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Abstract. Let u'y be a unipotent flow on X = SO(n, 1)/ T, u}, be a unipotent flow on
Y = G/TI". Let it!y, i}, be time changes of u'y, u},, respectively. We show the disjointness
(in the sense of Furstenberg) between u’, and i), (or it%, and u},) in certain situations. Our
method refines the works of Ratner’s shearing argument. The method also extends a recent
work of Dong, Kanigowski, and Wei [Rigidity of joinings for some measure preserving
systems. Ergod. Th. & Dynam. Sys. 42 (2022), 665-690].
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1. Introduction

1.1. Main results. 1In this paper, we study the rigidity of joinings of time changes of

unipotent flows. First, let:

e Gyx =S0O(nyx, 1), Gy be a semisimple Lie group with finite center and no compact
factors and I'y C Gx, I'y C Gy be irreducible lattices;

o (X,my), (Y, my) be the homogeneous spaces X = Gx/I'x, Y = Gy/T'y equipped
with the Lebesgue measures m y, my respectively;

e u’y, ul, be unipotent flows on X and Y, respectively;
Tx, Ty be positive functions with integral myx(tx) = my(ry) = 1 under certain
regularity on X and Y, respectively;

e iy, it} be the time changes of u'y, u’, induced by tx, Ty, respectively;

o du =rtxdmy,dv = tydmy be the iix-, iy-invariant measures, respectively.

We shall verify the disjointness and so classify the joinings of 'y and &/, (or i’y and u})

1n certain situations.

Recall that a joining of ity and @', is a (it x i@,)-invariant probability measure on
X x Y, whose marginals on X and Y are p and v, respectively. It was first introduced
by Furstenberg in [Fur81], and is a natural generalization of measurable conjugacies.
The classical results on classifying joinings under this context were established by Ratner
[Rat82, Rat83, Rat86, Rat87, Rat90]. First, the celebrated Ratner’s theorem indicates
that all joinings between u’y and u}, have to be algebraic. In addition, for Gx = SO(2, 1),
Ratner studied the H-property (or Ratner’s property) of horocycle flows u'y , as well as their
time changes iy, and then showed that any non-trivial (that is not the product measure
w x v) ergodic joining of @'y and i}, is a finite extension of v. (In fact, this is even true
for any measure-preserving system on (Y, v).) Using this, Ratner was able to show that for
Gx = Gy = SO(2, 1), the existence of a non-trivial ergodic joining of &'y and i, implies
that tx and ty are algebraically cohomologous. In other words, whether i, and i}, are
disjoint is determined by cohomological equations.

It is natural to ask if it is possible to extend the results to Gy = SO(ny, 1) forny > 3.
The difficulty is that the time change i, needs not have the H-property. It is one of
the main ingredients of unipotent flows. Roughly speaking, H-property states that the
divergence of nearby unipotent orbits happens always along some direction from the
centralizer Cg, (ux) of the flow u’X In particular, for Gx = SO(2, 1), the direction can
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only be the flow direction utX itself. Moreover, Ratner [Rat87] naturally extended this
notion to the general measure-preserving systems and verified it for the time changes i’y
of horocycle flows. However, for ny > 3, it seems that there is no suitable way to describe
the ‘centralizer’ of the time change ir%,. Thus, classifying joinings of &’y and &, fornx > 3
becomes a difficult problem.

Recently, Dong, Kanigowski, and Wei [DKW22] considered the case when
Gx =S0(2,1), Gy is semisimple as above, and I'y and I'y are cocompact lattices.
After comparing the H-property of i, and u},, they showed that i, and u}, are disjoint
once the Lie algebra gy of Gy contains at least one weight vector of weight at least 1 other
than the sl,-triples generated by /.

In this paper, we try to generalize the results stated above for nx > 3. First, we follow
the idea of Ratner and study the H-property of u’, and deduce the following theorem.

THEOREM 1.1. Let (Y, v, S) be a measure-preserving system of some map S:Y — Y,
and p be an ergodic joining of uk and S. Then either p = u X v or (u}( xS, p) isa
compact extension of (S, v). More precisely, if p # u X v, then there exists a compact
subgroup CP C Cg, (ux), and n > 0 such that, for v-almost every (a.e.) y € Y, there
exist xly, ..., X, in the support of py with

1
py(Cpxiy) = ;

fori=1,...,n, where p = fy oy dv(y) is the disintegration along Y.
By Theorem 1.1, for any non-trivial ergodic joining p of uly and i, there are
measurable maps ¥, ..., ¥, : ¥ — X such that
1 n
o= [ [ 23 w00 dmd dviy) (L
y Jer
p=1

for f € C(X x Y), where m is the Lebesgue measure of the compact group C”. Projecting
pto (CP\X) x Y, we get

l o —
p(f) = /Y =2 f@,0), ) dvy)
p=1

for f € C((CP\X) x Y). Then, we can study the rigidity of p by thinking about
Vi, .., ¥, Also, pis a non-trivial ergodic joining of u’y and i},

