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Abstract

The interpretation and understanding of the relationship between Middle to Late Holocene climate change in monsoon margins of north-
west China with the westerlies and Asian monsoon (AM) remain controversial. Here we present a new multi-proxy sedimentary dataset
from the Heihe River basin in the middle part of the Hexi Corridor on the northern margin of the Qinghai-Tibet Plateau (QTP),
which is a sensitive zone for the interaction between the westerlies and AM. Fluctuations in grain size, 8'>C,4, 8'°O, magnetic susceptibility,
total organic carbon, total nitrogen, and C/N ratio document regional lake and climate evolution since 5334 cal yr BP. Results show that
climate conditions on the millennial timescale are humid in the late Middle Holocene (MH) and dry to wet in the Late Holocene (LH).
Combined with the multi-model ensemble simulation from PMIP3-CMIPS5, high lake levels and wetter climate in the late MH are closely
linked to the strengthening Asian summer monsoon. Simultaneously, the slight wetting trend since the late LH may be the superimposing
effect of enhanced westerlies and the weakening Asian winter monsoon. These findings can provide insights into the interpretation of the
interaction between the westerlies and AM during the Holocene in East Asia.
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INTRODUCTION

The effect of the relationship between the Asian monsoon (AM)
and the mid-latitude westerlies on climate change in the Asian
middle latitudes is an intricate yet crucial subject (Y. Wang
et al,, 2005; Chen et al.,, 2010, 2015; P. Wang et al,, 2017; G. Li
et al., 2022). Generally speaking, the AM and westerlies show dif-
ferent climate evolutionary patterns on long-term timescales as a
result of alternative driving mechanisms (Nagashima et al., 2007;
Chen et al., 2019). The monsoon climate pattern in East Asia
manifesting as the humid Early Holocene (EH) and drier LH is
out of phase with the typical westerlies-dominated climate in
arid Central Asia, which is characterized by dry EH and wet
LH (Chen et al, 2008; An et al, 2012; Wang and Feng, 2013;
Li et al.,, 2021; Gao et al,, 2023). Many studies in recent years sug-
gested that the interaction between the westerlies and AM can be
viewed as an explanation for the spatiotemporal difference in the
precipitation pattern in the Asian middle latitudes (Nagashima
et al., 2011; Chiang et al., 2015; Zhang et al., 2018; Li et al,
2020). On long-term timescales, the westerly jet path over East
Asia is the main factor determining the location of the Asian
summer monsoon rain belt (Sampe and Xie, 2010; Kong et al,
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2017; Herzschuh et al., 2019). When earlier seasonal northward
migration of the westerly jet axis occurs during the warm period,
the Asian summer monsoon rainband shifts northward earlier,
allowing more abundant precipitation in the northwestern margin
of the Asian summer monsoon (Nagashima et al., 2013). At the
same time, despite weakening of the summer monsoon, the larger
ice sheet and lower North Atlantic sea surface temperature during
the cold period led to an increase in the meridional temperature
gradient and southward migration of the westerlies, bringing
more water vapor to the northwestern margin of the Asian sum-
mer monsoon (Lan et al., 2021). Consequently, specific contribu-
tions and influencing mechanisms of the westerlies and AM to
regional climate change remain controversial.

Climatic and environmental changes in the middle part of the
Hexi Corridor, controlled by the westerlies and AM, are climati-
cally sensitive and ideally located for paleoclimate research
(Cheng et al.,, 2013; Wang et al,, 2013; Chen et al, 2016a). In
the past few decades, a number of attempts have been made to
investigate a range of environmental and climatic reconstructions
in the Hexi Corridor and its surroundings based on various paleo-
climatic archives, such as lake sediments (Shen et al., 2005; Zhao
et al., 2007; Chen et al., 2016a; Qiang et al., 2017), aeolian sedi-
ments (Lu et al, 2011; Liu et al., 2012; Sun et al, 2012; Li
et al, 2020), ice cores (Thompson et al, 1988; Yao and
Thompson, 1992), and tree rings (Gou et al,, 2015; Yang et al.,
2021). However, the debate continues about the climate evolu-
tionary history due to nonuniform paleoclimate records from
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different positions (An et al., 2006; Wang et al., 2010). Based on
the processes and mechanisms of modern climate, the Asian sum-
mer monsoon plays a crucial role in climate change and water
vapor transport in the Hexi Corridor (Fig. 1) (Li et al., 2012).
Therefore, whether the range of influence of the Asian summer
monsoon has changed and how effective moisture transport by
westerlies contributes to the middle part of the Hexi Corridor
are vital issues in studying regional climate evolution in the north-
ern margin of the QTP.

Situated in the marginal zone of the Asian summer monsoon
vapor transport, the Heihe River basin is a key experimental field
for clarifying the history of interaction between the westerlies and
AM (Fig. 1). Consequently, the Beihaizi (BHZ) paleolake section
from the Heihe River basin in the middle part of the Hexi
Corridor enables exploration of past climate change and its driv-
ing forces in the northern margin of the QTP (Fig. 2). In paleo-
climatology, geochemical proxies (TOC [total organic carbon],
TN [total nitrogen], C/N [percent total nitrogen/percent organic
carbon ratio], 813C0rg [organic carbon isotopes], and 880 [car-
bonate oxygen isotopes]), magnetic susceptibility, and grain size
are widely used to indicate changes in past temperature, moisture
conditions, vegetation status, etc. In this paper, we expound on a
general framework for reconstructing climate changes over the
last 5334 years based on the analysis of multiple proxies in the
BHZ sediments. In addition, paleoclimate models from the
Paleoclimate Modeling Intercomparison Project 3 (PMIP3) were
selected to visually investigate the relationship between climate
and environment evolution with the westerlies and AM. A better
understanding of the interaction between different atmospheric
circulation systems will be of great significance for characterizing
future variability of the hydroclimate in climate-sensitive areas
during increased global warming.

