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Normalizers of 2-subgroups in black-box groups

Peter Rowley and Paul Taylor

Abstract

In this paper we refine and extend the applicability of the algorithms in Bates and Rowley (Arch.
Math. 92 (2009) 7–13) for computing part of the normalizer of a 2-subgroup in a black-box group.

Supplementary materials are available with this article.

1. Introduction

In [3] algorithms are discussed for obtaining certain elements of NG(X) when G is a black-box
group, X is a p-subgroup of G and p is a prime number. In practise these algorithms, which are
Monte Carlo (though there is a potential sting in the tail; see the end of Section 3), exhaust
the available memory unless X is ‘small’. If X is a 2-group, then ‘small’ in [3] means that X
has a characteristic series of subgroups whose successive factors are elementary abelian of order
at most 25. The aim of the present paper is to confront this issue for these algorithms when
X is a 2-group. As a by-product we produce algorithms that are able to handle 2-subgroups
possessing characteristic series whose successive factors are elementary abelian of order at most
29 (although 210 is in range if we are prepared to allow some uncertainty in the output).

From now onG stands for a black-box group andX a 2-subgroup ofG of order 2n. This means
that the elements of G are encoded (not necessarily uniquely) by 0, 1-strings of uniform length
and such that for g, h ∈G, we can compute (a string representing) gh, g−1, and determine
whether g = h. Black-box groups were originally introduced in [2] (see [1, 9] for more recent
developments). Also we set N =NG(X), C = CG(X), N =N/C and K =O2′(N)C. We recall
that O2′(N) is the normal subgroup of N whose quotient is the largest possible quotient of N of
odd order, so O2′(N) = 〈S | S ∈ Syl2(N)〉. Note that K =O2′(N). The object of our attentions
is, in fact, the subgroup K of N . At the heart of the algorithms in [3] is the case when X is
an elementary abelian 2-group. For such an X the set of all maximal chains of subgroups of X
plays an essential role. By a maximal chain of subgroups (or maximal flag) of X we mean the
chain of subgroups of X

1 =X0 <X1 <X2 < . . . < Xn =X,

where [Xj :Xj−1] = 2, for j = 1, . . . , n. Now using the algorithms of [3] to determine K we
must, potentially, perform a certain routine upon each and every maximal chain in X. If, say,
n= 5, 6 or 10, then the number of maximal chains in X is, respectively, 9765, 615 195 and
10 414 855 105 976 475. This explains the boundary of applicability (being n= 5) in [3].

The key, in the present work, to pin-pointing K is Lemma 2.1 together with subsequent
refinements of this result given in Section 2. As a consequence, we can achieve our aims using
smaller sets of maximal chains. By way of illustration, when n= 6 we can determine whether
or not K = C, using only 1045 maximal chains of X, rather than all 615 195 maximal chains. If
C <K, then this set of maximal chains will yield a subgroup M of K where C <M and M is
generated by all the involutions in K. Regarding, as we may, K as a subgroup of L∼= GLn(2),
we then choose S to be a Sylow 2-subgroup of M . The next step is to determine all the Sylow
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2-subgroups of K which contain S. This we do utilizing the chains associated with certain
Sylow 2-subgroups of L which between them contain all subgroups T of L where S < T and
[T : S] = 2 (unless S is already a Sylow 2-subgroup of L). By iterating this procedure sufficiently
often, we then obtain the set {T1, . . . , Tl} of Sylow 2-subgroups of K containing S. This then
quickly gives K as a subgroup of L. Translating this information back to G yields K. Further
details of this and other aspects of the algorithm are discussed in Sections 2 and 3. Section 4
is devoted to the results of certain calculations carried out using the algorithm. Among these
calculations, we consider the case when X is an elementary abelian subgroup in Sp16(3) of
order 27, and the case when X is a non-abelian subgroup in GL20(2) of order 212. Our final
section reflects upon how efficient the sets of chains employed in the algorithm are, as well as
tabulating some related data.

Supplementary material is available via the multimedia link on the online article
webpage. The aptly named folder TwoGroupNormalizerAlgorithms contains an executable
implementation of the algorithm and is written to run using Magma [5] (though it could
be adapted for Gap [7]). The folder ReducedChainSets lists the most efficient sets of chains
currently available, as introduced in Section 3. Generators for the 2-group examples in Section 4
are given in the folder ExampleCalculations, so that the reader may verify these calculations.
The ReadMe file gives further details.

