in W ,
S = {z ∈ W | z̄ = −z}, has dimension one. Its elements are proportionnal to
s0 = (0, e). The subspace {(x, 0) | x ∈ V} of W is identified to V , and any element
z = (x, y) ∈W can be written z = x + s0 y.

(b) Generalized Kantor–Koecher–Tits construction
One defines a bracket on the vector space

K(W ) = S̃⊕ W̃ ⊕ Instrl(W )⊕W ⊕ S,

where S̃ is a second copy of S, and W̃ of W . This construction is described in [3],
and, by Corollary 6 in that paper, K(W ) is a simple Lie algebra. On the subspace
K(V ) = Ṽ⊕str(V )⊕V , this construction agrees with the classical Kantor–Koecher–
Tits construction, which produces the Lie algebra k = k−1⊕k0⊕k1. This algebraK(W )
satisfies property (i). The restriction of the bracket of K(W ) to K(V ) coincides to
the one of K(V ). It satisfies (iii) as well: [s0, s̃0] = I, the identity of End(W ). It
remains to check property (ii). This can be seen as a consequence of the theorem of
the highest weight for irreducible finite dimensional representations of reductive Lie
algebras. In fact, the representation dκ of k on p is irreducible with highest weight
vector Q, with respect to any Borel subalgebra b ⊂ k0 + k1 :

• If X ∈ k1, then dκ(X)Q = 0.
• If X ∈ k0, such that dγ(X) = 0, then dκ(X)Q = 0 and dκ(H)Q = 2Q.

On the other hand, for the bracket of K(W ):

• If u ∈ V, [u, s0] = 0.
• If X ∈ str(V ), such that tr(X) = 0, then [X, s0] = 0 and [H, s0] = 2s0.

It follows that the adjoint representation of K(V ) = Ṽ ⊕ str(V )⊕V on

S̃⊕ s̃0Ṽ ⊕ TW ⊕ s0V ⊕ S,

where TW = {Tw = Vw,e | w ∈ W} agrees with the representation dκ of k on p. In
the present case, Tw = L(w) + 1

2 〈v, e〉 Id, if w = u + s0v (u, v ∈ V ).
On the vector space g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, with

g1 = W, g−1 = W, g2 = C E, g−2 = C F, g0 = Instrl(W ),

one defines a bracket satisfying the following properties:
(1) g1 + g2 is a Heisenberg Lie algebra:

g1 × g1 → g2, (w1,w2) 7→ w1w̄2 − w2w̄1 = ψ(w1,w2)s0.

The bilinear form ψ is skew symmetric, and [w1,w2] = ψ(w1,w2)E.
(2) g1 × g−1 → g0, (w, w̃) 7→ Vw,w̃.
(3) g2 × g−1 → g1, (λE, w̃) 7→ λw̃.
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With a different point of view the above construction is closely related to [11].
We now introduce a real form gR of g that will be considered in the sequel. In

Section 2 we considered the involution α of K given by

α(g) = σ ◦ ḡ ◦ σ−1 (g ∈ K),

and the compact real form KR of K:

KR = {g ∈ K | α(g) = g}.

Recall that p has been defined as a space of polynomial functions on V . For p ∈ p,
define p̄ = p(z̄), and consider the antilinear involution β of p given by β(p) =
κ(σ) p̄. Observe that β(E) = F. The involution β is related to the involution α of K
by the relation

κ
(
α(g)

)
◦ β = β ◦ κ(g) (g ∈ K).

Hence, for g ∈ KR, κ(g) ◦ β = β ◦ κ(g). Define

pR = {p ∈ p | β(p) = p}.

The real subspace pR is invariant under KR, and irreducible for that action. The
space p, as a real vector space, decomposes under KR into two irreducible subspaces
p = pR ⊕ ipR. One checks that E + F ∈ pR (and hence i(E − F) as well).

Let u be a compact real form of g such that k∩u = kR, the Lie algebra of KR. Then
p decomposes as

p = p ∩ (iu)⊕ p ∩ u

into two irreducible KR-invariant real subspaces. Looking at the subalgebra g0 iso-
morphic to sl(2,C) generated by the triple (E, F,H), one sees that E + F ∈ p ∩ (iu).
Therefore pR = p ∩ (iu), and gR = kR ⊕ pR is a Lie algebra, real form of g, and
the above decomposition is a Cartan decomposition of gR. This real form gR is not
Hermitian, since the adjoint action of K on p is irreducible.

For Table 1 we have used the notation

ϕn(z) = z2
1 + · · · + z2

n, (z ∈ Cn).

In case of an exceptional Lie algebra g, the real form gR has been identified by com-
puting the Cartan signature.