REGIONAL SETTING

The BHZ section (40°13'N, 98°45'E), located in Xiba town, Jinta
County, Gansu Province in northwestern China, was generated
from the Beihaizi paleolake in the Jinta Basin in the middle
part of the Hexi Corridor (Fig. 2a). The Jinta Basin is the terminal
area of the Beidahe River (Taolai River), which originates from
the Qilian Mountains in the northern QTP and flows through
the alluvial plain in the middle reaches of the Heihe River
(Zhang et al, 2011). The Jinta Basin is surrounded by the
Beishan Mountains and Jinta Nanshan in the north and south,
respectively, and is connected to the Huahai Basin in the west
and the Badain Jaran Desert in the east (Fig. 2). The terrain of
the basin is higher in the south and lower in the north, and grad-
ually inclines from the southwest to the northeast. Many studies
have established that Quaternary fluvial and lacustrine sediments
were deposited in the paleolake basin in the northern Jinta Basin
(Dodson et al., 2009; X. Li et al,, 2010, 2011, 2013; Wang et al,,
2011; Feng et al., 2020). At present, the Beihaizi paleolake has
completely dried up, and Beihaizi wetland park was built at the
northern margin of the alluvial fan of the Beidahe River. Most
of the lacustrine plains in the paleolake basin are occupied by
Tamarix and have developed gypsiferous gray-brown desert soil,
meadow soil, and swamp soil (Li, 1998; Wang et al., 2011). As
an arid area in northwest China, the study area has a typical con-
tinental climate with average annual temperature of 8°C, average
annual precipitation of 54.4-77.7 mm, and potential evaporation
of 3000 mm/year. Desert vegetation, including Tamarix chinensis,
Agriophyllum squarrosum, Apocynum venetum, and Achnatherum
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splendens, is widely distributed in the study area (Zhang et al.,
2020). According to an analysis of modern climatology, the
Asian summer monsoon rarely reaches the sampling site com-
pared to the westerlies (Fig. 1). As a result of the climate complex-
ity in the monsoon marginal zone, the sensitive location enables
sediment proxies of the BHZ section to record the interaction
between the westerlies and AM.

MATERIALS AND METHODS
Sample collection

The BHZ sedimentary samples were collected from bottom to top
with a sampling interval of 12.5 cm for 527-252 ¢cm and 2 cm for
252-16 cm, respectively (Fig. S1; Table S2). Since the uppermost
16 cm of the BHZ section is modern soil, no sampling was per-
formed. Ultimately, the BHZ section (section depth =527 cm,
sampling depth =511 cm) yielded 140 sedimentary samples.

AMS™C dating

Terrestrial plant residue is usually viewed as one of the most reli-
able materials for '*C dating (Zhang et al., 2006). However, con-
sidering the lack of available terrestrial plant residue for dating,
organic matter obtained from the bulk sediments is often used
for '*C dating (Sun et al, 2009; Wen et al., 2010; An et al.,
2011). Consequently, the bulk organic matter of 58 samples in
the BHZ section was selected for Accelerator Mass
Spectrometry Radiocarbon Dating (AMS!C) (Table S1). The
OxCal v4.4.2 program (Bronk Ramsey, 2009; Bronk Ramsey and
Lee, 2013) and IntCal20 atmospheric curve (Reimer et al., 2020)
provided calibration of radiocarbon '*C dates (0 BP=AD
1950). The AMS"C ages of the BHZ section were all measured
in the Laboratory of Scientific Archaeology and Preservation of
Cultural Relics, School of Archaeology and Museology, Peking
University, China.

Proxies used

Organic carbon isotopes (813Corg), carbonate oxygen isotopes
(3'%0), grain size (GS), total organic carbon (TOC), total nitrogen
(TN), the percent total nitrogen/percent organic carbon (C/N)
ratio, and magnetic susceptibility (MS) of the BHZ section were
measured (Table S2). Eighty-one lake sediment samples were
used for 513C0,g, 5'%0, TOC, and TN testing. 813C0rg (%0) and
80  (%o) values were measured, respectively, by the
MAT253plus+FlashEA and MAT253plus+GasBench in the
Beijing Createch Testing Technology Co. Ltd, Beijing, China.
TOC (%) and TN (%) were measured by Vario-III elemental ana-
lyzer with an analytical error of <0.1% in the Analysis and Testing
Center of Lanzhou University, Lanzhou, China. MS and GS anal-
yses of 140 lake sediment samples were completed in the Key
Laboratory of Western China’s Environmental Systems
(Ministry of Education), Lanzhou, China. MS was determined
using the Bartington MS2 logger. In this study, frequency mag-
netic susceptibility percentages () %) were used as MS parame-
ter to indicate climate changes (Ji and Xia, 2007). Grain-size
distribution was measured using a Malvern Mastersizer 2000 par-
ticle analyzer, which has a measurement range of 0.02-2000 um
and a repeated error of <3%. Subsequently, we calculated three
grain-size parameters, including mean GS (%), median GS (%),
and modal GS (%). In addition, the division of sedimentary facies
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based on grain size, such as clay (<4 pm), silt (4-63 pm), and
sand (>63 um) can provide a good understanding of the sedimen-
tary environment (Terry and Goff, 2014). Nevertheless, grain-size
data are still problematic because of the difficulty in differentiat-
ing sediment-transport mechanisms merely by sedimentary facies
and grain size in finely laminated lacustrine deposits (X. Liu et al.,
2016). Therefore, we also used the end-member modeling (EMM)
method to more rationally decompose the GS distribution data
into sensitive grain-size components of terrestrial, fluvial, and
aeolian sediments, and to obtain valuable information on geolog-
ical processes and paleoenvironments (Kranck et al., 1996; Prins
et al, 2002; Weltje and Prins, 2003; Meyer et al.,, 2013; Dietze
et al., 2014; Greig and David, 2015).