2. Notation and crowns

Let n be a fixed natural number and set L= GLn(2), the group of all n× n invertible matrices
over GF(2). The natural n-dimensional GF(2)L-module will be denoted by V . Also, we let
m= n/2 if n is even and (n+ 1)/2 if n is odd. We use Vm to denote the set of all m-dimensional
subspaces of V . For U ∈ Vm we also set

QU = {x ∈ L | [V, x] 6 U 6 CV (x)},

where [V, x] = 〈vx + v | v ∈ V 〉. We note that U = CV (QU ) and QU =O2(StabL(U)).
Furthermore, we have

|QU |=

{
2m2

if n is even
2m(m−1) if n is odd.

Letting I(L) denote the set of all involutions in L, we come to our first lemma. For each U ∈ Vm

choose TU ∈ Syl2(StabL(U)), and set J = {TU | U ∈ Vm}.

Lemma 2.1. We have

I(L)⊆
⋃

U∈Vm

QU ⊆
⋃

T∈J
T.

Proof. Let x ∈ I(L). Since [V, x] 6 CV (x) and dim([V, x]) = dim(V/CV (x)), there exists
U ∈ Vm such that [V, x] 6 U 6 CV (x). Hence x ∈QU . Because QU 6 TU , we then get

x ∈
⋃

U∈Vm

QU ⊆
⋃

T∈J
T,

so proving the lemma.

For our second lemma we introduce certain subsets of Syl2(L). Let U, W ∈ Vm be such that
dim(U ∩W ) =m− 1. So dim(〈U, W 〉/U ∩W ) = 2. We define

JU (W ) = {T ∈ Syl2(StabL(W )) | T leaves 〈U, W 〉 and U ∩W invariant}.
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Lemma 2.2. Suppose U, W ∈ Vm with dim(U ∩W ) =m− 1. If T ∈ JU (W ), then [QU :
QU ∩ T ] = 2.

Proof. Since T 6 StabL(W ) and T ∈ JU (W ), T leaves 〈U, W 〉, W and U ∩W invariant.
Thus, for suitable subspaces Vn−1, Vn−2, . . . , Vm+2, Vm−2, . . . of V ,

Vn−1 > Vn−2 > . . . > Vm+2 > 〈U, W 〉>W >U ∩W > Vm−2 > . . .

is the maximal flag of V whose stabilizer in L is T (where dim Vi = i). Let γ denote this maximal
flag. Because [V, QU ] 6 U and U ∩W 6 CV (QU ) we see that QU stabilizes the flag η = γ\{W}.
Hence 〈T, QU 〉 leaves η invariant and so 〈T, QU 〉6 P , a minimal parabolic subgroup of L. If
〈T, QU 〉 6= P , then 〈T, QU 〉= T and therefore QW and QU are both contained in T . Since
QW and QU are L-conjugate and QW is weakly closed in T with respect to L (see [8,
Section 7.5] for the definition of ‘weakly closed’), this forces QW =QU . This is impossible
as CV (QW ) =W 6= U = CV (QU ). Thus 〈T, QU 〉= P and therefore, as P/O2(P )∼= GL2(2), we
deduce that T ∩QU =O2(P ) ∩QU has index 2 in QU .

We now describe a configuration of subspaces in V which plays an important role in our
algorithm.

Definition 2.3. Suppose U1, U2, U3, U4 ∈ Vm, and set I = {1, 2, 3, 4}. We call
{U1, U2, U3, U4} a crown if:

(i)
⋂

i∈I Ui = U0 where dim(U0) =m− 2; and
(ii) for each i ∈ I, Ui ∩ Uj (j ∈ I\{i}) are the three subspaces of Ui of dimension m− 1

containing U0.

Remark 2.4. Suppose {U1, U2, U3, U4} is a crown, I = {1, 2, 3, 4}, and set U0 =
⋂

i∈I Ui

and U0 = 〈U1, U2〉. Then we note the following.
(i) dim(U0) =m+ 1 and dim(U0/U0) = 3.
(ii) For all i, j ∈ I with i 6= j, U0 = 〈Ui, Uj〉 as Ui = 〈Ui ∩ U1, Ui ∩ U2〉 and Uj = 〈Uj ∩

U1, Uj ∩ U2〉.
(iii) Assume that {U1, U2, U3, U

′
4} is a crown, and set U ′0 = U1 ∩ U2 ∩ U3 ∩ U ′4. Then U0 =

U1 ∩ U2 ∩ U3 = U ′0. Hence U1 ∩ U ′4 is one of the three (m− 1)-dimensional subspaces of U1

containing U0 and so is equal to one of U1 ∩ U2, U1 ∩ U3 and U1 ∩ U4. If, say, U1 ∩ U ′4 = U1 ∩ U2,
then U ′4 = 〈U1 ∩ U ′4, U2 ∩ U ′4〉= U2, whereas U2 6= U ′4. So U1 ∩ U ′4 6= U1 ∩ U2 and similarly U1 ∩
U ′4 6= U1 ∩ U3. Therefore U1 ∩ U ′4 = U1 ∩ U4. A similar argument yields U2 ∩ U ′4 = U2 ∩ U4 and
therefore U ′4 = 〈U1 ∩ U ′4, U2 ∩ U ′4〉= 〈U1 ∩ U4, U2 ∩ U4〉= U4. We conclude that two distinct
crowns can have at most two subspaces in common.