Then we can establish the rigidity of ¥ » by studying the shearing of u'y. The idea comes
from [Rat86, Tan22]. We require the time changes having the effective mixing property.
Thus, let K(Y) be the set of all positive integrable functions t on Y such that 7, t~! are

bounded and satisfies

2
‘/Yr(y)t(u’yy) dv(y) — (/Yr(y)v(y))

for some D, k; > 0. In other words, elements v € K(Y) have polynomial decay of
correlations. Let (uy, ayx, ux), (uy,ay, uy) be sly-triples of Gy and Gy, respectively.
Let Ng, (uy) be the normalizer of uy. Then we obtain the following theorem.

< Dt
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THEOREM 1.2. (Extra central invariance of p) Let ty € K(Y), i}, be the time change of
uly induced by ty and p be a non-trivial ergodic joining of u'y, il\,. Then there exist maps
a: Ng,(uy) xY — R, B: Ng,(uy) = Cg, (uy) such that the following hold.

(1) Restricted to the centralizer Cgy,(uy), a:Cg,(uy) xY — R is a cocycle,
B:Cg,(uy) — Cgy(ux) is a homomorphism. In addition, ty(cy) and ty(y)
are (measurably) cohomologous along u', via the transfer function a(c,y) for
all c € Cgy (uy); in other words,

T
f Ty (cuyy) — ty (ulyy) di = a(c, ugy) —al(c, y).
0

(2) Thereisamap S : NG, (uy) x X x Y — X x Y that satisfies the following proper-
ties.

e Force Cgy(uy), themap Sc : X x Y — X x Y defined by

Se = (x, y) > (Be)x, iy (ey))

commutes with uix X ﬁ;, and is p-invariant. In addition, S¢,c, = S¢, o Se, for
any c1, ¢2 € Cg, (uy), and Su’Y =idfort e R.
o JforreR, themapSa; : X XY = X x Y defined by

~—a(ay,y)
Sy + (6, 3) > (Blap)akx, ity 7 (ayy))

satisfies
~ —r ~ T
Sa, © (uly xuy) =@ "xuy Do S,
and is p-invariant. In addition, Sar1+r2 = Sarl Sarz foranyri,ry € R, and
Y Y Y

SayoScoSa;1=S 1

aycay
forany c € Cg, (uy).

For the opposite unipotent direction uy, we cannot obtain the invariance for p directly.
However, we can fix it by making the ‘a-adjustment.” Here, we further require that ty
be smooth and «(c, -) be integrable. The idea comes from [Rat87]. Then, since uy and
Cg, (uy) generate the whole group Gy, we are able to use Ratner’s theorem to get the

rigidity of ¥y, ..., ¥,.

THEOREM 1.3. (Cohomological criterion) Let Gx = SO(ny, 1), Gy be a semisimple Lie
group with finite center and no compact factors and 'y C Gy, I'y C Gy be irreducible
lattices. Let Uy € gy be a nilpotent vector so that Cg, (Uy) only contains vectors of weight
at most 2, and let uy = exp(Uy). Let ty € K(Y) N CY(Y) so that ty(cy) and ty(y) are
L! -cohomologous along u’onr any ¢ = exp(v) € Cg, (uy) with positive weight. If there is
a non-trivial ergodic joining p ofutX and Etty, then tx = 1 and ty are joint cohomologous
(see Definition 2.2 for the precise definition).

Remark 1.4. When tx = 1 and ty are joint cohomologous, one can deduce that 1 (on Y)
and 7y are (measurably) cohomologous over the flow u/,. See Proposition 2.14 for further
discussion.

https://doi.org/10.1017/etds.2022.83 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.83

3800 S. Tang

In [Tan22], we see that for Gy = SO(ny, 1), some cocompact lattice I'y, there exists a
function ty € K(Y) N C(Y) such that:
e 7y and | are not measurably cohomologous;
e foranyc € Cg,(uy), ty(cy) and ty(y) are not measurably cohomologous if they are
not L?-cohomologous.
Applying Theorems 1.2(1) and 1.3 to Ty, we get the following corollary.

COROLLARY 1.5. (Existence of non-trivial time changes) For Gy = SO(ny, 1), there
exists a cocompact lattice Ty and a function ty on Y = Gy /Uy such that u’X and ﬁ’},
are disjoint (that is, the only joining ofutX and IZtY is the product measure (L X V).