Paleoclimate simulations

The equilibrium “time-slice” simulations for 6000 cal yr BP (MH)
and pre-industrial (PI) from the PMIP;- (Palaeoclimate
Modelling Intercomparison Project Phase 3) CMIP5 (Coupled
Model Intercomparison Project Phase 5) were synthesized to
understand the role of the atmosphere circulation system and ana-
lyze the dynamic mechanism of climate conditions in the BHZ
section during the MH and LH. We applied a multi-model
ensemble simulation from 11 models: BCC-CSM1-1 (Beijing
Climate Center Climate System Model), CNRM-CM5 (Centre
National de Recherches Météorologiques-Climate Model
Version 5), CCSM4 (Community Climate System Model
Version 4), CSIRO-Mk3-6-0 (Commonwealth Scientific and
Industrial Research  Organisation), GISS-E2-R  (Goddard
Institute for Space Studies)), MIROC-ESM (Model for
Interdisciplinary Research on Climate-Earth System Model),
FGOALS-s2 (Flexible Global Ocean-Atmosphere-Land system
model, Spectral Version 2), FGOALS-g2 (Flexible Global
Ocean-Atmosphere-Land system model, Grid-point Version 2),
IPSL-CM5A-LR (Institut Pierre Simon Laplace-Climate Model
5A-Low Resolution), MPI-ESM-P (Max Planck Institute Earth
System Model-Paleoclimate), and MRI-CGCM3 (Meteorological
Research Institute Coupled Global Climate Model Version 3).
The variables used are precipitation, evaporation, meridional
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winds, and zonal wind, which are available at https:/esgf-node.
lInl.gov/search/esgf-llnl/. The name, affiliation, country, resolu-
tion, and references of the models are shown in Table 1. In
view of the different horizontal resolution of the output data,
we used the bilinear interpolation method to interpolate the out-
put data of all models to a resolution of 1° x 1° to facilitate model
aggregation.

RESULTS
Lithological description

Based on observations of sediment color and texture (Figs. S1, 3),
the lithology characteristics from top to bottom can be approxi-
mately divided into eight parts: (1) 16-125 cm, light brown silt,
large parts of which could be covered by wind-blown loess or aeo-
lian sand; (2) 125-180 cm, light brown clay; (3) 180-230 c¢m, dark
green clay; (4) 230-240 cm, light gray sand; (5) 240-300 cm, dark
green silty clay; (6) 300-400 cm, gray clayey silt; (7) 400-460 cm,
gray silty clay; (8) 460-540 cm, gray-black silty clay with humic
mud.

Chronology

In arid and semi-arid regions, the reservoir effect may cause AMS
"C dating results of bulk organic matter in lacustrine sediments
to be older than the real ages (Liu et al, 2009; Long et al.,
2011). However, more-reliable dating materials, such as plant res-
idues or charcoal, cannot be found in the BHZ section, resulting
in the inability to obtain an accurate age of the reservoir effect.
Additionally, due to the lack of detailed investigation on the
embankment of Beihaizi paleolake, it is impossible to quantify
the age of drying of the Beihaizi paleolake. Therefore, surface sed-
iments of the Beihaizi paleolake cannot be used to determine the
modern reservoir age of the paleolake. Hence, we set the reservoir
age as 2000 yr and preliminarily removed the reservoir effect from
samples below ~125 cm, mainly in light of the median value of
existing reservoir ages, which, in adjacent regions, is ca. 2500 yr
in Huahai paleolake (Wang et al.,, 2013), ca. 2000 yr in eastern
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Figure 2. (a) Locations and distribution of the BHZ section (red star) and other lake records (red dots) in the adjacent area. The climatological northern boundary
of the East Asian summer monsoon (black dashed line) during 1965-2014 is from Wang et al. (2012). (b) Satellite image showing the Jinta Basin, the water system of
the Beidahe River, and key geographic features mentioned in the text. The Beidahe River used to flow into the Heihe River in the town of Dingxin, northeast of the
Jinta Basin. However, after the completion of the Yuanyangchi Reservoir and the Jiefangcun Reservoir in the 1970s, the amount of downstream water dropped
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sharply, making it impossible for the Beidahe River to reach Dingxin.
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Table 1. Basic information about climate models from PMIP3-CMIP5 used in this study.