Figure 1 shows a subspace lattice of the relevant subspaces which gave rise to the name.

Lemma 2.5. Suppose that {U1, U2, U3, U4} is a crown and that Tk ∈ JU1(Uk), k = 2, 3, 4.
Then for 2 6 i < j 6 4,

Ti ∩ Tj ∩QU1 = T2 ∩ T3 ∩ T4 ∩QU1 .

Proof. Set Q=QU1 and, without loss of generality, we may suppose that i= 2 and j = 3.
So U1 = CV (Q). Put U0 = U1 ∩ U2 ∩ U3 ∩ U4, U0 = 〈U1, U2〉 and R= T2 ∩ T3 ∩Q. So in order
to prove R= T2 ∩ T3 ∩ T4 ∩Q we must show that R6 T4. Since

R6 T2 ∩ T3 6 StabL(U2) ∩ StabL(U3),

R leaves U2 ∩ U3 invariant. Also, as U1 ∩ U2 6 U1 = CV (Q) and U0 6 U1 = CV (Q), R leaves
U1 ∩ U2 and U0 invariant. Thus the other subspace of U2 of dimension m− 1 containing U0,
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Figure 1. Subspace lattice of a crown.

namely U2 ∩ U4, must be R-invariant. Because U4 = 〈U2 ∩ U4, U1 ∩ U4〉 and U1 ∩ U4 6 U1 =
CV (Q) we deduce that U4 is R-invariant. Thus, as R acts trivially on V/U0 and U1 ∩ U4, R
will stabilize the maximal flag whose stabilizer in L is T4. As a consequence R6 T4, and
Lemma 2.5 holds.

Lemma 2.6. Suppose that {U1, U2, U3, U4} is a crown and that Tk ∈ JU1(Uk), k = 2, 3, 4.
Then for 2 6 i < j 6 4,

Ti ∩QU1 6= Ti ∩ Tj ∩QU1 .

Proof. Again set Q=QU1 and assume without loss of generality that i= 2 and j = 3. Put
U0 = U1 ∩ U2 ∩ U3 ∩ U4 and U0 = 〈U1, U2〉. Now StabL(U1) contains subgroupsH1 andH2 with
H1
∼= GLn−m(2) and H2

∼= GLm(2). Moreover, V/U1 is the natural GF(2)H1-module, while U1

is the natural GF(2)H2-module with H1 acting trivially on U1 and H2 acting trivially on U/U1.
Thus we may select x ∈ I(L) such that [V, x] = U1 ∩ U2, CV (x) > U1 and CV/U0(x) 6> U0/U0.
So x ∈Q and, as x centralizes V/U1 ∩ U2 and U1 ∩ U2, x ∈ T2. We claim that x /∈ T3. For if
x ∈ T3, then x must leave U3 invariant. Therefore

[U3, x] 6 [V, x] ∩ U3 = U1 ∩ U2 ∩ U3 = U0.

Hence x centralizes U3/U0 and consequently x centralizes 〈U1, U3〉/U0 = U0/U0 whereas
CV/U0(x) 6> U0/U0. Thus x ∈ (T2 ∩Q)\T3, so proving the lemma.

Theorem 2.7. Suppose that {U1, U2, U3, U4} is a crown and let Tk ∈ JU1(Uk), k = 2, 3, 4.
Then QU1 ⊆ T2 ∪ T3 ∪ T4.

Proof. By Lemmas 2.2 and 2.6 [QU1 :QU1 ∩ Ti] = 2 for i= 2, 3, 4 and [QU1 :QU1 ∩
Ti ∩ Tj ] = 4 for 2 6 i < j 6 4. Since QU1 ∩ Ti ∩ Tj =QU1 ∩ T2 ∩ T3 ∩ T4 (2 6 i < j 6 4) by
Lemma 2.5, we see that

QU1 = (QU1 ∩ T2) ∪ (QU1 ∩ T3) ∪ (QU1 ∩ T4),

whence the theorem holds.

Corollary 2.8. Let {γ1, γ2, . . . , γr} be a set of crowns which are pairwise disjoint. Then
there exists a set J of Sylow 2-subgroups of L such that |J |= |Vm| − r and I(L)⊆

⋃
T∈J T .
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Proof. For each γi = {U1, U2, U3, U4}, we choose a Tk ∈ JU1(Uk), k = 2, 3, 4, and for each
U ∈ Vm not appearing in a crown in our set we choose an arbitrary TU ∈ Syl2(StabL(U)), and
these form our set J . Evidently J has the required size, and Lemma 2.1 and Theorem 2.7 give
that I(L)⊆

⋃
T∈J T .

