
Teaching Note

Trigonometric identities from the mystic rose

Introduction
A regular -gon with all its diagonals is commonly known as a mystic

rose. In this Note we use its symmetries to derive trigonometric sums and
products where the arguments are consecutive multiples of . It is a
companion piece to [1], where we projected regular polygons onto their
diameters to obtain trigonometric sums with the same property. In what
follows , , , . We shall use the notation we
adopt in Figure 1 throughout the piece.

n

π
n

k ∈ Z+ k ≥ 1 n ∈ Z+ n ≥ 3

Tasks for students appear in italics. They will find a discussion,
together with further results, at [2].

Results from Figure 1
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FIGURE 1

Suppose that ,  even, (6 in our example). By rotation symmetry,
all angles are integer multiples of . In particular, all diagonals from a given
vertex are separated by this angle. We shall take a side as a diagonal of

n = 2k + 1 k
π
n
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length  and label the  lengths in sequence  to , a convention we
shall adopt throughout the piece. By reflective symmetry there are just
lengths, running from  to . The lengths are paired so that ,
where , so  and  are of opposite parity. We take the
complete series of  isosceles triangles like the one shaded and write the
base in terms of one of the equal sides:

d0 2k d0 d2k − 1
k

d0 dk − 1 ds = dt
s + t = 2k − 1 s t

k

d1 = ,2d0 sin 11π
26 These  equations contain all  lengths both onk k

d3 = ,2d1 sin 9π
26 the left and on the right. How did we ensure this?

d5 = ,2d2 sin 7π
26 Multiply, cancel, rearrange to obtain this identity:

d7 = d4 = ,2d3 sin 5π
26 , .  [A]∏j = k − 1

j = 0 sin (2j + 1)π
2(2k + 1) = 2−k k ≥ 1

d9 = d2 = 2d4 sin 3π
26 Rewrite it in terms of cosine to obtain a

d11 = d0 = 2d5 sin π
26 simpler expression, [B].

The cases  can be confirmed by applying the cosine rule in figures
,  respectively in Figure 2. Confirm this. In each case one isosceles

triangle has been divided into two [3].

k = 2, 3
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FIGURE 2

Results from Figure 3
In [4] the author published a figure
which shows that the isosceles
triangle on  as base and its apex
at the opposite vertex of a regular

-gon can be dissected into
 isosceles triangles, each with

side-length  and base angles in
arithmetic progression from  to

, in the manner shown in
Figure 3. The lengths of the bases
are labelled  to . As before,
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FIGURE 3

Equate equal sides of the triangle to derive this identity: 

∑
j = k

j = 0

(−1)j cos
jπ

2k + 1
= 0.5,  k ≥ 1. [C]

Interpret the identity in terms of the area under the cosine curve.
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Results from Figure 4
Including sides with diagonals, the product of the lengths of the

diagonals from a given vertex of a regular -gon inscribed in the unit circle
is . (This surprising result is readily shown with complex numbers. See, for
example, [5].) We shall call this the product-of-diagonals theorem.

n
n

See Figure 4. The length of the general diagonal , defined above, is dj

2 sin
(j + 1) π

n
.

n = 2k n = 2k + 1

1

dj

dk − 2

(j + 1)π
n

dj

dk − 1

1

 paired diagonalsk − 1  paired diagonalsk
FIGURE 4

(a)  If , we have  paired diagonals and a single diagonal of
length 2. Using the product-of-diagonals theorem, substituting the above
value for , we have

n = 2k (k − 1)

dj

∏
k − 1

j = 1

sin
jπ
2k

= k · 21 − k, k ≥ 2. [D]

When , , , the right-hand side equals , a
negative integer power of 2. Thus

k = 22t t ∈ Z+ t ≥ 1 21 + t − 22t

∏
k −1

j = 1

sin
jπ
2k

= 2p = ∏
k −1

j = 1

cos
(k − j)π

2k
, where  k = 22t, p + 1 + t − 22t, t ≥ 1.  [E]

For these negative integer powers of 2, we can equate a product from [E]
with the corresponding expression from [A]. Taking , we havet = 1

cos
π
5

cos
2π
5

= cos
π
8

cos
π
4

cos
3π
8

= 2−2.