5 Representation of the Generalized Kantor–Koecher–Tits Lie
Algebra

Following the method of Brylinski and Kostant, we will construct a representation ρ
of g = k + p on the space of finite sums

O(Ξ)fin =

∞∑
m=0

Om(Ξ)
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V
Q

k
g

g
R

C
n

ϕ
n (z) 2

so(n
+

2,C
)

sl(n
+

2,C
)

sl(n
+

2,R
)

C
p⊕

C
q

ϕ
p (z)ϕ

q (z
′)

so(p
+

2,C
)⊕

so(q
+

2,C
)

so(p
+

q
+

4,C
)

so(p
+

2,q
+

2)

Sym
(4,C

)
detz

sp(8,C
)

e
6

e
6(6)

M
(4,C

)
detz

sl(8,C
)

e
7

e
7(7)

Skew
(8,C

)
P

faff(z)
so(16,C

)
e

8
e

8(8)

Sym
(3,C

)⊕
C

detz·z
′

sp(6,C
)⊕

sl(2,C
)

f4
f4(4)

M
(3,C

)⊕
C

detz·z
′

sl(6,C
)⊕

sl(2,C
)

e
6

e
6(2)

Skew
(6,C

)⊕
C

P
faff(z)·z

′
so(12,C

)⊕
sl(2,C

)
e

7
e

7(−
5)

H
erm

(3,O
)

C
⊕

C
detz·z

′
e

7 ⊕
sl(2,C

)
e

8
e

8(−
24)

C
⊕

C
z

3·z
′

sl(2,C
)⊕

sl(2,C
)

g
2

g
2(2)

Table
1
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such that for all X ∈ k, ρ(X) = dπ(X). We define first a representation ρ of the
subalgebra generated by E, F,H, isomorphic to sl(2,C). In particular,

ρ(H) = dπ(H) =
d

dt

∣∣∣
t=0
π(exp tH).

Hence, for φ ∈ Om(Ξ), ρ(H)φ = (E− 2m)φ, where E is the Euler operator

Eφ(w, z) =
d

dt

∣∣∣
t=0
φ(w, et z).

We introduce two operators, M and D. The operator M is a multiplication operator
(Mφ)(w, z) = wφ(w, z), which maps Om(Ξ) into Om+1(Ξ), and D is a differential
operator:

(Dφ)(w, z) =
1

w

(
Q
( ∂

∂z

)
φ
)

(w, z),

which maps Om(Ξ) into Om−1(Ξ). (Recall that O−1(Ξ) = {0}.) We denote by Mσ

and Dσ the conjugate operators:

Mσ = π(σ)Mπ(σ)−1, Dσ = π(σ)Dπ(σ)−1.

Given a sequence (δm)m∈N one defines the diagonal operator δ on O(Ξ) f in by

δ
(∑

m

φm

)
=
∑

m

δmφm,

and put

ρ(F) = M− δ ◦D, ρ(E) = π(σ)ρ(F)π(σ)−1 = Mσ − δ ◦Dσ.

(Observe that, since deg Q = 4, then Q is even and σ = σ−1.)

Lemma 5.1 We have that [ρ(H), ρ(E)] = 2ρ(E), [ρ(H), ρ(F)] = −2ρ(F).

Proof Since

ρ(H)M : ψ(z)wm 7→ (E− 2(m + 1))ψ(z)wm+1,

Mρ(H) : ψ(z)wm 7→ (E− 2m)ψ(z)wm+1,

one obtains [ρ(H),M] = −2M. Since

ρ(H)δD : ψ(z)wm 7→ δm−1(E− 2(m− 1))Q
( ∂

∂z

)
ψ(z)wm−1,

δDρ(H) : ψ(z)wm 7→ δm−1Q
( ∂

∂z

)
(E− 2m)ψ(z)wm−1,
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and, by using the identity [
Q
( ∂

∂z

)
,E
]

= 4Q
( ∂

∂z

)
,

one gets

[ρ(H), δD] : ψ(z)wm 7→ 2δm−1Q
( ∂

∂z

)
ψ(z)wm−1.

Finally [ρ(H), ρ(F)] = −2ρ(F). Since the operator δ commutes with π(σ), and
π(σ)ρ(H)π(σ)−1 = −ρ(H), we get also [ρ(H), ρ(E)] = 2ρ(E).