A small example of applying Corollary 2.8 is when n= 4. Then |V2|= 35 and it is possible to
find a set of 6 crowns which are pairwise disjoint. So there exists a set of 29 Sylow 2-subgroups
of GL4(2) whose union contains all the involutions of GL4(2).

In fact, we can achieve the same result as in Corollary 2.8 with a carefully-chosen set of
crowns that are not disjoint, as the following result demonstrates.

Theorem 2.9. Let {γ1, γ2, . . . , γr} be a set of crowns, and in each of these crowns fix a
space Ui ∈ γi. Suppose that for any U ∈ γi ∩ γj (i 6= j), the following conditions hold:

(i) U 6= Ui and U 6= Uj ; and
(ii) U ∩ Ui = U ∩ Uj and 〈U, Ui〉= 〈U, Uj〉.

Then there exists a set J of Sylow 2-subgroups of L such that |J |= |Vm| − r and I(L)⊆⋃
T∈J T .

Proof. We note that wherever a space U occurs in two crowns γi, γj , condition (ii) ensures
that JUi(U) = JUj (U). So for each crown γi we may, as in Corollary 2.8, take Tk ∈ JUi(Uk)
for k ∈ {1, 2, 3, 4}\{i}. Where a space occurs in two crowns, we are in both cases selecting a
crown from the same set, so one choice will suffice. (Note that a space U cannot occur in three
crowns γi, γj , γk as this would require four distinct spaces U, Ui, Uj , Uk lying between U ∩ Ui

and 〈U, Ui〉, whereas dim(〈U, Ui〉/U ∩ Ui) = 2.) Condition (i) ensures that for a crown γi the
space Ui never occurs in another crown, so we achieve a covering of every involution with
|Vm| − r subgroups, as required.

3. The algorithm and its implementation

We use all the notation introduced earlier and begin this section by recalling some notation
from [3]. For C, the maximal chain of subgroups in X

1 =X0 <X1 <X2 < . . . < Xn =X,

we set
KC = {g ∈G | [Xi, g] 6Xi−1, for all i= 1, . . . , n}.

Clearly KC 6N and, by [8, Theorem 5.3.6], KC is a 2-group. Also, K is generated by KC as C
ranges over all maximal chains of X. To calculate elements of KC we adapt the involution
centralizer algorithm for black-box groups due to Bray [4] as follows (and refer to its use as
Braying a chain).

Algorithm 3.1.
Input: The black-box group G and an elementary abelian 2-subgroup X of G;

groups Xj (j = 0, 1, . . . , n), a maximal chain of subgroups of X;
elements xj ∈Xj\Xj−1 for i= 1, . . . , n.
(i) Set M0 =G.
(ii) For j = 1, . . . , n, perform steps (iii)–(vi).

(iii) Initialize A to be the empty set.
(iv) Choose a random element h of Mj−1 and determine the smallest k ∈ N for which

[xj , h]k ∈Xj−1.
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(v) If k is even, then define

A=A ∪ {[xj , h]k/2, [xj , h
−1]k/2},

while if k is odd, define

A=A ∪ {h[xj , h](k−1)/2}.

(vi) After a specified number of random choices for h, set Mj = 〈A〉.
Output: The group Mn.

We remark that {xi | i= 1, . . . , n} is a generating set for X and so yields an explicit listing
of the elements of X.

Proposition 3.2. The group Mn output by Algorithm 3.1 is contained in NG(X).

Proof. For j = 1, Algorithm 3.1 simply performs the algorithm in [4], so if the random
choices of h yield enough generating elements, then M1 = CG(x1) = CG(X1). For j = 1, . . . , n,
set Nj =NG(Xj) and Nj =Nj/Xj . Now assume that for some j ∈ {1, . . . , n} we have
constructed a subgroup Mj−1 of G for which Xj−1 EMj−1. Then Mj−1 6Nj−1, xj is an
involution in N j−1 and NNj−1(Xj) = (Nj−1 ∩Nj) is the inverse image in Nj−1 of the centralizer
of xj in N j−1.

We now direct our attention to the important case when X is an elementary abelian 2-group
(for a general 2-group X we apply this special case by working our way up a characteristic
series of subgroups of X all of whose successive factors are elementary abelian groups). In
particular, suppose we have Y a characteristic subgroup of X with X/Y elementary abelian,
and that we have calculated K0 6NG(Y ). Then we can easily adapt the algorithm to compute
K 6NG(X) =NNG(Y )(X) by setting G=K0 and performing all calculations in X modulo Y .
See the end of Section 4 for more on the general 2-group case.

