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1. Introduction. Let V and W be two vector spaces over the field of real numbers
R. Then we have the notion of the tensor product V ® W. If V and W are inner product
spaces with their inner products given respectively by ( , ) v and ( , ) w , then V ® W is
also an inner product space with inner product denned by

(v®w,x®y) = (v,x)v(w,y)w Vu <g> w, x ® y e V ® W. (1.1)

Let £'" denote the /n-dimensional Euclidean space with the canonical Euclidean inner
product. Then, with respect to the inner product defined above, £'" <8> £'" is isometric to
£"""'. By applying this algebraic notion, we have the notion of tensor product map
f <8> h :M -» £'" <g> £'"' = £"""' associated with any two maps / :M->£" ' and h:M^E'"'
of a given Riemannian manifold (A/,g) defined as follows:

(f®h)(p)=f(p)®h(p)eE"1®E"1' VpeM. (1.2)

Denote by 0i{M) the set of all transversal immersions from an n-dimensional
Riemannian manifold (M,g) into Euclidean spaces; i.e., immersions f:M—> £"' with
f(p) $ T*(TPM) for p e M. Then ® is a binary operation on 9l(M). Hence, if f:M—> £"'
and h:M—»£'"' are immersions belonging to 9l(M), then their tensor product map
/ <8> h : M—* £'" ® £"" is an immersion in &l(M), called the tensor product immersion of/
and /i.

; A smooth map J: :M—>E'" from a Riemannian manifold M into a Euclidean m-space
£'" is said to be of finite type (k-type) if it can be decomposed into a sum of finitely many
(k, not counting a constant function) eigenfunctions of the Laplacian A of M from
different eigenspaces, i:e., we have

* = * „ + *, + . . . +xk, (1.3)

where xt) is a constant vector and Ax, = k,xn t = \,2,...,k, where A,,. . . , kk are k
different eigenvalues of the Laplacian of M and A acts on a vector function component-

wise. In that case we have P(A)(x — x0) = 0, where P(T)= W (T — A,). If JC cannot be

represented as a finite sum (1.3), it is said to be of infinite type. The notions of finite type
maps and finite type submanifolds were introduced about a decade ago (for instance [2],
[7]). Since then many interesting results in" this respect have been obtained by various
authors. In particular, it has been proved that many important submanifolds are of finite
type. Of course, the simplest finite type submanifolds are the 1-type submanifolds. A
well-known result of T. Takahashi [6] asserts that 1-type submanifolds are precisely those
that are minimal in a hypersphere or minimal in the ambient Euclidean space.

Since the 1-type maps and 1-type submanifolds are the simplest maps and the
simplest submanifolds in the finite type theory, it is fundamental to classify 1-type maps
and 1-type submanifolds. For this reason, we shall investigate the tensor product
immersion f®h associated with any two isometric immersions f:M—* E'" and
h :M-»£'"' in 2ft(M) in this article. As a result, we can completely determine all tensor
product immersions/<8>h which are of 1-type.
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Because the tensor product immersion / <8>/ associated with a single isometric
immersion f:M—*E'" is nothing but the quadric representation studied in [4] by I.
Dimitric. Our result provides a vast generalization of the main result of [4].

2. Preliminaries. Let f:M—*E'" be a map from an n-dimensional Riemannian
manifold (M,g) into the Euclidean /n-space E'". Denote by V and V the Levi-Civita
connections of (M,g) and of Euclidean spaces, respectively. The second fundamental
form Of and the energy density e(f) of the map / are then given respectively by

of(X,Y) = Vx(f*Y)-f*(VxY), (2.1)

e(f) = 12\\df\\2. (2.2)

If f:M—>E'" is an isometric immersion, the second fundamental form oy is a
normal-bundle-valued bilinear map on T{M) x T{M). The energy £ ( / ) of / i s defined by
£( / ) = JM e{f) dV. The Euler-Lagrange operator associated with E shall be written as
T ( / ) = di\(df) and is known as the tension field of/.

For a map f': M —» E'", one has

A/ = - r ( / ) , T ( / ) = trace, of. (2.3)

If f:M—* E'" is an isometric immersion, the mean curvature vector field Hf of/ is

given by Hf = - trace of = - r( /) . Let A1 and ZV denote the Weingarten map and the

normal connection of the immersion/, respectively. A normal vector field § of/is said to
be a parallel normal section if Df% = 0, identically. A normal vector field § is said to be a
umbilical section if the Weingarten map A^ in the direction of § is proportional to the
identity map. The immersion f.M —*E'" is said to be totally umbilical if its second
fundamental form of satisfies of(X, Y) = ng(X, Y ) T ( / ) , for some function }i on M. The
immersion / is called totally geodesic if its second fundamental form oy vanishes
identically.