Write the corresponding equation for .t = 2
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(b)  If  , we have  paired diagonals, leading ton = 2k + 1 k

∏
k

j = 1

sin
jπ

2k + 1
= 2k + 1 · 2−k,  k ≥ 1. [F]

For what values of  is the product rational?k

We can identify nested products in [D] and [F]. For example,

[D], :k = 9 sin π
18· sin 2π

18· sin 3π
18· sin 4π

18· sin 5π
18· sin 6π

18 · sin 7π
18· sin 8π

18 = 3 · 2−8,
[E], :k = 4            .sin π

9·             · sin 2π
9 ·            · sin 3π

9 ·           · sin 4π
9 = 3 · 2−4

Divide the first equation by the second. What leads you to expect the result?

Results from Figure 5
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2θ

V θ
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bj,j + 1dj

FIGURE 5

�We express the area of the -gon in
two ways: 

n

as the sum of  elements like  and
as the sum of the sequence of
elements like  sharing a vertex

. In the case of an odd-sided
polygon, equating these sums yields

n a

bj,j + 1

V

∑
2k − 1

j =1

sin jθ sin (j + 1)θ =
2k + 1

2
cosθ,

k ≥ 1, θ =
π

2k + 1
. [G]

Derive the corresponding result for an even-sided polygon, [H]

Results from Figure 6
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FIGURE 6
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Figure 6 shows a regular -gon where  has the form . Here
. Within it is shown an -gon where . The

circumdiameter of the second is the radius of the first, 1. The segment  has
length . These segments bisect at right angles diagonals of a larger

-gon inscribed in that with  sides. Enlarging by factor
from the vertex shown, we have a diagonal  of the small polygon, whose
size is given by

n n 2 (2k + 1)
k = 7 n n = 2k + 1

rj

cos jπ
2k + 1

(2k + 1) 2 (2k + 1) 1
2

dj

dj = rj + 1 tan
(j + 1) π
2k + 1

.

From the product-of-diagonals theorem we take half the diagonals and
correct for the fact that the circumradius of the small polygon is :1

2

∏
k − 1

j = 0

dj = 2k + 1 · 2−k.

We then substitute for , noting a change of limiting values:dj

∏
k

j = 1

rj tan
jπ

2k + 1
= ∏

k

j = 1

rj ∏
k

j = 1

tan
jπ

2k + 1
= 2k + 1 · 2−k.

But we know from [A] that . Substituting and cancelling gives∏
k

j = 1
rj = 2−k

∏
k

j = 1

tan
jπ

2k + 1
= 2k + 1, k ≥ 1. [I]

Check this result by dividing [F] by [B].

For what values of  is the product an integer?k
Look for nested products as you did for [D] and [F]. For example,

taking the value , we havek = 4

tan
π
9

tan
2π
9

tan
3π
9

tan
4π
9

= 3.

But we know that , so we can write3 = (tan
3π
9 )2

tan
3π
9

= tan
π
3

= tan
π
9

tan
2π
9

tan
4π
9

.

Results from Figure 7
In Figure 7 we add unit vectors, , which complete a

circuit in which each is rotated an equal angle with respect to that preceding.
Each symbol combines the previous vertex with the next, so we have a
sequence like 03 - 36 - 61. A zero sum results from the addition of either the
real or imaginary components, providing a sum in cosine and sine
respectively. In Figure 7A the circuit follows the polygon perimeter; in
Figures 7B, 7C it traces star polygons through the diagonals, (whether
simple, or compound as in the case of the hexagon).

cos mθ + i sin mθ
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We have these identities, the same for sine and cosine:

∑
n

j = 1

cos (2j
π
n ) = ∑

n

j = 1

cos ((2j − 1)
π
n ) = 0, n ≥ 2, [J]

∑
n

j = 1

sin (2j
π
n ) = ∑

n

j = 1

sin ((2j − 1)
π
n ) = 0, n ≥ 2. [K]

Considering the unit circle, how do you interpret these results?
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