We fix once and for all a GF(2) basis for X and an n-dimensional GF(2)L-module V whose
basis is in one-to-one correspondence with that of X. Then a maximal chain of subgroups of X
will correspond to a maximal flag of V . Moreover, as the maximal flags of V are in one-to-one
correspondence with the set of Sylow 2-subgroups of L, we have a one-to-one correspondence
between the maximal chains in X and the Sylow 2-subgroups of L. We now describe the major
steps in the algorithm.

Algorithm 3.3.

Input: The black-box group G and an elementary abelian 2-subgroup X of G;
groups Xj (j = 0, 1, . . . , n), a maximal chain of subgroups of X;
elements xj ∈Xj\Xj−1 for i= 1, . . . , n; the group L= GLn(2) and the associated
vector space V .
(i) Select a set J of Sylow 2-subgroups of L with the property that

I(L)⊆
⋃

T∈J
T.

(See Algorithm 3.5.) It is crucial (for large n) that J is as small as possible and
that the listing of J is well organized for carrying out step (ii). Let C(J ) denote the
maximal chains of subgroups of X which correspond to the Sylow 2-subgroups in J .

(ii) Bray every chain γ ∈ C(J ), and let M be the group generated by all the involutions
produced by this. If M = 1, then set K = 1 and terminate.
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(iii) Considering M as a subgroup of L by the correspondence between X and V , we
choose S ∈ Syl2(M).

(iv) Select a set S of Sylow 2-subgroups of L such that for every subgroup T with
S < T < L and [T : S] = 2, T 6 P for some P ∈ S (if S /∈ Syl2(L)). Then Bray the
corresponding chains C(S).

(v) Apply step (iv) with S replaced with each of the subgroups formed by Braying
each chain in C(S). Repeat with the resulting subgroups, working up index 2 at a
time until we arrive at a set of subgroups for which step (iv) finds nothing new.
Call this set {T1, . . . , Tl}.

(vi) K = 〈M, T1, . . . , Tl〉.
Output: the group K, and elements of N generating K (modulo C).

Proposition 3.4. The group K output by Algorithm 3.3 is indeed O2′(N).

Proof. The set of chains formed in step (i) is by construction sufficient that Braying them
will find every involution in K. If K has no involutions then it is trivial, so the algorithm
terminates. Otherwise, the group M formed in step (ii) is 〈x ∈K | x2 = 1〉�K. After selecting
an S ∈ Syl2(M), steps (iv)–(v) then work up index 2 at a time to find {T1, . . . , Tl}, a set of
all Sylow 2-subgroups of K containing S.

Step (vi) follows from the fact that K is generated by its Sylow 2-subgroups. Suppose
T ∈ Syl2(K). Then since M �K, we have that T ∩M ∈ Syl2M . Hence T ∩M = Sh 6 T for
some h ∈M . Then Th−1

is a Sylow 2-subgroup of K containing S, and so Th−1
= Ti for some

i ∈ {1, . . . , l}. Hence T = Th
i , and so T 6 〈M, T1, . . . , Tl〉. Therefore K = 〈M, T1, . . . , Tl〉.

After some simple initialization tasks (such as setting up the correspondence between X
and V ), the algorithm’s first step must be to determine the chains for the relevant value of n.
In fact, the chains for all smaller values are also needed as will be seen later. Since our set of
initial chains (formed from a set of Sylow 2-subgroups of L covering all the involutions of L)
is independent of the choice of G and X, we create and store these sets for each choice of n
beforehand, and the algorithm loads these pre-formed chains.

It may be tempting to attempt to make these sets of chains which cover all the involutions of L
by random searching. However, this approach almost always ends in tears (although for the case
n= 3, it is possible to search exhaustively and learn that five chains suffice to cover the invol-
utions of L). We generate such sets of chains by the following procedure.

Algorithm 3.5.

Input: the group L= GLn(2) and the associated vector space V .
(i) A set containing all of the m-dimensional subspaces of V is formed. This is done

by generating one such subspace, computing a transversal of its stabilizer across L,
and acting on the subspace by each element of the transversal.

(ii) We find a set of crowns {γ1, . . . , γr} as large as possible satisfying the conditions
in Theorem 2.9 by the following heuristic procedure. First, we generate the set
of all (m+ 1)-dimensional subspaces of V , then attempt to find as many crowns
as possible having each such space as U0 (in the notation of Section 2). Given
a particular space U0, we generate an arbitrary crown beneath it (choosing, say,
U1, U2 and U0 allows us to quickly complete the whole crown), and initialize a set
with this crown. We then repeat a process whereby, for each space Ui (i= 2, 3, 4)
in each crown in the set (ignoring, of course, any space already used in two
crowns), we form a new crown {U ′1, U ′2, U ′3, U ′4} with U ′2 = Ui, U1 ∩ Ui = U ′1 ∩ U ′2
and U0 = 〈U ′1, U ′2〉. If the crown shares no other spaces with any other crown, it is
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added to the set. Once an iteration of this process yields no new crowns, we move
to the next space U0.