Model Affiliation and country Resolution (°) Variables* References
BCC-CSM1-1 BCC, China 128 x 64 pr, evp Randall et al. (2007)
CNRM-CM5 CNRM-CERFACS, France 256 x 128 pr, evp, ua, va Voldoire et al. (2013)
CCSM4 NCAR, USA 288 x 192 pr, evp, ua, va Gent et al. (2011)
CSIRO-Mk3-6-0 CSIRO-QCCCE, Australia 192 x 96 pr, evp Rotstayn et al. (2010)
GISS-E2-R NASA GISS, USA 144 x 89 pr, evp, ua, va Schmidt et al. (2014)
MIROC-ESM MIROC, Japan 128 x 64 pr, evp, ua, va Watanabe et al. (2011)
FGOALS-s2 IAP, China 128 x 108 pr, evp Briegleb et al. (2004)
FGOALS-g2 IAP, China 128 x 60 pr, evp, ua, va L. Li et al. (2013)
IPSL-CM5A-LR IPSL, France 96 x 96 pr, evp, ua, va Dufresne et al. (2013)
MPI-ESM-P MPI-M, Germany 192 x 96 pr, evp, ua, va Raddatz et al. (2007)
MRI-CGCM3 MRI, Japan 320 x 160 pr, evp, ua, va Yukimoto et al. (2012)

*pr = precipitation; evp = evaporation; ua = zonal wind; va = meridional wind

Juyan paleolake (Hartmann and Wiinnemann, 2009), and ca.
1080 yr in lakes of the Badain Jaran Desert (Hofmann and
Geyh, 1998; Yang et al., 2010). After removing the reservoir effect,
the AMS *C ages were calibrated (0 BP = AD 1950) using the
OxCal v4.4.2 program and IntCal20 atmospheric curve
(Table S1).

Figure 3 shows the distributions of calibrated *C ages and
the stratigraphic characteristics of the BHZ section. Based on
the integrated analysis of the chronology, we determined that
the age can be divided into three parts: the upper, middle, and
bottom layers. The ages of the upper layer are in the LH, the
ages of the middle layer are disordered, and the ages of the bot-
tom layer basically belong to the MH except for the two abnor-
mally old ages. Meanwhile, the slight fluctuations of TOC and
mean GS in the upper and bottom layers indicate relatively sta-
ble deposition conditions, which suggests that the dates of these
two layers are reliable and are likely less contaminated. However,
the TOC and mean GS in the middle layer vary greatly, which is
related to the reworking effect, the input of “old carbon,” and
deposition instability (Sun et al., 2010). To this end, we first
eliminated the abnormally old ages at 402-389.5 cm, 352-
238 cm, and 182-150 cm in the middle layer (Table S1). The
abnormally young age at 230 cm was also discarded because of
its irregularity in the overall distribution of the chronology
results and its distinct inconsistency with establishment of the
Holocene age.

In this study, the traditional mathematical fitting method is
used to establish the age-depth model (X. Liu et al, 2016; Li
et al., 2020). The logarithmic curve was finalized as the age-depth
model of 32 dates due to having the highest correlation after elim-
inating anomalous ages (y=1200.2¢In(x)—2187.3) (Y. Zhao
et al, 2007; C. Zhao et al,, 2010; Wu et al, 2020) (Fig. 3),
which provides a continuous sedimentary record since 5334 cal
yr BP. The chronology conducted by calibrated age-depth
model covers ca. 1281-5334 cal yr BP.

Sedimentary environment based on GS and MS

We analyzed the variations of six grain-size proxies with depth
(Fig. 4a). The average median GS, mean GS, modal GS, clay,
silt, and sand are 56.03 um, 37.69 um, 74.93 um, 21.48%,
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52.09%, and 26.43%, respectively. The GS distributions in the
BHZ section are mainly composed of silt fractions, with contribu-
tion percentages of 14.68-81.81%. The overall variations of four
grain-size proxies (median GS, mean GS, modal GS, and sand)
exhibit generally similar trends, which is in contrast to two finer-
grained fractions (clay and silt). In addition, there is an obvious
shift in six grain-size proxies at ~230 cm and ~125cm. The
MS in the BHZ sediments exhibits significant fluctuations
(Fig. 4a). The silt- and clay-dominated sediments at 230-125 cm
have a high MS value as a whole, which indicates that high MS cor-
responds to the finer GS with magnetic minerals.

As shown in Figure 4b, EMM analysis in the BHZ section
yields an optimal model with four EMs characterized by a single
peak mode. The peak of EMI1 at 1-10 um indicates deep lacus-
trine deposits with fine grain size. In contrast, EM4 has a narrow
peak at 100-400 um, exhibiting stronger transport capacity and a
high-energy deposition environment. Both EM2 and EM3 have a
broad mode in the silt component, characterized by peaks of
10-30 um in the fine-grain part and of 50-100 um in the coarse-
grain part, respectively. The endmember sequences generated by
the abundance variations of all sediment samples at four EMs
are shown in Figure 4c. The boundary of sedimentary facies at
~230 cm and ~125 cm is still very obvious, which is consistent
with the variation in the six grain-size proxies (Fig. 4a). The var-
iation in coarse grain size, which is dominant in EM4, has a sim-
ilar trend to the mean GS, median GS, mode GS, and sand
content. The deep lacustrine endmember EMI1 primarily
highlights the lake-dominated sedimentary environment at
~230-125 cm and 527-400 cm.

Combined GS proxies, MS, and EMM analysis show that the
sedimentary environments of the BHZ section can be divided
into four intervals: (1) aeolian deposits (16-125cm) with an
increasing trend of coarse-grained composition and decreasing
trend of clay and silt, among which the sand content slightly
decreased and the silt content slightly increased in fluctuation
at 16-75 cm; (2) increased clay and silt and decreased coarse-
grained composition (125-230 cm), belonging to lacustrine
deposits and containing organic matter and carbon; (3) lakeside
deposits with dominant sand content (230-240 cm); and (4) rel-
atively small-amplitude variations (240-527 cm) with slightly
increased coarse-grained composition and decreased fine-grained
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composition and clay, from deep lacustrine at 400-527 cm to
shallow lacustrine deposit at 240-400 cm.