Let D(V )L denote the algebra of L-invariant differential operators on V . This
algebra is commutative. In fact it is isomorphic to the algebra of invariant differen-
tial operators on the symmetric cone in the Euclidean real form VR. If V is simple
and Q = ∆, the determinant polynomial, then D(V )L is isomorphic to the algebra
P(Cr)Sr of symmetric polynomials in r variables. The map

D 7→ γ(D), D(V )L → P(Cr)Sr

is the Harish-Chandra isomorphism (see [13, Theorem XIV.1.7]). In general V de-
composes into simple ideals V =

⊕s
i=1 Vi , and D(V )L is isomorphic to the algebra∏s

i=1 P(Cri )Sri . The isomorphism is given by

D 7→ γ(D) =
(
γ1(D), . . . , γs(D)

)
,

where γi is the isomorphism relative to the algebra Vi . For D ∈ D(V )L, we define
the adjoint D∗ by D∗ = J ◦ D ◦ J, where J f (z) = f ◦ j(z) = f (−z−1). Then
γ(D∗)(λ) = γ(D)(−λ). (See [13, Proposition XIV.1.8].)

In our setting we define the Maass operator Dα as

Dα = Q(z)1+αQ
( ∂

∂z

)
Q(z)−α.

It is L-invariant. We write γα(λ) = γ(Dα)(λ). If V is simple and Q = ∆, then

γα(λ) =
r∏

i=1

(
λ j − α +

1

2

( n

r
− 1
))

([13, p. 296]). If V is simple and Q = ∆k, then

Dα = ∆k+kα∆
( ∂

∂z

) k
∆(z)−kα =

k∏
j=1

∆kα+k− j+1∆
( ∂

∂z

)
∆−(kα+k− j),

and

γα(λ) =
r∏

j=1

[
λ j − kα +

1

2

( n

r
− 1
)]

k
.

(We have used the Pochhammer symbol [a]k = a(a− 1) · · · (a− k + 1).)
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Proposition 5.2 In general

γα(λ) =
s∏

i=1

ri∏
j=1

[
λ(i)

j − kiα +
1

2

( ni

ri
− 1
)]

ki

for λ = (λ(1), . . . , λ(s)), λ(i) ∈ Cri .

We say that the pair (V,Q) has property (T) if there is a constant η such that, for
X ∈ l = Lie(L),

Tr(X) = ητ (X).

In such a case, for g ∈ L, Det(g) = γ(g)η, and, for x ∈ V , Det(P(x)) = Q(x)2η.
Furthermore Q(x)−ηm(dx) is an L-invariant measure on the symmetric cone Ω ⊂
VR, and H0(z) = H(z)−2η .

Let V = ⊕s
i=1Vi be the decomposition of V into simple ideals. Property (T) is

equivalent to the following: there is a constant η such that

ni

ri
= ηki (i = 1, . . . , s).

In fact, for x ∈ V ,

Tr(Tx) =

s∑
i=1

ni

ri
tri(xi), τ (Tx) =

s∑
i=1

ki tri(xi),

with x = (x1, . . . , xs), xi ∈ Vi .
Property (T) is satisfied either if V is simple or if V = Cp ⊕ Cp and

Q(z) = (z2
1 + · · · + z2

p)(z2
p+1 + · · · + z2

2p).

Hence we get the following cases with property (T):
(1) V = Cn, Q(z) = (z2

1 + · · · + z2
n)2, and then

g = sl(n + 2,C), k = so(n + 2,C).

(2) V = Cp ⊕ Cp, and then

g = so(2p + 4,C), k = so(p + 2,C)⊕ so(p + 2,C).

(3) V is simple of rank 4, and Q = ∆, the determinant polynomial. Then

(g, k) =
(

e6, sp(8,C)
)
,
(

e7, sl(8,C)
)
,
(

e8, so(16,C)
)
.

Observe that the case V = C2, Q(z1, z2) = (z1z2)2 = z2
1z2

2 belongs both to (1) and
(2). This corresponds to the isomorphisms:

sl(4,C) ' so(6,C), so(4,C) ' so(3,C)⊕ so(3,C).
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Proposition 5.3 The subspaces Om(Ξ) are invariant under [ρ(E), ρ(F)], and the re-
striction of [ρ(E), ρ(F)] to Om(Ξ) commutes with the L-action:

[ρ(E), ρ(F)] : Om(Ξ)→ Om(Ξ), ψ(z)wm 7→ (Pmψ)(z)wm,

where Pm is an L-invariant differential operator on V of degree≤ 4. It is given by

Pm = δm(D−1 −D∗−m−1) + δm−1(D∗−m −D0).

Proof Restricted to Om(Ξ),

MσD = D0, DMσ = D−1, MDσ = D∗−m, DσM = D∗−m−1.

It follows that the restriction of the operator [ρ(E), ρ(F)] to Om(Ξ) is given by

[ρ(E), ρ(F)] = [Mσ − δ ◦Dσ,M− δ ◦D]

= [M, δ ◦Dσ] + [δ ◦D,Mσ]

= MδDσ − δDσM + δDMσ −Mσδ ◦D

= δm(DMσ −DσM) + δm−1(MDσ −MσD)

= δm(D−1 −D∗−m−1) + δm−1(D∗−m −D0).