In addition, the homomorphism ¢ (uy) obtained by Theorem 1.2 also provides some
information. Combining Ratner’s theorem, we conclude that the existence of non-trivial
joinings requires the algebraic structure Gy to be similar to G x.

THEOREM 1.6. (Algebraic criterion) Let the notation and assumptions be as in
Theorem 1.3. If there is a non-trivial ergodic joining p of u’, and zlty, then p is a finite
extension of v (that is, the CP provided by Theorem 1.1 is trivial). In addition, consider
the decomposition (see equation (2.7)):

Cgy(Uy) =RUy ® Vg,, Cgy(Ux) =RUx ® V¢, .

Then the derivative df| A VCly — VCLX is an injective Lie algebra homomorphism.

Remark 1.7. Theorems 1.3 and 1.6 provide criteria for the disjointness of u}, and i},
However, they require that the functions 7y (cy) and ty(y) are Ll-cohomologous for
all ¢ € Cg, (uy) with positive weight (Theorem 1.2(1) indicates that they are always
measurably cohomologous whenever u, and i/, are not disjoint). This condition in general
is not easy to verify.

However, when the time changes happen on quotients X of Lorentz groups, we no longer
have Theorem 1.1, because of the lack of H-property. Nevertheless, if there exists a joining
p as in equation (1.1), we can follow the same idea as in Theorem 1.2 and obtain the rigidity
in certain situations.

THEOREM 1.8. Let Gx = SO(ny, 1), Gy be a semisimple Lie group with finite center
and no compact factors, and 'y C Gx, I'y C Gy be irreducible lattices. Let Uy € gy be
nilpotent. Let ty = 1 and tx € K(X). Suppose that there exists an ergodic joining p of
fttX and uty that is a compact extension of v, that is, satisfies equation (1.1). Then there
exist maps o : Ng,(uy) xY — R, B: Ng,(uy) — Cg,(uy) such that the following
properties hold.
(1) Restricted to the centralizer Cgy,(uy), a:Cgy(uy) xY — R is a cocycle,
B:Cqy(uy) — Cgy(ux) is a homomorphism. In addition, tx(cx) and tx(x)
are (measurably) cohomologous for all c € Cg, (ux).
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(2) There is a map S: NGy (uy) x X xY — X x Y that satisfies the following
properties.
e Force Cg,(uy), the map Ec : X XY — X x Y defined by

Se: (x, ) > @Y Be)x, cy)

commutes with iy x u', and is p-invariant. In addition, gcm = §C1 o §62 for
any cy, ¢z € Cg, (uy), and Su’y = ﬁtXfort e R
o Themap S,y : X x Y — X x Y defined for r € R by

i (ay.y)
Su 1 (e, y) >y "V Blay)ayx, ayy)

is p-invariant. In addition, Sar1+r2 = Sarl Sarz foranyri,r € R, and
Y Y Y

SaYoSCoSa;lzs 1

aycay,

forany c € Cg, (uy).
Moreover, for any weight vector v € Véy of positive weight, the derivative

dplys (v) #0. (1.2)

Remark 1.9. In other words, equation (1.2) asserts that df is injective on the nilpotent part
of Vé-y . One direct consequence of equation (1.2) is that Cy, (Uy) (under the assumptions
of Theorem 1.8) does not contain any weight vector of weight # 0, 2 (see Lemma 6.5).

In particular, recall that [Rat87] showed that when G x = SO(2, 1), any time change ﬁ’X
with 7y € K(X) N C!(X) has H-property. It meets all the requirements of Theorem 1.8.
Then combining [Rat87], we obtain a slight extension of [DKW22].

THEOREM 1.10. Let Gx = SO(2, 1), Gy be a semisimple Lie group with finite center and
no compact factors and U'y C Gx, I'y C Gy be irreducible lattices. Let tx € K(X) N
CY(X). If the Lie algebra gy % s, then i’y and u', are disjoint.

1.2. Structure of the paper. In §2, we recall basic definitions, including some basic
material on the Lie algebra so(n, 1) (in §§2.1 and 2.2), as well as time changes (§2.3)
and coboundaries (§2.4). In §3, we make use of the H-property of unipotent flows and
deduce Theorem 1.1. This requires studying the shearing property of u’, for nearby
points of the form (x, y) and (gx, y). In §4, we state and prove a number of results
which will be used as tools to prove the extra invariance of joinings p (Theorem 1.2),
in particular Proposition 4.16 which pulls the shearing phenomenon on the homogeneous
space X back to the Lie group Gx. We also give a quantitative estimate of the difference
between two nearby points in terms of the length of the shearing (Lemma 4.11). In §5, we
present the proof of Theorem 1.2 (§§5.1 and 5.2) and a technical result for the opposite
unipotent direction (Theorem 5.15). The latter result also requires studying the H-property
of unipotent flows. Finally, using the results we got and Ratner’s theorem, we present in §6
the proof of Theorems 1.3, 1.6 (in §6.1), 1.8 and 1.10 (in §6.2).
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2. Preliminaries
2.1. Definitions. Let G := SO(n, 1) be the set of g € SL,,4+1(R) satisfying

+ el e

where [, is the n x n identity matrix. The corresponding Lie algebra g then consists of

v € sl,41(R) satisfying
I, | In _
RS E

Then the Cartan decomposition can be given by

9=[€Bp=”l O}:leso(n)}@”poT g}:peRn}.