An immersion / : M—* E'" is said to be spherical if /(A/) is contained in a hypersphere
of E'" centered at the origin of E'".

Given two isometric immersions f:M—> E'" and h:M—*E'", their tensor product
immersion / ®/J:A/—> E'" ® E'"' is not isometric, in general. In fact we have the
following two propositions.

PROPOSITION 1. Let fe$l(M) be an isometric immersion of an n-dimensional
Riemannian manifold M into E'" with n > 2 and take a natural number /c > 2. Then
fk=f®...®f{k times) is conformal if and only if f is spherical.

Proof For any tangent vector X e TpM we have

(/*)*(*) =/.(*)®/*"'(?) +f(p)<8>/*W®fk-\p) +. • • +fk'\p)®f
where/* denotes the differential off. Thus, for any X, Ye TPM, we have

* ' " k(k - \)u{pf-2

x<f.{X),f(p))(f*(Y),f(p))i
where u(p) = (f(p),f(p))- For any given X e TpM, choose Y e TPM perpendicular to X.
If fk is conformal, then (2.4) yields

https://doi.org/10.1017/S0017089500030809 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030809


1-TYPE TENSOR PRODUCT IMMERSIONS 257

from which we may obtain (f*(X),f(p))(f*(Y),f(p)) =0 because / e §t(M). Since this
is true for any orthogonal X,YeTpM, peM, the linearity and the continuity of/*
implies that (f*(X),f(p)) = 0 for any XeTp(M), peM. From this we conclude that
f(M) is contained in a hypersphere of E'" centered at the origin; i.e. / i s spherical.

Conversely, if/is spherical, then (2.4) implies that

((fkUX),(fk)*(Y)) =

for any X,YeTpM. This shows that /'* is conformal.

REMARK. For k = 2, Proposition 1 is due to Dimitric [4].

PROPOSITION 2. Let f,he 0l(M) be two isometric immersions from an n-dimensional
(n > 2 ) Riemannian manifold M into Euclidean spaces E'" and Em , respectively. Then the
tensor product immersion f <8> h:M—> E'" <S> Em is conformal if and only if locally either f
or h is spherical.

Proof. For each tangent vector X e Tp M, we have

(/ ®hUX) =f(p) ® h.(X) +MX) ® h(p). (2.5)

Thus we find

((f(p)J(p)) + (h(p),h(p))){X,Y) +2(f(p)J*(X))(h(p),h*(X)). (2.6)

If/ is spherical on an open subset T of M, then (f(p),f*(X)) =0 for any X e TpM,
p eV. Thus, by (2.6), /" <S> /i is conformal on V. Therefore, / ® h is conformal if locally
either/or h is spherical.

Conversely, if/®ft is conformal, then (2.6) implies that

<J{p),U{.X)){h(p),h.(X))=p{p){X,X) (2.7)

for some function (x on M. Since dim M = « s 2 , there exists a unit vector X e TpM such
that {f(p),f*(X))=0. Thus, by (2.7), n = 0 which implies that either (f(p),f*(X)) =0
or (h(p),h*{X))=0 for ^eT p M. Hence, either X((f,f)) = 0 or Jf«A,/i» = O.
Assume that there is a vector XeTpM such that A r ( ( / , / ) )#0 , then X((f,f))¥=0 for
any A' in some dense open subset U of TpM. Thus, by continuity, we get d{(h,h)) = 0 at
p. Let W = {q e M :d((h,h))(q)i=0}. Then JV is an open subset of M and we have
d({f,f)) = 0 on W. This implies that / is locally spherical on W. From these we may
conclude that if / <8> h is conformal, then locally either/or h is spherical.

LEMMA 3. Let f:M-*E'" and h:M^>Em be a totally geodesic isometric immersion
and a minimal isometric immersion from an n-dimensional (n ̂ 2 ) Riemannian manifold
M into Euclidean spaces E"' and Em , respectively. Then their tensor product immersion
f<8)h:M-* E'" ® Em' is of infinite type.

