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Abstract

In this article we study some special problems of the additive number theory connected with an estimate
of cardinality of a sum of two sets, which can be convex as well as non-convex sequences.
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1. Introduction

The problem of estimating cardinality of sumsets is one of the interesting and difficult
topics of the additive number theory. In this note we deal with a particular case of this
problem and discuss some special questions concerning cardinality of a sum of two
sets.

For a given a, 0 < a < 1, denote Aa = { 1 , 2 , . . . , [na]} where n is a positive
integer parameter, n > 3. Let c denote a positive constant. The real valued function
/ (x) is required to be an increasing strictly convex function of a positive integer
variable x e Au that is, to satisfy

(1) 0 < / ( 2 ) - / ( l ) < / ( 3 ) - / ( 2 ) < . . . < / ( « ) - / ( n - l ) .

Hegyvari [6] proved that the set

/ (A,) - / (A,) = {f (a,) -f(a2) : au a2 e A,}

has at least cn(logn/loglogn) elements, that is,

(2)
log log n
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Using Jarnik's result [7] on integral lattice points on a strictly convex line or a
method used to prove Lemma of [3] one is able to establish that for a given s the
number of solutions of the equation 5 = / (x) + / (v) is at most cn2/i. This remark
will allow us to note that (2) can be improved to cn4/3. As it was noticed by Elekes,
Nathanson and Ruzsa in [2], the third author, in his unpublished work, improved (2)
to c«4/3 and in [2] this result was further improved to

(3) | / ( A 1 ) ± / ( A , ) | > c n 3 / 2 ,

where '± ' here denotes any of the signs '+ ' and '—', that is, the corresponding
estimate takes place for the sumset and for the difference set as well. Applying the
methods of combinatorial geometry they obtained more general theorem from which
(3) follows together with many other significant results.

In this article, using entirely elementary method, we obtain a new result which
includes estimate (3) with c = 1/5.

THEOREM 1.1. Assumed). Thenni/2/5 < |/(A1/2) ± / ( A , ) | < n3/2. Further if,
0 < a < 1/2 then \f (Aa) ±f(Ax)\ = [na]n + O(n3a), where the constant implicit
in the O symbol is absolute.

The upper bound estimate of the first statement is trivial. Further improvement of
the error term O(n3a) in the second estimate would be of some interest, if such one
exists. We also note that our elementary argument allows us to prove that for any
€ > 0, n > rti(e) > 0 estimate (3) holds with c = (3/4) - e.

Let us now consider special non-convex sequences. Deshouillers [1] proved that
for 1 < y < 4/3 any sufficiently large positive integer is representable in a form
[xy] + [yy] with nonnegative integers x, y. Gritsenko [5] extended the range of y
possessing this property to 1 < y < 55/41. In our work [4] we proved that if
a e (1, 3/2], then there are » N numbers n < N representable as n = [xy] + [yy].
Substantial improvement in this problem was made by Konyagin [8]. He established
that for any y e (1, 3/2) a sufficiently large positive integer n is representable in a
formn = [xy] + [yy].

For a > 0, 1 < y < 2, S = S(a, y, n) = {[axy] : x = 1, 2 , . . . , «}.

THEOREM 1.2. For 3/2 < y < 2 we have

n
y

1 ^ [Z I ' lognj"

COROLLARY 1.3. For 3/2 < y < (V5 + l)/2 we have

ny

logrt a,y a,y
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2. Proof of Theorem 1.1

We may suppose that n > 25.
Assuming 0 < a < 1/2 we denote by Ba — {[na] + 1, [na] + 2,...,n}. Let

J = J(a, n) be the number of solutions of the equation

f(x)+f(y)=f(u)+f(v), x , u e A a , y , v e B a .

For any I, I < I < [na], denote by 7; = //(a, n) the number of solutions of the
equation

(4) f ( x ) + f ( y ) = f ( x + l ) + f ( z ) , x , x + l e A a , y , z e B a .

Obviously

(5) J = [na](n-[na]) + 2 £ J,.

Let us estimate 7,. From (1) and (4) it follows that x < x + 1 < z < y and that for any
d > I we have/ (y) — f (y — d) > f (x + I) — f (x). Furthermore, for fixed x e Aa

and y - z = c0 < I, (4) has at most one solution because/ (z + c0) - / (z) increases
withz. Hence 7, < ( / - l)[w°].

It then follows from (5) that

(6) J = [na]n + en3a, - 1 < 9 < 1.