Geochemical and isotopic results

The average values of TOC, TN, C/N, 813C0rg, and §'%0 in the
BHZ sediments are 1.35%, 0.04%, 36.29%, —23.6%o, and
—9.33%o, respectively (Fig. 5). The C/N ratio is 16.80-80.67%
and is mostly >20%, indicating that the organic matter in the
BHZ section was mainly contributed by terrestrial organisms.
Meanwhile, the range of 813C0rg is between —25%o0 and —22%o,
most of which is within the 813C0rg distribution range of C; plants
(Farquhar et al., 1989; Bowen, 1991). As a result, it can be accu-
rately determined, through the composition of the C/N and
8"°Corg that the organic matter in the BHZ section mainly
comes from C; land plants (Fig. 5¢). By analyzing the scatter cor-
relation diagrams of TOC, C/N, and 813C0rg, the higher TOC val-
ues are accompanied by the higher C/N values and the negative
813C0,g values (Fig. 5a, b). Figure 5d shows that all the proxies
shift significantly at ~230 cm and are characterized by high
TOC, TN, and C/N values, negative SISCMg values, and positive
8'%0 values at 230-125 cm. At the same time, TOC, TN, and neg-
ative bias of 8'°C,, show a slightly increasing trend above
~75 cm.

DISCUSSION
Proxy Premises

The GS distribution of lake sediments can provide direct informa-
tion on the lake level, hydrodynamic conditions, and sedimentary
environment (Chen et al., 1999; Peng et al.,, 2005; Xiao et al,
2013). Generally, coarse GS indicates a dry climate in which the
lake is shrinking and shallower in arid and semi-arid regions on
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Figure 3. Age-depth model, lithology, and variation of
mean GS and TOC with depth of the BHZ section.

E Silty clay

long-term timescales (C. Liu et al., 2016; X. Liu et al., 2016; Hu
et al.,, 2017; Wu et al., 2020).

The MS in lake sediments documents the sizes and types of
magnetic minerals (Wu, 1993). Recently, comprehensive analyses
of surface sediments in the Qilian Mountains confirmed that high
MS values are usually enriched in fine-grained fractions and are
positively correlated with regional precipitation (Y. Li et al,
2022; Peng et al., 2022). Some paleoclimate studies also claimed
that high MS values are positively related to silt and clay content
and indicate a humid environment (Zhang et al, 1998; Zhao
et al., 2005).

The TOC in lake sediments, usually an indicator of vegetation
coverage and primary productivity in watersheds and lakes, is
widely applied to paleoclimate research (Aravena et al., 1992;
Zhong et al., 2010). In arid and semi-arid regions, moisture con-
ditions are the main limiting factors for plant growth, therefore, a
humid climate usually corresponds to higher values of TOC (Y. Li
et al,, 2011).

C/N values reflect the ratio of aquatic to terrestrial organic
matter and can be used to determine the source of organic matter
in lake sediments (Meyers and Lallier-Verges, 1999). During
intervals of low lake levels, exposed lakeshore shoal zones are ben-
eficial to terrestrial plant growth, thus increasing the contribution
of terrigenous organic matter in lake sediments, which will lead to
higher C/N ratios (Wu et al., 2015).

Organic matter §'°C,yq in lake sediments is mainly derived
from terrestrial plants and aquatic plants, which can be identified
by composition of the 813C0rg and C/N. Meanwhile, photosyn-
thetic types of Cs-like and C,-like carbon fixation also exist in
aquatic plants (Liu et al., 2013). Relevant reports of modern plants
and surface sediments pointed out that climate elements (i.e.,
temperature and precipitation) are dominant factors controlling
C;/C4 relative abundance in arid and semi-arid regions (Rao
et al., 2012, 2017; Zhao et al,, 2017; Y. Li et al., 2020, 2022).
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Figure 4. Results of GS and MS analyses. (a) Variations in mean GS, median GS, mode GS, clay, silt, sand, and MS from the BHZ section. Dashed lines indicate
obvious grain-size shifts. (b, ¢) EMM results of the BHZ sediments: (b) grain-size distributions of four EMs; (c) abundance variations (%) of four EMs in a synthetic

data set of the BHZ sediments.
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The carbonate 8'®0 in lake sediments is mainly controlled by
the 8'®0 composition of lake water during carbonate precipita-
tion. In closed lakes of arid and semi-arid regions, the lake
water 8'®0 is primarily affected by the precipitation/evaporation
(P/E) or inflow/evaporation (I/E) ratios, so 8'*0 records in lacus-
trine carbonate sediments can provide references to past hydro-
logical and dry/wet changes (Lister et al, 1991; Qiang et al,
2005; Yu et al., 2009).

Evidence of lake and climate evolution in the BHZ section

The results of all proxies in the BHZ section show that there is a
clear transition at ~230 cm, which is represented by a decrease in
sand content (Fig. 4a) and an increase in organic matter (Fig. 5d)
and is in line with the characteristics of lacustrine deposits
(Berner, 1981). Combined with the age-depth model (Fig. 3), it
is apparent that the age at 230-125 cm is approximately late
MH (ca. 4400 to ca. 3500 cal yr BP). The change with depth of
all climate proxies from the BHZ section is shown in Figure 6,
reconstructing lake evolution since 5334 cal yr BP. TOC, C/N,
MS, §'%0, and clay fluctuate sharply in the late MH. At about
4400-3500 cal yr BP, compared with overlying horizons, the
BHZ section has negative §'°Cq,g positive §'°0, and high clay,
TOC, C/N, and MS. Meanwhile, TOC, MS, and negative bias of
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813C0rg and §'®0 show a slightly increasing trend since the late
LH.