Proof. If / is a totally geodesic isometric immersion, then M is isometric to an open
portion of Euclidean n-space. Thus h is an isometric minimal immersion from a flat
Riemannian manifold into Em which implies that h is also totally geodesic by the
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equation of Gauss. Therefore, by direct computation, we may find

e(), (2.8)

where eu . . . , en is a local orthonormal frame field of the tangent bundle T{M) of M. On
the other hand, we have

I <#)/.(*/) ®M<?/).'

n

where V^e, = £ (of(X)ek and V is the Levi-Civita connection of E'" <8> E'"'. Since

co'j= —co'j, this implies

(*/) ® A»(e/)) = 2 of(e,, X) ® A,(ef.) + £/,(<?,) ® a;,(e,., A'). (2.9)

Because both /and ^ are totally geodesic, (2.9) yields

Vjrfe/•(*/) ®M*,))=0. (2.10)

From (2.10) we get

A'(/®A) = 0, / a 2. (2.11)

Suppose / (S> /J is of ^-type (with finite /:). Then there exists a polynomial P = P(t) of
degree k and a constant vector a in £:"'®£m' such that P(A)(f®h -a) = 0. Thus, by
(2.8) and (2.11), there exists a constant /i such that

2/*(e,)®/z*(e,) = M ( /®/«-f l ) . (2.12)

Since the left-hand side of (2.12) is never zero, n^O. By taking the covariant derivative
of (2.12) with respect to A1 e TPM and using (2.10) we find

which is impossible because dim M = n > 1. Therefore, / ® h is of infinite type.

We mention the following result (Theorem 25 of [3]) for later use.

LEMMA 4. Let f:M^> E'" and h:M—>Em' be two spherical isometric immersions of a
Riemannian manifold M into Euclidean spaces E"' and Em , respectively. Then their tensor
product immersion f ®h is of l-type if and only if M is isometric to an open portion of an
ordinary n-sphere and f and h are totally umbilical isometric immersions.

3. l-type tensor product immersions. The purpose of this section is to prove the
following classification theorem.
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THEOREM 5. Let f,h e$l(M) be two isometric immersions from an n-dimensional
(n>2) Riemannian manifold M into Euclidean spaces E'" and E"' , respectively. Then
their tensor product immersion f ® h :M—>E'" ® Em is of l-type if and only if both f and
h are spherical isometric immersions which map M into open portions of hyperspheres with
the same radius in some (n + \)-dimensional linear subspaces of Em and Em , respectively.

Proof. If f ®h is of l-type, then there exist a real number A and a constant vector
C€E'"®E'"' such that

= nX{f®h)-c. (3.1)

On the other hand, we have (cf. Lemma 16 of [3])

= -nHf®h - nf ® Hh-lJ1flf{ei)®K{ei), (3-2)

where e,,. . . , en is a local orthonormal frame field of the tangent bundle T(M) of M and
Hf and Hh are the mean curvature vector fields of/and h, respectively.

Let X be a tangent vector of M. Then, by taking the covariant derivative of both
sides of (3.1) with respect to X and by applying (2.9) and (3.2), we may obtain

- nAf
H/X ®h-nf® Ah

HhX + nDf
xHf ® h + nf ® Dh

xHh

+ nHf ® K{X) + nf*(X) ® //„ + 2 £ of{eh X)

+ 2 E/*(*,) ® ah(e,, X) + nkf*{X) ® h + nkf ® h*(X) = 0, (3.3)

where Af, Df, af (respectively, A1', Dh, oh) are the Weingarten map, the normal
connection and the second fundamental form of/:A/—*E"' (respectively, of h :M—* Em ),
respectively.

For the immersions f:M-*Em and h:M-*Em' we also denote by / and g
respectively the position vector fields of f:M—>Em and h:M—>Em'. Denote by/-1, / T

(respectively, /JX, h1) the normal and the tangential components of/(respectively, of h).
Let U = {p e M :f±(p) = 0}. Assume that the interior if of U is non-empty. Then

/ = / T on lf\ For any vector X tangent to if, we have

VxfT = Vxf=f*(X). (3.4)

Hence, we get of(XJZl(fT)) = 0. Because feSt(M), / = / T # 0 . Let e, be the unit
tangent vector of M such that/T= |/T|/*(e,). Then (3.4) yields

of(X,ex) = 0, VXeTlf* (3.5)

which implies that e, is an eigenvector of Afg for any normal vector § of/at any point in
If. ' .