By the Harish-Chandra isomorphism, the operator Pm corresponds to the poly-
nomial pm = γ(Pm),

pm(λ) = δm

(
γ−1(λ)− γ−m−1(−λ)

)
+ δm−1

(
γ−m(−λ)− γ0(λ)

)
.

The question is now whether it is possible to choose the sequence (δm) in such a way
that [ρ(E), ρ(F)] = ρ(H). Recall that restricted to Om(Ξ), ρ(H) = E− 2m, where E
is the Euler operator

Eφ(w, z) =
d

dt

∣∣
t=0
φ(w, et z).

Then, by Proposition 5.3, it amounts to checking that for every m,

pm(λ) = γ(E)(λ)− 2m.

Theorem 5.4 It is possible to choose the sequence (δm) such that

[ρ(H), ρ(E)] = 2ρ(E), [ρ(H), ρ(F)] = −2ρ(F), [ρ(E), ρ(F)] = ρ(H),

if and only if (V,Q) has property (T), and then

δm =
A

(m + η)(m + η + 1)
,

where A is a constant depending on (V,Q).
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(This corresponds to [7, Theorem 6.3].)

Proof (a) Let us assume first that the Jordan algebra V is simple of rank 4. In such
a case

γα(λ) =
4∏

j=1

(
λ j − α +

1

2
(η − 1)

) (
η =

n

r

)
(Proposition 5.2) . With X j = λ j + 1

2 (η − 1), the polynomial pm can be written

pm(λ) = δm

( 4∏
j=1

(X j + 1)−
4∏

j=1
(X j−m−η)

)
+δm−1

( 4∏
j=1

(X j−m + 1−η)−
4∏

j=1
X j

)
.

Furthermore

γ(E)(λ)− 2m =

4∑
j=1

λ j − 2m =

4∑
j=1

X j − 2(m + η − 1).

Lemma 5.5 The identity in the four variables X j ,

α
( 4∏

j=1
(X j + 1)−

4∏
j=1

(X j − b j − 1)
)

+ β
( 4∏

j=1
(X j − b j)−

4∏
j=1

X j

)
=

4∑
j=1

X j + c

holds if and only if there is a constant b such that

b1 = b2 = b3 = b4 = b, c = −2b,

α =
1

(b + 1)(b + 2)
, β =

1

b(b + 1)
.

Hence we apply the lemma and get b = m + η − 1.
(b) In the general case,

γα(λ) =
s∏

i=1

ri∏
j=1

[
λ(i)

j − kiα +
1

2

( ni

ri
− 1
)]

ki

=
s∏

i=1

ri∏
j=1

ki∏
k=1

(
λ(i)

j − kiα +
1

2

( ni

ri
− 1
)
− (k− 1)

)

= A
s∏

i=1

ri∏
j=1

ki∏
k=1

( λ(i)
j

ki
− α +

1

2ki

( ni

ri
− 1
)
− k− 1

ki

)
,

with A =
∏s

i=1 kki ri
i . We introduce the notation

X(i)
jk =

λ(i)
j

ki
+

1

2ki

( ni

ri
− 1
)
− k− 1

ki
, b(i)

m = m +
ni

kiri
− 1.
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Then we obtain

pm(λ) = Aδm

( s∏
i=1

ri∏
j=1

ki∏
k=1

(X(i)
jk + 1)−

s∏
i=1

ri∏
j=1

ki∏
k=1

(X(i)
jk − b(i)

m − 1)
)

+ Aδm−1

( s∏
i=1

ri∏
j=1

ki∏
k=1

(X(i)
jk − b(i)

m )−
s∏

i=1

ri∏
j=1

ki∏
k=1

(X(i)
jk )
)

and

γ(E)(λ) =
s∑

i=1

ri∑
j=1

ki∑
k=1

X(i)
jk −

1

2

s∑
i=1

ri∑
j=1

ki∑
k=1

b(i)
m .

If the rank of V is equal to 4, then the ki are equal to 1, and the four variables X(i)
j1

are independent. By Lemma 5.5, Theorem 5.4 is proven in that case.
If the rank r of V is < 4, then

X(i)
jk = X(i)

j1 −
k− 1

ki
,

and there are only r independent variables: X(i)
j1 . In that case Theorem 5.4 is proven

by using an alternative form of Lemma 5.5.

Lemma 5.6 With a partition k = (k1, . . . , k`) of 4 and length `, k1 + · · · + k` = 4,
and the numbers γi j (1 ≤ i ≤ `, 1 ≤ j ≤ ki − 1), one associates the polynomial F in
the ` variables T1, . . . ,T`:

F(T1, . . . ,T`) =
∏̀
i=1

Ti

ki−1∏
j=1

(Ti + γi j).