Based on our climatic/environmental interpretations of paleo-
climate proxies, we can reconstruct climate evolutionary history
since 5334 cal yr BP. During ca. 4400 to ca. 3500 cal yr BP, the
clay and silt content in the BHZ section increased while the
sand content decreased and the median GS is small (Fig. 6e), indi-
cating weak hydrodynamics under high lake levels and humid
environments in the late MH. Meanwhile, high MS values in
the late MH confirm the development of fine grain size and
more magnetic minerals under humid climate conditions in the
BHZ section (Fig. 6f). Under humid climate conditions, the
high lake level resulted in weak hydrodynamics, which is condu-
cive to the development of fine grain size and more magnetic
minerals (Hu et al., 2017). TOC values are relatively high in the
late MH, suggesting higher primary productivity within the lake
basin in the context of a humid climate (Fig. 6b, d). Compared
to 5334 to ca. 4400 cal yr BP, low C/N values in the late MH
may indicate that a rising lake level was beneficial to the growth
of aquatic organisms, thereby increasing the proportion of aquatic
plants in the organic matter of lake sediments (Fig. 6¢) (Lan et al.,
2013; Wu et al,, 2015). Sedimentary 813C0rg data in the BHZ sec-
tion are mostly within the range of C; plants (Fig. 6b). Many pre-
vious studies showed that the 613C0rg value of terrestrial C; plants
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is driven by effective moisture and is more significantly correlated
with precipitation than with temperature (Zheng and Shangguan,
2007; Kohn, 2010; Zhou et al., 2013). Our previous results of sur-
face sediments in the Qilian Mountains demonstrated that the
613Corg of C; plants is more negative with increasing precipitation
(Li et al.,, 2020). In addition, the 813C0,g values of Cs-like plants,
such as Cladophora, in lake sediments become more negative with
increasing water depth (Liu et al., 2013). Thus, we suggest that
negative 513 Corg values indicate a relatively humid climate in
Beihaizi paleolake, specifically manifesting as increased aquatic
C; plants with high lake levels in the late MH and increase of ter-
restrial C; plants caused by increase in effective moisture since the
late LH (Fig. 6b). Given the positive relationship between §'*0
and evaporation intensity (Horton et al, 2016), the positive
8'%0 in the MH reflects enhanced evaporation by increased inso-
lation and high air temperature (Kaufman et al., 2020) (Fig. 6a),
which raises atmospheric humidity to enhance regional precipita-
tion. Ultimately, high regional precipitation, indicated by GS, MS,
and geochemical proxies, may have offset evaporative losses from
the lake surfaces, resulting in a climate and environment with
higher effective humidity (high P/E or I/E ratio) in the late MH
(Herzschuh et al., 2014). With the temperature decline since the
MH, the §'®0 depletion in the late LH probably mirrors a positive
moisture balance (i.e., a high P/E or I/E ratio as the result of weak-
ened evaporation) (Qiang et al., 2017).

The synthesis of all paleoclimate proxies confirms a humid late
MH in the BHZ section. At the same time, although the grain size
of lake sediments has not become significantly finer since the late
LH, TOC, MS, 813C0,g, and 8'®0 proxies indicate that the

https://doi.org/10.1017/qua.2023.37 Published online by Cambridge University Press

S. Peng et al.

surrounding vegetation environment improved and the organic
matter content in the sediments increased. We argue that despite
the overall transition from a lacustrine sedimentary environment
in the MH to an aeolian sedimentary environment in the LH,
there is still a slight wetting trend during the late LH in the
BHZ section.

Paleoclimate ensemble simulation of precipitation, evapora-
tion, and corresponding effective moisture can give more intuitive
evidence. Precipitation and evaporation during the MH are higher
than during the PI in the BHZ section, and the magnitude of pre-
cipitation is greater (Fig. 7a, b). This further corroborates the
results of proxy reconstruction (i.e., high evaporation represented
by 8'°0 depletion and high precipitation indicated by GS, MS,
and geochemical proxies in the BHZ section). To clarify the mois-
ture difference, we calculated the effective moisture represented by
precipitation minus evaporation (P—E) (Fig. 7c). The result indi-
cates that effective moisture during the MH in the BHZ section
was higher than during the PI, which corresponds to the high
P/E or I/E ratio.

Possible causes of regional climate evolution

Changes in atmospheric circulation patterns are important factors
in affecting regional climate evolution and hydrological condi-
tions. The climate and environmental records from the east part
of the Hexi Corridor generally show monsoonal characteristics:
a humid climate in the EH and MH, and gradually drying climate
in the LH (Liu et al., 2007; Qiang et al., 2013). However, the mid-
dle part of the Hexi Corridor, located in the monsoon-westerly
transition zone, presents a complex Holocene climatic change pat-
tern that is not the same as either the monsoon-affected region or
the westerlies-affected region (Zhao et al, 2007; Yan and
Wiinnemann, 2014; Li et al., 2020). Based on the paleoclimate
ensemble simulation, we analyzed the climate regime anomalies
between MH and PI to visually investigate the relationship
between climate evolution in the BHZ section from the middle
part of the Hexi Corridor and westerlies/AM. The southerly
wind in the averaged and differential field at 850 hPa
(hectoPascals) means that the Asian summer monsoon in the
MH is more intense than that in the PI (Fig. 8a, b), which is con-
sistent with the reconstruction of the East Asian summer mon-
soon from speleothem &'®0 records in south China (Yuan
et al., 2004; Wang et al.,, 2001). Meanwhile, the increase in sum-
mer precipitation also indicates the remarkable contribution of
intensified Asian summer monsoon to local precipitation in the
BHZ section, further causing the MH humid climate (Fig. 8b).
In comparison to the averaged wind fields at 200 hPa (Fig. 8c),
the same wind direction and increasing winter precipitation in
the winter differential field indicate that the westerlies strength-
ened in the winter during the PI compared to the MH
(Fig. 8d). In addition, the differential wind field of the Asian win-
ter monsoon between the PI and MH, unlike the averaged wind
field, indicates a weaker Asian winter monsoon during the PI
(Fig. 8e, f). In the LH, weakening of the Asian winter monsoon
and then the increase in the winter water vapor supplement
(Zhang et al., 2022), caused by the increase in winter insolation
(Berger and Loutre, 1991), favored the improvement of vegetation
growth and the preservation of organic matter (Xiao et al. 2002;
Peng et al, 2022). Moreover, the increased insolation gradient
was conducive to the gradual strengthening of westerlies in the
LH, thereby increasing moisture transport to the BHZ section
and the middle part of the Hexi Corridor (Jin et al., 2012;
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Zhang et al., 2016). Consequently, we suggest that the slight wet-
ting trend in the BHZ section since the late LH results from the
intensification of westerlies and the weakening of the Asian winter
monsoon.

