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(HM)-SPACES AND MEASURABLE CARDINALS

BY

JOSE A. FACENDA AGUIRRE

ABSTRACT. A locally convex space E is called an (HM)-space if
E has invariant nonstandard hulls. In this paper we prove that if E
is an (HM)-space, then E is a T(w)-space, where w is the first
measurable cardinal. This is equivalent to say that in an (HM)-
space, with dim(E) = y, does not exist a continuous norm. With this
result, we prove that there exists an inductive semi-reflexive space E
such that the bounded sets in E are finite-dimensional but E is not
an (HM)-space. Thus, we answer negatively to an open problem
raised up by Bellenot. In this paper, we do not use nonstandard
analysis.

Let E be a locally convex space; a nonstandard hull of E is a standard
locally convex space E constructed from a nonstandard model for E. If the
nonstandard hulls do not depend on the used nonstandard models, E is said to
be an (HM)-space. [5,9].

In Section 1, we prove that every (HM)-space is a T(u)-space, where u is
the first measurable cardinal. That is equivalent to prove that it can not be
defined a continuous norm on an (HM)-space with dim(E)= . Applying this
result, a part of a theorem of Henson and Moore [6] about the dimension of an
(HM)-space is enlarged.

In Section 2, we prove assuming the existence of measurable cardinals, that
there exists an inductive semi-reflexive [2] space E such that bounded sets in E
are finite-dimensional but E is not an (HM)-space. This gives a negative
answer to a question raised by Bellenot [1].

This is a part of the author’s Ph.D. Thesis prepared at the University of
Sevilla under the supervision of Professor Juan Arias de Reyna. I wish to thank
Professor Arias de Reyna for his interest and advice.

In this paper, we do not use nonstandard analysis.

Notation. In the following, N will denote the set of the positive integers; E a
separated locally convex space over K (R or C, real or complex numbers), E’
the topological dual of E, E* the algebraic dual and U(E) the filter of all
neighborhoods of 0 of the space E. If A < E we denote by (A) the linear hull
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of A. It is known that E is an (HM)-space if and only if every almost-bounded
ultrafilter on E is a Cauchy ultrafilter [5], (an ultrafilter & is said to be
almost-bounded if for every U in U(E), there exists a positive integer n such
that nU is in ).

It is easy to see that (HM)-spaces are stable for projective constructions (for
instance, subspaces and products).

Let a be an infinite cardinal. The space E is said to be a T(a)-space if for
every Uell(E), there exists a subspace M of E contained in U such that
cod(M)<a[4]. A cardinal k is said to be measurable if it is uncountable and
there exists a non-principal ultrafilter § on k that is k-complete, i.e. if A;
belongs to § for i <k, then [ {A; :i<k}is in & [3], p. 186. By w we denote
the least non-zero limit ordinal, and by w the first measurable cardinal. A
relationship between (HM)-spaces and measurable cardinals was obtained by
Henson and Moore [6].

By w(k), where k is an infinite cardinal we denote the space formed by all
scalar families {x, : « <k} and by ¢(k) the space of all scalar families with
finitely many non-zero coordinates. If x ={x, :a <k} is in w(k) and y=
{yo 1@<k} is in @(k) we denote by (x, y) the canonical bilinear form, i.e.
(X, YY) =Y ek XaYo (see [7] p. 53, 56). We denote Q=w(®R,) and ¢ =@ Ry).
Finally, by 1*(w) we denote the set of mappings x from w to K such that
Y <y |x()]? is summable. This is a linear space under the usual operations, and
an inner product is defined on it by (x | y) =Y, x(a)@. With this product,
[?(w) is a Hilbert space.

1. The main theorem

THEOREM. Let E be an (HM)-space. Then the following conditions are
satisfied:

(1) E is a T(w)-space.

(ii) If dim(E)=u, it can not be defined a continuous norm on E.

Proof. We first prove that (i) implies (i). Assume that E is not a T(w)-
space. Then there exists Uecll(E) such that for every subspace M of E
contained in U, one has cod(M)=u. Let N be the greatest subspace of E
contained in U, and F an algebraic supplement of N. It is clear that F is an
(HM)-space and dim(F)=pu. However, the Minkowski functional of UNFe
U(F) is a continuous norm on F.

Let us prove (ii). Assume that p is a continuous norm on E. We construct, by
transfinite induction, a family {e, : « <u} of elements of E such that for £# n,
n, E<u, ple.—e,)=1.

Suppose that for a <pu, we have a family {ez : B <} satisfying p(e; —e,) =1,
for é#m, & m<a. Put F, =({eg : B <a}). Since every element in F, is the limit
for the topology on E defined by the norm p, of a sequence in {{e; : B <a}), we
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have:
dlm(Fa) < (card(a))xﬂ < (zcard(a))NO — 2card(a) < m

because w is strongly inaccessible [3], p. 193. Hence there exists an element
X, € E\F,. Writing e, =Ax, for an adequate real number A, the family
{eg : B=a} satisfies p(e;—e,)=1 for é#m, En=a.

Since p is the first measurable cardinal, there exists a countably complete
non-principal ultrafilter & on E such that the family {e, : « <u} is in §. By the
given construction, % is not a Cauchy ultrafilter. Nevertheless, & is almost-
bounded, because if V eU(E) is absolutely convex, E =) nV and there exists
an neN such that nVegR.

Remark. In this proof we have seen that (ii) implies (i). It is easy to see that
(i) also implies (ii).