Given α, β, c ∈ R, and b1, . . . , b` ∈ R, then

α
(

F(T1 + 1, . . . ,T` + 1)− F(T1 − b1 − 1, . . . ,T` − b` − 1)
)

+ β
(

F(T1 − b1, . . . ,T` − b`)− F(T1, . . . ,T`
)

=
∑̀
i=1

Ti + c

is an identity in the variables T1, . . . ,T` if and only if there exists b such that

b1 = · · · = b` = b, α =
1

(b + 1)(b + 2)
, β =

1

b(b + 1)
,

and

c =
∑̀
i=1

ki−1∑
j=1

γi j − 2b.
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For p ∈ p, define the multiplication operator M(p) given by(
M(p)φ

)
(w, z) = wp(z)φ(w, z).

Observe that M(1) = M. Then, for g ∈ K,

M
(
κ(g)p

)
= π(g)M(p)π(g−1).

In fact (
M(p)π(g−1)φ

)
(w, z) = wp(z)φ

(
µ(g, z)w, g · z),

and (
π(g)M(p)π(g−1)φ

)
(w, z)

= µ(g−1, z)wp(g−1 · z)φ
(
µ(g−1, z)µ(g, g−1 · z)w, g−1g · z

)
= w

(
κ(z)p

)
(z)φ(w, z) = M

(
κ(g)p

)
φ(w, z).

Proposition 5.7 There is a unique map

p→ End
(
Ofin(Ξ)

)
, p 7→ D(p)

such that D(1) = D, and, for g ∈ K,

D
(
κ(g)p

)
= π(g)D(p)π(g−1).

(This corresponds to part of [7, Theorem 6.1].)

Proof Recall that for g ∈ Pmax,(
κ(g)p

)
(z) = χ(g)p(g−1 · z),

and (
π(g)φ

)
(w, z) = φ

(
χ(g)w, g−1 · g

)
.

Let us show that for g ∈ Pmax,

π(g)Dπ(g−1) = χ(g)D.

Observe first that, for ` ∈ L and a smooth function ψ on V ,

Q
( ∂

∂z

)(
ψ(` · z)

)
= γ(`)

(
Q
( ∂
∂z

)
ψ
)

(` · z).

Therefore, for g ∈ Pmax,

Dπ(g−1)φ(w, z) =
1

w
Q
( ∂

∂z

(
φ
(
χ(g−1)w, g · z

))
=

1

w
χ(g)2

(
Q
( ∂
∂z

)
φ
)(
χ(g−1)w, g · z

)
,
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and(
π(g)Dπ(g−1)φ

)
(w, z) =

1

χ(g)w
χ(g)2

(
Q
( ∂

∂z

)
φ
)

(w, z) = χ(g)Dφ(w, z).

It follows that the vector subspace in End(Ofin(Ξ)) generated by the endomorphisms
π(g)Dπ(g−1) (g ∈ K) is a representation space for K equivalent to p. (See [8, The-
orem 3.10].) Hence there exists a unique K-equivariant map p 7→ D(p) such that
D(1) = D.

For p ∈ p, define ρ(p) = M(p)−δD(p).Observe that this definition is consistent
with the definition of ρ(E) and ρ(F). Recall that for X ∈ k, ρ(X) = dπ(X). Hence we
get a map

ρ : g = k⊕ p→ End
(
O(Ξ)fin

)
.

Theorem 5.8 Assume that Property (T) holds. Fix (δm) as in Theorem 5.4.

(i) ρ is a representation of the Lie algebra g on O(Ξ)fin.
(ii) The representation ρ is irreducible.

Proof (i) Since π is a representation of K, for X,X ′ ∈ k,

[ρ(X), ρ(X ′)] = ρ([X,X ′]).

It follows from Proposition 5.7 that for X ∈ k, p ∈ p,

[ρ(X), ρ(p)] = ρ([X, p]).

It remains to show that for p, p ′ ∈ p,

[ρ(p), ρ(p ′)] = ρ([p, p ′]).

By Theorem 5.4, [ρ(E), ρ(F)] = ρ(H). Then this follows from [9, Lemma 3.6]. Con-
sider the map

τ :
∧2

p→ End
(
O(Ξ)fin

defined by
τ (p ∧ p ′) = [ρ(p), ρ(p ′)]− ρ([p, p ′]).

We know that τ (E ∧ F) = 0. It follows that, for g ∈ K,

τ
(
κ(g)E ∧ κ(g)F

)
= 0.

Since the representation κ is irreducible, and E and F are highest and lowest vectors
with respect to P, the vector E ∧ F is cyclic in

∧2
p for the action of K. Therefore

τ ≡ 0.
(ii) Let V 6= {0} be a ρ(g)-invariant subspace of O(Ξ)fin. Then V is ρ(k)-invariant.