Now for a given 5 e f (Aa) ± f (Ba) = T±, we denote by I±(s) the number of
solutions of the equation s = f (x) ±f(v), x e Aa, v e Ba. Then ]T^e7-± /|C?) = J,
T2seT± !±(s) = [""](" - [""])• Therefore using (6) we have

= J =

that is, \T±\([na]n + 6»n3a) > [na]2(n - [na])2. Taking a = 1/2 we obtain the first
estimate of our theorem. For a < 1/2, it follows that \T±\ > [n"]n - 3n3" and
therefore

[na]n - 3n3a < |7 ± | < \f (Aa) ± / ( A , ) | < [na]n.

Theorem 1.1 is proved. •

REMARK. AS an upper bound for 7; we could use (/ - l)([n°] - /). It would
yield estimate (3) with any c < 3/4 and sufficiently large n > «i(c) > 0 which we
mentioned in Section 1.
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3. Proof of Theorem 1.2

All constants in this section may depend on a and y. Under the assumption that
n > «i(a, y) > 0 we put

A = {[na] + 1, [na] + 2 , . . . , 2[n°]}, B = {[n/2] + 1, [n/2] + 2 n},

where a = y / (y + 1). In particular, the largest number in the set A is less than the
smallest number in the set B.

In analogy with Section 2 let J be the number of solutions of the equation

[ a x y ] + [ a y y ] = [ a u r ] + [ a v y ] , x , u e A , y , v e B .

Then

(7) J < na+l + 2 J^ J''

where Jt denotes the number of solutions of the equation

(8) [axy] + [ayy] = [a(x + l)y] + [ a z y ] , x , x + l e A , y , z e B .

Let us estimate 7/. Suppose that x = x0 e A is such a value of variable x for which (8)
has the largest number of solutions in terms of the variables y, z but fixed x. Then
Ji < n"J[, where J[ denotes the number of solutions in terms of the variables y, z of
the equation

(9) [ a x y ] + [ayy] = [a(x0 + /)>"] + [ a z r ] , y , z e B .

From (9) it follows that ayy - azy < a(x0 + l)y - OXQ + 2, that is,

a{y-z)y\-' <2alxy-\

where JCI, y\ are some real numbers with XQ < x\ < x0 + I, z < y\ < y. Since
xQ + I e A, z 6 B then 0 < y - z < cMa~my~l). Therefore,

(10) Ji<na

m<

where //(m) denotes the number of solution in one variable z of the equation

(11) [a(z + m)y]-[azy] = d, z,z + meB,

where d = d{a, y, n) is some fixed integer.
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Suppose that z0 is the smallest solution of (11). Then

a(z + m)Y - azY < a(zo + m)Y - azl + 4.

This inequality can be written as

[ a(<p + i,y-2 d<t> df < 4.

Hence 0 < c2(z - zo)mny-2 < 4, that is, 7/(w) < c3(l + n 2 " ^ " 1 ) . In view of (10)
we obtain thus

J, « na(lnl"-Wy-l) + n2-y\ogn).
a,y

Taking (7) into account and a — y/(y + 1) we obtain

In analogy with Section 2 set T = {[axy] + [ayy] : x e A, y e B}. Obviously
\T\ < \S + S\. For a given s e T, let I(s) be the number of solutions of the
representation s — [axy] + [ayy], x e A, y e B. Then

szT a'y

E
Hence

\S + S\>\T\>^-'-:y> »mm{n
-T, I ' log"

Theorem 1.2 is proved. •

Let us state two conjectures, the second of which is stronger than the first one.

CONJECTURE 3.1. For any e > 0, (V5 + l ) /2 < y < 2, we have \S+S\ » ny~e.

CONJECTURE 3.2. For 3/2 < y < 2 \S + S\ » ny.

",y

It should be pointed out that if y = 2, then
n2 n2
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Indeed, Landau [9] showed that the number of integers not exceeding N which can
be expressed as a sum of two squares is asymptotic to cN/y/logN. Let co = \S + S\
and t\ < t2 < • • • < tw be all different numbers of the set S + S. Then

[ax]] + [ay2] = tjt j = 1 , . . . , co, 1 < x} < n, 1 < y} < n.

By taking;m = ([a] + 2)m, 1 < m < [co/([a] + 2)] we obtain

*JM - *h - 2

> X:

Therefore, [co/([a] + 2)] <£ n2/*Jlogn from which the upper bound for |S + S\
follows. The lower bound is proved similarly.
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