(iii) For the spaces Ui (i= 2, 3, 4) in each crown found, we form a chain corresponding
to a relevant Sylow 2-subgroup of L by first fixing the spaces Ui ∩ U1, Ui, 〈Ui, U1〉,
and building an arbitrary maximal flag around them. For every m-space in Vm not
used in a crown, a chain is built arbitrarily around it. In order to store these chains
more efficiently, and to speed up the process of Braying the chains, they are stored
in sets grouped by virtue of their agreeing on sections at the start of the chains.
So that if a set of chains share a common first three elements, they are stored as a
‘root’ of length 3 and a set of ‘branches’ of length n− 3 (each individual chain is
stored as a sequence of representative vectors in V ).

Output: The set of chains formed.

Proposition 3.6. Every involution in L is contained in a Sylow 2-subgroups of L
corresponding to one of the chains in the set formed by Algorithm 3.5.

Proof. It suffices to show that our set of crowns meets the conditions imposed in
Theorem 2.9. The space U1 in each crown is by design not used in any other crown, so condition
(i) holds. The construction of crowns sharing spaces described ensures condition (ii) is met.

We note that, while the algorithm is black-box on the input group G, the group L∼= GLn(2)
is used only internally by the algorithm, and since these groups are sufficiently small (for the
values of n we are considering) and well-understood to be computed in efficiently, we assume
that we can perform any required computation within this group and its associated module V
(as is easily possible in, say, Magma). Below we describe how the algorithm carries out some
of the steps which must be performed in the large group G, and how the further sets of chains
are determined in steps (iv) and (v) of Algorithm 3.3.

We first determine C = CG(X) by repeated application of Bray’s algorithm to find
elements in CG(x1), then CCG(x1)(x2) = CG(x1) ∩ CG(x2), and after n such steps, arriving
at

⋂n
i=1 CG(xi) = CG(X).

When Braying chains, the chains are considered in the sets in which they are stored in
Algorithm 3.5(iii) above. First, we Bray up to the end of the common ‘root’. If all the random
elements chosen by this point can be seen to be trivial in K (that is, are elements of C), we
discard all the chains in the set. Otherwise, the elements found from Braying the root are used
as a starting point to Bray the remaining ‘branches’ of the chains.

In Algorithm 3.1, the process of Braying a chain

1 =X0 <X1 < . . . < Xn =X

consists at each stage of taking a specified number of random elements from Mj−1 and applying
our modification of Bray’s algorithm to find elements normalizing Xj , which we use to generate
Mj . However, in the Magma implementation of the algorithm provided, we avoid the possibly
costly step of generating random group elements at these intermediate stages by using the
elements found by Braying at each stage directly as the ‘random’ input elements for the next
stage.

It is necessary in steps (iv) and (v) of Algorithm 3.3 to be able, given a 2-subgroup R of K, to
select a set S of Sylow 2-subgroups of L having the property that every T with R< T <K and
[T :R] = 2 is contained in some P ∈ S. Clearly it suffices that for every t such that 〈R, t〉= T
for some T as above, t is contained in some member of S. The following algorithm performs
this task (bypassing, in the case where |S| 6= 1, the creation of the set S and instead forming
the chains C(S) directly).
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Algorithm 3.7.
Input: The group L= GLn(2) and its associated vector space V ;

a 2-subgroup R of L.
(i) Calculate NL(R).

(ii) If NL(R) is a 2-group, output a set containing one chain corresponding to a Sylow
2-subgroup S with NL(R) 6 S. This is calculated by repeatedly taking normalizers
of NL(R) until an S ∈ Syl2(L) is found, and the corresponding chain is taken.

(iii) Otherwise, we must create a new set of several chains. A new basis is formed for V ,
which begins with a basis for CV (R), followed by vectors extending it to a basis
for (the inverse image of) CV/CV (R)(R), and so on up to V . Let d1, . . . , dr be
the dimensions of the centralizers formed (so d1 + . . .+ dr = n). We form a new
set of chains consisting of all concatenations of chains from our initial sets for
n= d1, . . . , dr, giving a set of size d1d2 . . . dr. This set, transformed back to our
standard basis, forms our new set of chains.

Output: the set of chains formed.