As O(Ξ)fin =
∑∞

m=0 Om(Ξ) and as the subspaces Om(Ξ) are ρ(k)-irreducible, then
there exists I ⊂ N (I 6= ∅) such that V =

∑
m∈I Om(Ξ). Observe that if V contains
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Om(Ξ), then it contains Om+1(Ξ). In fact denote by φm the function in Om(Ξ) defined
by φm(w, z) = wm. As Dφm = 0, it follows that

ρ(F)φm = Mφm = φm+1,

and ρ(F)φm belongs to Om+1(Ξ); therefore Om+1(Ξ) ⊂ V. Denote by m0 the mini-
mum of the m such that Om(Ξ) ⊂ V, then

V =
∞⊕

m=m0

Om(Ξ).

The function φ(w, z) = Q(z)mwm belongs to Om(Ξ), and

ρ(F)φ(w, z) = Q(z)mwm+1 − δm−1Q
( ∂

∂z

)
Q(z)mwm−1.

By the Bernstein identity (Proposition 3.1)

Q
( ∂

∂z

)
Q(z)m = B(m)Q(z)m−1,

and since B(m) > 0 for m > 0, it follows that, if Om(Ξ) ⊂ V with m > 0, then
Om−1(Ξ) ⊂ V. Therefore m0 = 0 and V = O(Ξ)fin.

6 The Unitary Representation of the Kantor–Koecher–Tits Group

We consider, for a sequence (cm) of positive numbers, an inner product on O(Ξ)fin

such that

‖φ‖2 =

∞∑
m=0

1

cm
‖ψm‖2

m

for

φ(w, z) =

∞∑
m=0

ψm(z)wm.

This inner product is invariant under KR. We assume that Property (T) holds, and
we will determine the sequence (cm) such that this inner product is invariant under
the representation ρ restricted to gR. We denote by H the Hilbert space completion
of O(Ξ)fin with respect to this inner product. We will assume c0 = 1.

The Bernstein polynomial B is of degree 4 and vanishes at 0 and α1 = 1 − η. Let
α2 and α3 be the two remaining roots:

B(α) = Aα(α− α1)(α− α2)(α− α3).

(1) V = Cn, Q(z) = (z2
1 + · · · + z2

n)2. Then

B(α) = Aα
(
α− 1

2

)(
α +

n− 4

4

)(
α +

n− 2

4

)
.
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A = 24 if n ≥ 2, A = 44 if n = 1.
(2) V = C2p, Q(z) = (z2

1 + · · · + z2
p)(z2

p+1 + · · · + z2
2p). Then

B(α) = α2
(
α +

p − 2

2

) 2
.

(3) V is simple of rank 4, complexification of VR = Herm(4, F), Q(z) = ∆(z),
the determinant polynomial. Then

B(α) = α
(
α +

d

2

)(
α + 2

d

2

)(
α + 3

d

2

)
,

where d = dimRF.
Here are the non zero roots of the Bernstein polynomial:

η α1 α2 α3

(1) n
4 − n−4

4
1
2 − n−2

4

(2) p
2 − p−2

2 0 − p−2
2

(3) 1 + 3 d
2 −3 d

2 − d
2 −2 d

2

Theorem 6.1

(i) The inner product of H is gR-invariant if

cm =
(η + 1)m

(η + α2)m(η + α3)m

1

m!
.

(ii) The reproducing kernel of H is given by

K(ξ, ξ ′) = 1F2

(
η + 1; η + α2, η + α3; H(z, z ′)ww ′

)
,

for ξ = (w, z), ξ ′ = (w ′, z ′).

(This corresponds to [7, Theorems 6.6 and 8.1].)

Proof (i) Recall that pR = {p ∈ p | β(p) = p}, where β is the conjugation of p we
introduced at the end of Section 4. Recall also that

β(κ(g)p) = κ
(
α(g)

)
β(p).

The inner product of H is gR-invariant if and only if, for every p ∈ p,

ρ(p)∗ = −ρ
(
β(p)

)
.

But this is equivalent to the single condition ρ(E)∗ = −ρ(F). In fact, assume that this
condition is satisfied. Then, for p = κ(g)E, (g ∈ K),

ρ(p) = π(g)ρ(E)π(g−1), ρ(p)∗ = −π(g−1)∗ρ(F)π(g)∗.
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Since π(g)∗ = π
(
α(g)

)−1
, we get

ρ(p)∗ = −π
(
α(g)

)
ρ(F)π

(
α(g−1)

)
= −ρ

(
κ(α(g))F

)
= −ρ

(
κ(α(g))β(E)

)
= −ρ

(
β(κ(g)E)

)
= −ρ

(
β(p)

)
.