Recall that a nonempty class of locally convex spaces is said to be a variety if
it closed under the operations of taking subspaces, quotient spaces, arbitrary
cartesian products and isomorphic images. The variety generated by a class €
of locally convex spaces is the intersection of all varieties containing €. If €
consists of a single locally convex space, then the variety is said to be singly
generated ([4]). It is proved in [4], theorem 2.7 that a variety 8 is singly
generated if and only if there exists an infinite cardinal m such that every space
in 8B is a T(m)-space.

Thus we can state:

CoROLLARY. The variety generated by the (HM)-spaces, is singly generated.

DEeFINITION. Let B, £ two families of seminorms on E. We say that % is
equivalent to £ (B~&) if they define the same topology on E. We call
minimal cardinal of %R (see [8]) to the cardinal:

a(PB) = inf{card(J) : {p, : je J} ~B}.

Then we have the next result:

ProrosiTiON. Let E be an (HM)-space and B a family of continuous
seminorms on E such that a(P) < w. Then cod(N) < u, where

N={xeE :p(x)=0,Vpe$}

Proof. We may suppose that a($) = card(). For every p B denote N, =
{x€E : p(x)=0}. Then N =) {N, : pe$B}. Denote by G, an algebraic supple-
ment of N,. Then Gp is an (HM)-space and p restricted to G, is a continuous
norm. Therefore dim(G,)<p for every pe®. Since a(P)<p we have
cod(N) < w.

Applying this proposition we prove a corollary that enlarges a part of a result
of Henson and Moore [6], Theorem 2.
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COROLLARY. Assume that the topology of an (HM)-space E is defined by a
family of seminorms 3 such that a(P) <w. Then dim(E) =< u.

2. A counter-example. Assuming the existence of measurable cardinals we
answer to a problem raised up by Bellenot [1].

THEOREM. Assuming the existence of measurable cardinals, there exists an
inductive semi-reflexive space E, such that bounded sets in E are finite-
dimensional but E is not an (HM)-space.

Proof. Let E be the space ¢(w) and F the linear space of all families
{a, : a«<u} where a, is a scalar and card{a < : a,#0}) is countable. The
bilinear form {x, a)=Y x,a, where a={a, : a<u}isin F and x ={x, : a<pu}
is in E defines a duality between E and F. For every a in F, we define the
seminorm on E:

Pa(X) =Y lauX,| (a={a, ra<p};  x={x,:a<u}

Let T, be the topology defined on E by the seminorms {p, : a € F}. It is easy
to see that F is the dual of E(T,).

1. Every bounded set in E(T) is finite-dimensional.

For every xcE (resp. acF) define supp(x)={a<wm:x,#0} (resp.
supp(a) ={a<w : a,#0}). Let B be a bounded set in E(T,). We will prove
that A ={J{supp(x):x < B} is a finite set. Otherwise there exists a sequence
{x" :neN} in B such that supp(x") is not contained in |J {supp(x’):1=i=
n—1}.

Choose a,, € supp(x™)\ U {supp(x’) : 1=i=<n—1} and a € F defined by a, =
0if a# a,; a, =n/x; .

It is clear that p,(x")=n. Thus B is not a bounded set.

Let T be the topology defined on E by the seminorms {p, : a€ F} and p;
where p is the usual norm of the Hilbert space [*(w). It is easy to prove that F
is the dual space of E(T).

2. Since T=T,, every bounded set in E(T) is finite-dimensional. But by (ii),
E(T) is not an (HM)-space.

3. E(T) is an inductive semi-reflexive space.

It suffices to prove that E(T,) is an inductive semi-reflexive space. Let
ue E'™ be a linear form that is bounded on the equicontinuous subsets of E'.
For every acF, consider a normal covering M, ={{b, : a<u}:|b.|=l|a.l,
Va <u}. Denoting U, ={xecE :p,(x)<1}, it is known that M, =U? [7],
30.2(3). Therefore {M, : a € F} is a basis of equicontinuous sets of E’.

Assume that A < u is countable and let a4, a5, ..., «,, .. be a enumeration
of A. Then the space {aeF :supp(a)< A} is isomorphic to Q. To see that
consider a mapping f:Q— F such that f({x,:neN}) ={a, : a <u} where
a,=0 if a¢ A and a, =x, if « =q,. Define a mapping g : ¢ — E such that
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g({z, :neNp={y, :a<u} where y,=0 if a¢ A and y, =z, if a =a,. For
every z€ ¢ and y € Q it is clear that (z, y)=(g(z), f(y)). The space ¢, endowed
with the finest locally convex topology is complete and nuclear, hence it is an
inductive semi-reflexive space [2].

Since u-fee'™* is bounded on equicontinuous subsets of ¢', there exists
z* € ¢ such that (uof)(x) ={(z*, x)=(g(z®*), f(x)) for every x€Q, i.e. u(a)=
(x*, a) for every a € F such that supp(a)< A and x* € E.

Let u be equal to | {A, : @ <u} where each A, is a countable set (for
instance, A, =[aw, (a +1)w)). There exists for every a <pu an element x* in
E such that u(a)=(x“, a) for every a € F with supp(a)< A,. We prove that
all x* are zero except at most finitely many of them. Otherwise let oy, .. .,
Q,, ... be a sequence such that x**#0 and N=J{A, :ieN}. Since N is a
countable set there exists x™ € E such that u(a) ={(x~, a) for every a € F with
supp(a)< N. Since x" restricted to A, is equal to x*’, x™ has infinitely many
coordinates non-zero.

Consider x=Y x* e E. For every acF we have u(a)=(x, a). Indeed,
choose M =supp(a) and x™ € E such that u(b)={(x™, b) for every be F with
supp(b)c M. If « <u and supp(b)c MN A, we have u(b)=(x, b). Thus x is
equal to x™ in MNA, for every a <u. Therefore x is equal to x™ in M
and u(a)={(M, a)=(x, a).
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