Proposition 3.8. The Sylow 2-subgroups corresponding to the set of chains constructed
by Algorithm 3.7 contains every t described above.

Proof. Any such t must lie in NL(R). The case where NL(R) is a 2-group is trivial.
Otherwise we note that an element t of the form described must act as an involution on
each of the centralizers formed in step (iii) of the algorithm, so chains formed from our initial
sets, designed to cover all involutions, clearly suffice.

The largest sets created by Algorithm 3.7 occur when V is decomposed into two spaces of
dimensions 1, n− 1, whence the new chain set is three times the size of the set of initial chains
for the n− 1 case. Even here, this set is substantially smaller than the initial set of chains.

Beyond the fundamental risk of error posed by running too few iterations of the Bray
algorithm, another risk must be considered. In Bray’s original algorithm in [4] to find
elements centralizing an involution, consider a group G containing an involution t. Suppose
we have that t ∈X 6 CG(t) with X �G and X a 2-group. Then for any h ∈G, we have that
[t, h] = t−1th ∈X. Hence since X is a 2-group, [t, h] has even order 2m (in particular two-
power order), and the algorithm returns [t, h]m/2 or [t, h−1]m/2, both of which are in X. Hence
we never generate the full centralizer (aside from if we happen to choose a random element
h ∈ CG(t)\X).

In our present algorithm, we can attempt to detect when this situation may have arisen.
The value k computed in step (iii) of Algorithm 3.1 corresponds to m in Bray’s algorithm. So
if for some chain we get exclusively two-power values of k at some level j ∈ {1, . . . , n} of the
algorithm, we may have encountered this undesired scenario. In this case, we may be able to
generate a new chain to replace it, and apply the algorithm to this instead, hoping for a better
outcome. The new chain must of course satisfy any requirements to include particular spaces
that the old chain met. If we are unable to replace the chain, or if several replacements fail in
this regard we may have to concede defeat and continue, aware of the possibility that we may
fail to generate K fully.

4. Calculations using the algorithm

All calculations were carried out on a Unix machine with 8 GB of memory and a 3.2 GHz
processor, running Magma version 2.11-15.

Given the group G= Sp12(3), we select an elementary abelian 2-group X of order 26

(generators being given in ExampleCalculations). Using its standard normalizer routine,
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Magma will calculate the normalizer NG(X) in 158.2 seconds. Our algorithm will calculate K
(which in this case is the full normalizer) in 138.66 seconds, Braying each chain with 10
random elements of G. Moving to a larger group, the advantages of the present algorithm
become more evident. Taking G= Sp16(3), with our elementary abelian group X (again see
ExampleCalculations for its generators) having order 27, our algorithm computes K, having
order 212 · 32 · 5 · 7, in 1 0014.5 seconds, while the standard Magma function exhausts the
available memory and fails to produce an output.

Taking G= J4, the largest Janko simple group, the smallest available representation in the
online Atlas [10] is as a 112× 112 matrix group over GF(2). Using (in Atlas [6] notation)
X ∼= 27 in the maximal subgroup 211 :M24, our algorithm takes 57 538 seconds Braying 20
random elements in each chain to return a group K having order 215.

We consider an example in the case where X is a non-elementary abelian 2-group. We take
G= Sym(20) and X = Φ(P ), where P ∈ Syl2(G). Then X may be decomposed into a chain of
characteristic subgroups with elementary abelian factors having orders 2, 25, 26. (The Frattini
subgroup Φ(Y ) of a 2-group Y = 〈y1, . . . , ym〉 is given by 〈[yi, yj ], y2

i | i, j = 1, . . . , m〉; see [8,
Theorem 5.1.3]. So Φ(Y ) can be calculated in a black-box group, and gives us our required
subgroups.) In this small representation, both the present algorithm and the standard Magma
normalizer function quickly compute the normalizer N to be P of order 218. However, if we now
consider X represented as a group of permutation matrices over GF(2) and let G= GL20(2),
the standard Magma function does not return an output. Our algorithm, using 1000 random
elements on each chain, will return a group K having order 231 · 3 in 760.4 seconds.

Table 1. Crowns: Some statistics.

n Number of maximal chains |Vm| Crowns found |C(J )|

3 21 7 1 6
4 315 35 7 28
5 9765 155 41 114
6 615 915 1395 350 1045
7 78 129 765 11 811 3208 8603
8 19 923 090 075 200 787 54 936 145 851
9 10 180 699 028 325 3 309 747 926 280 2 383 467

Table 2. n = 5.