Finally, observe that the vector E is cyclic in p for the K-action.
For m ≥ 0, φ ∈ Om+1(Ξ), φ ′ ∈ Om(Ξ), the condition ρ(E)∗ = −ρ(F) is equiva-

lent to
1

cm+1
(φ |Mσφ ′)m+1 =

1

cm
δm(Dφ | φ ′)m.

Recall that m0(dz) = H0(z)m(dz) with H0(z) = H(z)−2η, and the norm of Õm(V )
can be written

‖ψ‖2
m =

1

am

∫
V
|ψ(z)|2H(z)−m−2ηm(dz).

Then the required condition of invariance becomes

1

cm+1am+1

∫
V
ψ(z)Q(z)ψ ′(z)H(z)−(m+1)−2ηm(dz) =

δm

cmam

∫
V

(Q
( ∂

∂z

)
ψ)(z)ψ ′(z)H(z)−m−2ηm(dz).

By integrating by parts

∫
V

(Q
( ∂

∂z

)
ψ)(z)ψ ′(z)H(z)−m−2ηm(dz) =∫

V
ψ(z)ψ ′(z)

(
Q
( ∂

∂z

)
H(z)−m−2η

)
m(dz),

and, by the relation

Q
( ∂

∂z

)
H(z)−m−2η = B(−m− 2η)Q(z)H(z)−(m+1)−2η,

the condition can be written

1

cm+1
=

am+1

am
δmB(−m− 2η)

1

cm
.

From Proposition 3.2 it follows that

am+1

am
=

B(−m− η)

B(−m− 2η)
.

We obtain finally

cm+1

cm
=

m + η + 1

(m + η + α2)(m + η + α3)(m + 1)
,
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and since c0 = 1,

cm =
(η + 1)m

(η + α2)m(η + α3)m

1

m!
.

(ii) By Theorem 2.5 the reproducing kernel of H is given by

K(ξ, ξ ′) =

∞∑
m=0

cmH(z, z ′)mwmw ′
m

= 1F2

(
η + 1; η + α2, η + α3; H(z, z ′)ww ′

)
,

with ξ = (w, z), ξ ′ = (w ′, z ′).

We will see that the Hilbert space H is a pseudo-weighted Bergman space. By this
we mean that the norm is given by an integral of |φ|2 with respect to a weight taking
both positive and negative values. The weight involves a Meijer G-function

G(u) =
1

2iπ

∫ c+i∞

c−i∞

Γ(β1 + s)Γ(β2 + s)Γ(β3 + s)

Γ(α + s)
u−sds,

where α, β1, β2, β3 are real numbers, and c > σ = − inf{β1, β2, β3}. This function
is denoted by

G(u) = G3,0
1,3

(
x
∣∣ α
β1 β2 β3

)
(see for instance [17]). By the inversion formula for the Mellin transform∫ ∞

0
G(u)us−1du =

Γ(β1 + s)Γ(β2 + s)Γ(β3 + s)

Γ(α + s)
,

for Re s > σ, and the integral is absolutely convergent. If the numbers β1, β2, β3 are
distinct, then

G(u) = ϕ1(u)uβ1 + ϕ2(u)uβ2 + ϕ3(u)uβ3 ,

where ϕ1, ϕ2, ϕ3 are holomorphic near 0. (Note that ϕ1, ϕ2, ϕ3 are 1F2 hypergeo-
metric functions.)

The function G may not be positive on ]0,∞[, but is positive for u large enough.
In fact

G(u) ∼
√
πuθe−2

√
u (u→∞),

where θ = β1 + β2 + β3 − α− 1
2 . ([18, Theorem 3, p. 32].)

Now take

α = η − 1, β1 = 2η − 1, β2 = 2η + a− 1, β3 = 2η + b− 1 :

α β1 β2 β3

(1) n
4 − 1 n−2

2
n−1

2
n−2

4

(2) p
2 − 1 p − 1 p − 1 p

2

(3) 3 d
2 3d + 1 5 d

2 + 1 2d + 1
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The Mellin transform of G vanishes at −α, with changing sign. One can check
that−α > σ in all cases. Therefore there are real values s > σ for which the integral∫ ∞

0
G(u)us−1du < 0.

This implies that the function G takes negative values on ]0,∞[.

Theorem 6.2 For φ ∈ H,

‖φ‖2 =

∫
C×V
|φ(w, z)|2 p(z,w)m(dw)m0(dz),

with

p(w, z) = CG
(
|w|2H(z)

)
H(z).

The integral is absolutely convergent.