High-resolution and precisely dated speleothem and lake
records from south and north China, the typical East Asian sum-
mer monsoon region, indicated that a strong summer monsoon
and a humid climate occurred during the Early and Middle
Holocene, and a weakened summer monsoon and a drier climate
prevailed during the Late Holocene (Xiao et al.,, 2006; Cosford
et al., 2008; Chen et al., 2015) (Fig. 9c—e). In the area influenced
by the westerlies, most of the paleoclimate records documented a
dry EH to a wetter MH and a moderately humid LH (Fig. 9f-h)
(Chen et al., 2008, 2016b; Liu et al., 2008; Wolff et al., 2017),
which is out of phase with records in AM regions. Hence, regional
climate evolution and hydrological conditions on millennial time-
scales could differentiate between the effects of the AM and the
westerlies. Figure 9 illustrates the similarity between the Asian
summer monsoon pattern (Fig. 9c-e) and our records
(Fig. 9a, b), which all indicate that the Asian summer monsoon
induced by summer insolation controlled MH climate changes
(Liu et al, 2007). Additionally, the westerlies-controlled proxy
records (Fig. 9f-h) indicate that precipitation has increased grad-
ually since the LH and generally is correlated with the slight wet-
ting trend in the BHZ section.
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Comparison of paleoclimate records between the BHZ section
and other sites in the adjacent region

The Holocene climate evolution history in the Hexi Corridor
and its surroundings has been widely reported and many high-
resolution records from adjacent areas have been presented.
Multivariate statistics from the terminal lake of Heihe River-
the eastern Juyan paleolake indicate a climate optimum at
5400-4000 cal yr BP (Herzschuh et al., 2004; Hartmann and
Wiinnemann, 2009), which is essentially coincident with our
results of the late MH humid climate (ca. 4400 to ca. 3500
cal yr BP). The interpretation of climate history in the
Badain Jaran Desert suggested that the wet MH climate pre-
vailed in the entire Badain Jaran Desert (Yang et al., 2011).
In addition, the humid climate period (ca. 4400 to ca. 3500
cal yr BP) in the BHZ section is coincident with the 4.2 ka
events. Holocene climatic records of the East Asian summer
monsoon indicated that the 4.2 ka event was characterized by
cold, dry conditions in China with less monsoonal moisture
reaching northern China (Wang et al, 2005; Tan et al,
2018). The climatic conditions in the BHZ section during the
time were, however, different from previous views. In fact, we
argue that the relatively low resolution compared to the stalag-
mite records means that climate reconstruction in the BHZ sec-
tion is not suitable for accurately indicating 4.2 ka events. The
synthesis of evidence from lake sediments in arid Central Asia
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indicates that the moisture evolution pattern is characterized by
a moderately wet LH, providing a reference for the slight wet-
ting trend in the late LH in the BHZ section (Chen et al., 2008).
Collectively, although studies presented in this section brought
up contradictory ideas about Holocene climate evolution, the
humid climate in the MH and LH also is similar to the pub-
lished records found in northern and western China (Zhou
et al., 2001).

The difference in climate interpretation is a function of the
complexity of Holocene climate change near the northwest
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margin of the Asian summer monsoon (Zhao et al., 2007). The
results of palynological reconstruction from the Dunde ice core
implied that the enhanced Asian summer monsoon may have
extended northward beyond the current northernmost edge to
the Dunde ice core and the westernmost part of the Tibetan
Plateau, leading to the high palynological concentration in the
Holocene (Liu et al, 1998). The comprehensive analysis of carbon-
ate oxygen isotope records suggested a significant influence of the
winter monsoon and westerlies on climate and environmental
change in Sugan Lake over the past 2700 years (Zhou, 2007).