Chains/inv. All involutions tL1 tL2

1 1323 0 1323
2 2478 0 2478
3 1501 0 1501
4 800 0 800
5 284 0 284
6 88 1 87
7 37 4 33
8 30 27 3
9 46 45 1

10 48 48 0
11 65 65 0
12 90 90 0
13 67 67 0
14 52 52 0
15 34 34 0
16 16 16 0
17 9 9 0
18 1 1 0
19 2 2 0
20 2 2 0
21 2 2 0
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Table 3. n = 6.

Chains/inv. All involutions tL1 tL2 tL3

1 60 704 0 0 60 704
2 70 698 0 0 70 698
3 52 608 429 0 52 179
4 32 491 2286 0 30 205
5 18 826 5801 0 13 025
6 15 497 10 531 0 4966
7 16 685 14 891 0 1794
8 18 592 18 023 0 569
9 19 128 18 974 0 154

10 17 537 17 490 0 47
11 15 075 15 061 0 14
12 11 924 11 920 0 4
13 8342 8342 0 0
14 5613 5612 0 1
15 3375 3375 0 0
16 1953 1953 0 0
17 1032 1032 0 0
18 555 555 0 0
19 252 252 0 0
20 94 94 0 0
21 58 58 0 0
22 17 17 0 0
23 8 8 0 0
24 5 5 0 0
25 1 1 0 0
26 0 0 0 0
45 1 0 1 0
46 1 0 1 0
47 0 0 0 0
48 2 0 2 0
49 10 0 10 0
50 5 0 5 0
51 13 0 13 0
52 8 0 8 0
53 15 0 15 0
54 26 0 26 0
55 23 0 23 0
56 43 0 43 0
57 39 0 39 0
58 54 0 54 0
59 51 0 51 0
60 69 0 69 0
61 85 0 85 0
62 97 0 97 0
63 89 0 89 0
64 102 0 102 0
65 107 0 107 0
66 85 0 85 0
67 104 0 104 0
68 117 0 117 0
69 95 0 95 0
70 111 0 111 0
71 84 0 84 0
72 85 0 85 0
73 64 0 64 0
74 52 0 52 0
75 43 0 43 0
76 51 0 51 0
77 46 0 46 0
78 42 0 42 0
79 29 0 29 0
80 30 0 30 0
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Table 3. (Continued.)

Chains/inv. All involutions tL1 tL2 tL3

81 18 0 18 0
82 19 0 19 0
83 9 0 9 0
84 6 0 6 0
85 6 0 6 0
86 4 0 4 0
87 6 0 6 0
88 1 0 1 0
89 0 0 0 0
90 0 0 0 0
91 0 0 0 0
92 1 0 1 0
93 0 0 0 0
94 0 0 0 0
95 0 0 0 0
96 0 0 0 0
97 1 0 1 0
98 0 0 0 0
99 0 0 0 0

100 1 0 1 0

The present algorithm fails where the group X has elementary abelian factors of order 210

or above, since we are unable to create the sets of initial chains (specifically, Magma fails to
compute the transversal required in Algorithm 3.5(i)). However, we may still use the same
techniques to find some normalizing elements, albeit with no certainty that we have found the
whole normalizer. Suppose X is elementary abelian of order 210 (though larger orders are still
in range). Then we may, for example, create a set of chains consisting of a random sampling
of chains from the n= 9 case above each 1-space of V . Using this approach, we successfully
computed the normalizer of X ∼= 210 6 210 :M22 in the sporadic simple group Fi22, in a matrix
representation of degree 78 over GF(2).

5. Covering the involutions of L: some statistics

Recall that |Vm| is the number of m-spaces of an n-dimensional vector space, and is an upper
bound for the number of chains necessary in order to cover the involutions of L. In Table 1,
the third column gives the size of the largest set of crowns we have found using the method
outlined in Section 3, meeting the constraints of Theorem 2.9 (this set being used to create the
initial chains is given in the ReducedChainSets folder). Note that in the case n= 3 there is,
in fact, only one crown. This may be seen by observing that if there were two distinct crowns
then five of the 1-spaces that are the intersections of the 2-spaces in the two crowns must be
the same. This then yields that the two crowns intersect in at least three 2-spaces, whence the
crowns are equal by Remark 2.4(iii).

There remains the issue of how efficient our sets J are in covering all the involutions of L.
Tables 2 and 3, for the cases n= 5 and n= 6, seem to indicate that there is not too much
redundancy.

These tables give, for each value in the first column, the number of involutions that are to
be found in exactly that many Sylow 2-subgroups (or equivalently chains) in the smallest sets
we have found. We also give the breakdown of this data into conjugacy classes of L. In Table 2,
t1 is an involution with CV (t1) having dimension four, and t2 is an involution with CV (t2)
having dimension three. In Table 3, t1 is an involution with CV (t1) having dimension four, t2
is an involution with CV (t2) having dimension five, and t3 is an involution with CV (t3) having
dimension three.
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