Proof We will follow the proof of [6, Theorem 5.7].
(a) From the proof of Theorem 6.1 it follows that

1

amcm
=

(2η)m(2η + α2)m(2η + α3)m

(η)m

= C
Γ(2η + m)Γ(2η + α2 + m)Γ(2η + α3 + m)

Γ(η + m)

= C

∫ ∞
0

G(u)umdu.

(One checks that σ < 1, i.e., G is integrable.) By the computation we did for the
proof of Theorem 2.6, we obtain, for φ(w, z) = wmψ(z) ∈ Om,∫

C×V
|φ(w, z)|2 p(z,w)m(dw)m0(dz) = ‖φ‖2.

Furthermore, if φ ∈ Om, φ ′ ∈ Om ′ , with m 6= m ′,∫
C×V

φ(w, z)φ ′(w, z)m(dw)m0(dz) = 0.

It follows that, for φ ∈ Ofin,∫
C×V
|φ(w, z)|2 p(z,w)m(dw)m0(dz) = ‖φ‖2.

The computation is justified by the fact that, for s > σ,∫ ∞
0
|G(u)|us−1du <∞.
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(b) Let us consider the weighted Bergman space H1 whose norm is given by

‖φ‖2
1 =

∫
C×V
|φ(w, z)|2|p(w, z)|m(dw)m0(dz).

By Theorem 2.6,

‖φ‖2
1 =

∞∑
m=0

1

c1
m

‖ψm‖2
m,

with
1

amc1
m

= C

∫ ∞
0
|G(u)|umdu.

Obviously c1
m ≤ cm, therefore H1 ⊂ H. We will show that H ⊂ H1. For that we

will prove that there is a constant A such that cm ≤ Ac1
m. As observed above there is

u0 ≥ 0 such that G(u) ≥ 0, for u ≥ u0, and then∫ ∞
0
|G(u)|um ≤

∫ ∞
0

G(u)umdu + 2

∫ u0

0
|G(u)|umdu.

Hence
1

c1
m

≤ 1

cm
+ 2amum

0

∫ u0

0
|G(u)|du.

By the formula we gave at the beginning of (a), the sequence amcmum
0 is bounded.

Therefore there is a constant A such that 1
c1

m
≤ A 1

cm
, and this implies that H ⊂

H1.

Let G̃R be the connected and simply connected Lie group with Lie algebra gR and
denote by K̃R the subgroup of G̃R with Lie algebra kR. It is a covering of KR. We
denote by s : K̃R → KR, g 7→ s(g) the canonical surjection.

Theorem 6.3

(i) There is a unique unitary irreducible representation π̃ of G̃R on H such that dπ̃ =
ρ. And, for all k ∈ K̃R, π̃(k) = π(s(k)).

(ii) The representation π̃ is spherical.

Proof (i) Notice that if the operators ρ(E + F) and ρ(i(E− F)) are skew-symmetric,
then for each p ∈ pR, the operator ρ(p) is skew-symmetric. In fact, since the
sl2-triple (E, F,H) is strictly normal (see [22]), which means that H ∈ ikR, E + F ∈
pR, i(E− F) ∈ pR, and since p = U(k)E, hence pR = U(kR)(E + F) +U(kR)(i(E− F)),
and the assertion follows.

Now, by Nelson’s criterion, it is enough to prove that the operator ρ(L) is essen-
tially self-adjoint where L is the Laplacian of gR. Let us consider a basis {X1, . . . ,Xk}
of kR and a basis {p1, . . . , pl} of pR, orthogonal with respect to the Killing form. As
gR = kR + pR is the Cartan decomposition of gR, then the Laplacian and the Casimir
operators of gR are given by

L = X2
1 + · · · + X2

k + p2
1 + · · · + p2

l ,

C = X2
1 + · · · + X2

k − p2
1 − · · · − p2

l .
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It follows that L = 2(X2
1 + · · · + X2

k ) − C and ρ(L) = 2ρ(X2
1 + · · · + X2

k ) − ρ(C).
Since ρ(X2

1 + · · · + X2
k ) = dπ(X2

1 + · · · + X2
k ) and as π is a unitary representation of

KR, hence the image ρ(X2
1 + · · ·+ X2

k ) of the Laplacian of kR is essentially self-adjoint.
Moreover, since the dimension of O(Ξ)fin is countable, then the commutant of ρ,
which is a division algebra over C, also has a countable dimension, and is equal to
C (see [10, p. 118]). It follows that ρ(C) is scalar. We deduce that ρ(L) is essentially
self-adjoint and that the irreducible representation ρ of gR integrates to an irreducible
unitary representation of G̃R, on the Hilbert space H.

(ii) The spaceO0(Ξ) reduces to the constant functions that are the K-fixed vectors.

We do not know whether the representation π̃ goes down to a representation of a
real Lie group GR with KR as a maximal compact subgroup.
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