By considering the (normal ® tangential)-component of (3.3), we find

nDf
xHf ®hT + nHf ®h*(X) + 2 £ of(eh X) ® h.(e,) = 0. (3.6)

Let eu . . . , en be an orthonormal local frame on If such that /J*(<?,) is in the direction of
hT. Then (3.6) yields

af(el,ei) = af(e,,ej) = 0, nHf + 2af(ehe,) = 0, ij = 2,...,n; i±j. (3.7)
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From (3.7) we may obtain

of{eue^n-^H, (3.8)

Because e,,. . . , en are eigenvectors of A{ for any normal vector §, (3.5), (3.7) and (3.8)
imply that Hf = 0 on lf\ Thus

of = 0 (3.9)

on If, by (3.7) and (3.8). Therefore (3.3) yields

- nf ® A%X + nf® D"xHh + «/*(*) ® //„

+ 2 2/4e/)®CT*(e,,*) + nA/»(*)®/i+rtA/<g>M*) = 0 (3.10)

on£/°.
By considering the (tangential <8> tangential)-component of (3.10) we find

-f®Ah
Hhei + Xf^i)®hT + Xf®h,(ei) = 0, i = l , . . . , n . (3.11)

Since /*(e,) is in the direction of/, by taking the /*(e,) ®hT component of (3.11) with
1*1, we find either A = 0 or hT = 0 on U°. If A = 0, then (3.11) yields Ah

Hh = 0. Thus,
///, = 0. This implies that the isometric immersion /i is minimal on (/". Therefore, by
applying Lemma 3, we conclude that the tensor product immersion f ®h is of infinite
type on If and so / <8> h is of infinite type which is a contradiction.

If A=£0, then h=hx on I/'. This implies that h is spherical on each connected
component of if. Thus, (3.11) yields

which implies

Ah
HhX = Xh*(X), XeTU°. (3.12)

In particular, this shows that Hh =£0. Consequently, (3.10) becomes

nf ® D"xHh + nf,(X) ®Hh + 2% /*(<?,) ® oh(eh X) + nkf*(X) ®h=0 (3.13)

on If. Because/*(e,) is in the direction of/, (3.13) gives

a*(cy,cy) = -^ (A/ i + Hh), j = 2,...,n, (3.14)

oh(e,,ej) = 0, i * y , i = l , . . . , n , j = 2 , . . . , n . (3.15)

From (3.14) we find

^ . (3.16)

(3.14), (3.15) and (3.16) imply

Im oha Span{h,Hh} (3.17)
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on if. Since h=h± on if, Vxh=h*(X). Thus, the immersion h:M^>Em' is also
umbilical with respect to the normal direction /!1 = /ion (/'. Combining this with (3.12)
and (3.17) we conclude that h:M^>Em' is totally umbilical on if. Because Hh ̂ 0 on if,
each connected component of if is of positive constant sectional curvature. On the other
hand, (3.9) implies that if is flat which is a contradiction. Therefore, we conclude that U
is of measure zero. Thus, fx¥=0 almost everywhere on M. Similarly, /zx=?t0 almost
everywhere. Consequently, \ff®h is of 1-type, then/x=/=0 and / i ^ O o n an open dense
subset V of M. For simplicity, we will work only on this open dense subset V through the
remaining part of the proof unless mentioned otherwise.

Now, we make the following claim

Claim 1. Iff = 0onan open subset W of V, then hT = 0on W.

Assume Claim 1 is false. Then hT=£0 on W. Since / T = 0, / =f±. So, by considering
the (tangential <8> tangential)-component of (3.3), we get

Because /zT=/=0 by assumption,

(3.18)

By (3.18), we find {Hf,Hf) = A which is a constant. Thus for any tangent vector X we
have {Df

xHf,Hf)=0.
On the other hand, by considering the (tangential ® normal)-component of (3.3) and

using (3.18), we obtain

®Hh + 2 £/.(«,) ® oh{e,, X) = 0.
1

Thus

ndjjHh + 2oh(eh ey) = 0, /,/ = 1,. . . , n

from which we obtain ah = 0, i.e. h :M—>Em' is totally geodesic. Since h is isometric, this
implies W is flat. Furthermore, we can assume that Hf=t0, since otherwise f®h is of
infinite type by Lemma 3. From oh = 0, (3.3) and (3.18) we find

nDfxHf ®h+nHf® hm(X) + 2 £ af(e,, X) ® A,(e,) + nkf ® h.(X) = 0. (3.19)

Now, let e,,. . . , en be an orthonormal local frame field such that /j*(e,) is in the direction
of hT. Then, from (3.19), we may obtain

af(e,,ej) = 0 , i # ; \ i , j = 1 , . . . , n , (3.20)

(jy(e,, e.J — — — (rtf + A / ) , j — z,. . . , n. yj.zi)

2

By (3.21) we find

_ / - - \ n\n T î  W ^ / I I J . .