https://doi.org/10.1017/qua.2023.37

Holocene lake evolution, Hexi Corridor, NW China

41

e e e e e e 24 &
@ F =8
o . —~0
. \ - '22:3;2 3
Q — . N =
d - -20 o
7 X40 3 3
= - ]
8820 - (b)
@ ]
z 0]
m — 5
- ]
-4 45  +
L 3 8 g’_
[ Y~
F ,
0@ 2] R
8 o -64 - — 1
> 56 £
o -
_g = -4.8 %
80 -4 - a
o -] ] s
0 -3.2 ~ 640% 77}
[ s g) <
- 5605 5
: =0
© Faso 23
B S -
- 400 3 o
N o
B [ o = SRR BEIREPORISRN ST S RESR -3203
o - -
>0 .
5% 12 3
4 g 10 ;V\/\/\/\/\MMM/VJWM
S5.8" . (f) —
= E -8 = \ 'bx
50 51 2 x
o N ¥ i :— 32 ;LFJ%, c Figure 9. Intersite comparisons of regional paleoclimate
— "'/\/\/\/\ f \ F og O o & records. (a, b) §"*C, and clay content, respectively, in
\ s N F 54 =@ | 'S the BHZ section of the Beihaizi paleolake in this study;
\Lg) r 20 3 E > (c) TOC content in Daihai Lake (Xiao et al., 2006); (d) sta-
@ 2 - 3"' o j:'_.) lagmite §'%0 in Lianhua Cave, eastern China (Cosford
%% = E = o g et al., 2008); (e) pollen-based quantitative precipitation
;' g, 1 = = reconstruction from Gonghai Lake, northern China
D% o ] \m (Chen et al., 2015); (f) stalagmite 5'%0 in Uluu Cave,
3 At‘u 0 7 Central Asia (Wolff et al., 2017); (g) xarm/SIRM ratio in
g,. ZEE e (I ——— 71— - the Xinjiang Loess (Chen et al., 2016b); (h) lake level

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Age (cal yr BP)

Considering the factors and mechanisms controlling the
humid climate in the MH in the eastern Juyan paleolake, several
studies assumed that the interplay of the East Asian summer
monsoon and the westerly waves resulted in increased runoff,
refilling of the aquifer, and the increase of lake-internal organic
carbon production in a lacustrine environment (An et al., 2000;
Wiinnemann et al., 2007; Hartmann and Wiinnemann, 2009).
Previous studies in the Badain Jaran Desert have proposed that
the periodic change of westerlies and the AM was an essential fac-
tor in controlling the humid period (Yang et al.,, 2003). Further
investigation concluded that the strengthened East Asian summer
monsoon triggered wetter climate in the Badain Jaran Desert in
the Holocene, which was linked with increasing insolation
(Yang et al, 2010). The climate simulations of Feng and Yang
(2019) demonstrated that the Asian summer monsoon brought
abundant moisture to the Alashan Sand seas and the eastern
Beihaizi paleolake in the period 8.2-4.2 ka BP, which caused
high precipitation and the humid climate. Moreover, the
Holocene climate change revealed by elemental geochemical
records of Tiaohu Lake in the northwestern Jinta Basin may be
jointly affected by the AM and westerlies (X. Li et al., 2013).
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change of Wulungu Lake (Liu et al., 2008). ARM = anhys-
teretic remanent magnetization; SIRM = saturation iso-
thermal remanent magnetization.

Reconstructed effective moisture changes in Huahai Lake near
the BHZ section were influenced by the AM, westerlies, and evap-
oration (Wang et al.,, 2013). The significant retreat of lake level
and the lower deposition rate in Yanchi Lake since the MH indi-
cated the monsoon effects on the northwest margin of the Asian
summer monsoon (Y. Li et al., 2013). The Holocene paleoclimate
records of Qinghai Lake show the evolution of climate and envi-
ronment controlled by the Asian summer monsoon (Lister et al.,
1991; Shen et al., 2005; Liu et al., 2007). On account of the com-
plex climate of the northwestern margin of the summer monsoon,
the pollen results of Hurleg Lake indicate that the Holocene
humidity variability in the northeastern QTP was mainly con-
trolled by westerlies and regional topography (Fan et al., 2014).
Analysis of Hala Lake sedimentary cores found that the fluctua-
tion of water levels in the Middle to Late Holocene was mainly
controlled by westerly water vapor (Yan and Wiinnemann, 2014).

In summary, the interaction between the westerlies and AM
has a vital role in climate change in the middle part of the Hexi
Corridor in the northern margin of the QTP. Our results demon-
strate that strengthening Asian summer monsoon and increasing
effective humidity dominated the late MH humid climate. On the
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other hand, the slight wetting trend since the late LH is mainly
linked to enhanced westerlies and weakened Asian winter mon-
soon. Consequently, this study provides information for evaluat-
ing the interaction between the westerlies and AM and
emphasizes the complex climate pattern under the control of
diverse atmospheric systems in the northern margin of the QTP
and the challenges for future predictions.

CONCLUSIONS

A new multiple-proxy dataset, including grain size, 813C0rg, 8'%0,
TOC, TN, C/N ratio, and MS, from the BHZ section taken in the
Beihaizi paleolake was used to reconstruct climate change in the
middle part of the Hexi Corridor in the northern margin of the
QTP since 5334 cal yr BP. The analysis of all proxies indicated
that high lake levels with humid climate occurred in the late
MH (ca. 4400 to ca. 3500 cal yr BP). Despite the overall transition
to an aeolian environment in the LH, there has been a slight wet-
ting trend since the late LH.

Simulated precipitation, evaporation, and effective moisture
based on the PMIP3-CMIP5 multi-model ensemble simulations
verified the climate history and its possible causes in the MH
and LH. In the MH, the Asian summer monsoon steadily
strengthened, which favored high lake levels and humid climate.
Increase of the surrounding vegetation since the late LH might
result from enhanced westerlies, weakening Asian winter mon-
soon, and low evaporation. This climate pattern is different
from those in the AM region or the westerlies-affected region
and suggests a significant effect of the interaction between the
AM and westerlies on Holocene climate change in the Hexi
Corridor. The reconstruction and dynamic analysis of the lake
and climate evolution presented in this study contribute to under-
standing their links with the AM and westerlies. Future work
should focus on extending the AM and westerly records across
multiple time scales in the northern QTP.
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be found at https:/doi.org/10.1017/qua.2023.37
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