(7y(ei, C]) = — - — " / ' ^—AT- w-^/
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From (3.20), (3.21) and (3.22) we know that the first normal space off:M^>£'" at
each point p e W is spanned by Hf{p) and f(p)- Since / T = 0, M is immersed in a
hypersphere of E"' centered at the origin. Thus the Weingarten map of the immersion / a t
the normal direction/"1 = / i s proportional to the identity map. Combining this with (3.18)
we conclude t h a t / : M - » £ m is totally umbilical on W. Since oh = 0 and both / :M -> £'"
and h :M—>Em are isometric, f:M—*E'" is also totally geodesic on W. Hence, according
to Lemma 3, f <2)h is of infinite type which is a contradiction. Consequently, Claim 1 is
proved.

Now we give the following.

Claim 2. There exist no non-empty open subset V of M such that fT =£ 0 on V.

In view of Claim 1, we may assume that / i T #0 on V, too. Furthermore, since/1 and
hx are nonzero almost everywhere on M, we may choose V such that f± and hx are
nonzero on V.

We choose orthonormal local frame fields en+l,. . . , em of the normal bundle Tf(M)
off:M—>E'" such that en+1 is in the direction of/1 and choose orthonormal local frame
fields en+u . . . , em. of Tj;{M) such that en+1 is in the direction of h1.

Consider the (normal ® normal)-component of (3.3); we find

Df
xHf ®hx+fx® D"xHh = 0,

from which we have

D'xHf = a(X)f\ Dh
xHh = P{X)h\ (3.23)

for some 1-forms a and p. Moreover, by considering the (tangential ® tangential-
component of (3.3) we may obtain

(AfH/X - XU{X)) ® hT =fT (8) (Ah
HhX - XK{X))

which implies

AfHfX = kf*(X) + Y(X)fT, A"HlX = XK{X) + 6{X)hT (3.24)

for some 1-forms y and 8. From (3.24) we find

for tangent vectors X, Y. Therefore

y(X) = 6(X) = 0, if ( / , ( * ) , / T ) = 0 . (3.25)

By considering the (tangent 0 normal)-component of (3.3) and using (3.23) and
(3.24), we get

n(fi(X) - r W ) / T 0 hx + nf%{X) ®Hh + 2 £/,(«,) 0 oh(eh X) = 0. (3.26)
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Let e,,. . . , en be an orthonomal local frame field of M such that f*(et) is parallel to
/ T . From (3.26) we may obtain

o h ( e h e j ) = - - 5 , J H h , i = l , . . . , n , j = 2 , . . . , n . (3.27)

From (3.24), (3.25) and (3.27) we get

{Hh,Hh) = --X. (3.28)
n

From (3.27) we have

gft(ei,e,) = " ( " 2
+ ' Hh. (3.29)

(3.26) and (3.28) imply that the dimension of the first normal space is at most 1 and
moreover Hh = 0 if and only if ah = 0. By using (3.25), (3.26), (3.27) and (3.29) we find

/?(*) = 0 if </*(*) , /T>=0, (3.30)

(y(e,) - 0(e,))/T ® hy = (n + 2)/*(e1) ® //,,. (3.31)

(3.31) implies that h1 is parallel to Hh.
Assume Hh =£0. Then Hh = a-/len+1 and h± = \ien+x for some functions ah and ;U on

M. Let y be a tangent vector of V such that (/*(Y),/T) = 0. Then (3.25), (3.26), (3.27)
and (3.29) yield

n/»(Y) <S> //„ + 2 £/*(e,) ® cr,,(Y, e,) = 0. (3.32)

From (3.28), we find that D^Hh = ahD^en+i is perpendicular to the hx. On the
other hand, (3.23) shows that Dh

e[Hh is parallel to hx. Therefore, fi{e{) = Q. Combining
this with (3.23) we find D''Hh = 0. Consequently, V is locally immersed into an
(n + l)-dimensional linear subspace E"+l of Em by h. Furthermore, from (3.27), (3.28)
and (3.29), we know that h(M) is a hypersurface of E"+l with two nonzero constant
principal curvatures. But this is impossible by [5]. Therefore, Hh=Q on V. Hence, by
(3.27) and (3.29), we obtain oh=0. Similarly, we have 0^ = 0. But this is impossible
according to Lemma 3. Hence, / T = 0 which contradicts the assumption. Consequently,
Claim 2 is proved.

• From Claim 2 we know that if / <8> h is of 1-type, then fT = hT = 0. This implies that
both / and h are spherical isometric immersions. Hence, by applying Lemma 5, M is
isometric to an open portion of an ordinary n-sphere and both / and h are totally
umbilical isometric immersions. Consequently, M was immersed into open portions of
hyperspheres with the same radii in some (n + l)-dimensional linear subspaces of E'" and
Em', by/and h, respectively.

The converse is already given by Lemma 4.
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