Let E;; be the (n x n)-matrix with 1 in the (i, j)-entry and O otherwise. Let e; € R" be
the kth standard basis (vertical) vector. Set

0 e E;—FE; O
Y = . 0= / .
=Ly ) e[l

Then Y;, ®;; form a basis of g = so(n, 1).
Let a =RY, Cp be a maximal abelian subspace of p. Then the root space
decomposition of g is given by

g=g-1omPadyg. 2.1

Denote by n := g; the sum of the positive root spaces. Let p be the half sum of positive
roots. We also adopt the convention by identifying a* with C via A — A(Y,). Thus,
p=pYy)=0n-1)/2.

Let I' C G be a lattice, X := G/TI', u be the Haar probability measure on X. Fix a
nilpotent U € g_1. On G/ I', denote by:
° qbty” (x) == exp(t¥,)x = a’'x a geodesic flow;
° qbtU (x) := exp(tU)x = u'x a unipotent flow.

It is worth noting that
[Yn, Ul = —U.

Then there exists U € g such that {U, Y,,, U}isan sly-triple. Denote

u' = exp(tU).
For convenience, we choose
0 en_1 ex—1 0  —en1 ey
U=|—-e'|, 0 0|, U=|el, 0 0 | (2.2)
el 0 0 el 0 0

Then (u’, a’, u") generates SO(2, 1) C SO(n, 1).
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2.2. sly-weight decomposition. First, consider an arbitrary Lie algebra g as a
sly-representation via the adjoint map (after identifying an image of sl by Jacobson—
Morozov theorem), then by the complete reducibility of sly, there is a decomposition of
slp-representations

g=she V' (2.3)

where V- C g is the sum of sl-irreducible representations other than sl,. In particular,
for g = so(n, 1), we have

=Y Ve) v 24)
i j

where Vl.o and ij are slp-irreducible representations with highest weights 0 and 2. More
precisely, we have the following lemma.

LEMMA 2.1. By the weight decomposition, an irreducible sly-representation VS is the
direct sum of weight spaces, each of which is 1-dimensional. More precisely, there exists a
basis vy, . . ., ve € VE such that

Uwvi =0+ Dvit1, Yyvi=

Thus, if V¢ is an irreducible representation of sl, with the highest weight ¢ < 2, then
for any v = bovg + - - - + bove € VS, we have

exp(tU).v = ZZb ( )t! fj, (2.5)

j=0i=0
g .
exp(w¥y).v =Y b 200 2y, (2.6)
Jj=0

For elements g € exp g close to identity, we decompose
g=hexp(v), heSOp2,1), veVt

where SOq(2, 1) is the connected component of SO(2, 1). Moreover, it is con-
venient to think about & € SOp(2,1) as a (2 x 2)-matrix with determinant 1.
Thus, consider the two-to-one isogeny ¢: SLy(R) — SO(2,1) C G induced by
sh(R) — Span{U, Y, U} C g.Inthe following, for # € SOp(2, 1) and v in an irreducible
representation, we write

a b
hz[c d}a U=b0v0+"-+b§l]§
where v; are weight vectors in g of weight i. Notice that & should more appropriately
be written as ¢(h). In addition, for notational simplicity, we shall usually assume that
v € V1 lies in a single irreducible representation, since the proofs will mostly focus on
the Ad u’-action and so the general case will be identical but tedious to write down.
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For the centralizer Cy(U) (for an arbitrary Lie algebra g), we have the corresponding
decomposition:
Cy(U) =RU @ V&, (2.7)

where VCL C V= consists of the highest weight vectors other than U. In particular, for
g = so(n, 1), under the setting of equation (2.2), one may calculate

Co(U) =RU @ Vi =RU @ & @ n

0 0 uu
s0(n —2) 0 00 0 5
=R : R" . 2.8
U@[ 0}@ —u’ 00 0 |'"€ e
u’ 0 0 0

Note that Eé consists of semisimple elements and né consists of nilpotent elements, and

they satisfy [EJC-, nJC-] = nJC-.

2.3. Time changes. Let Y be a homogeneous space and U be a nilpotent. Let d),U T bea
time change for the unipotent flow qb,U ,t € R. Thus, we assume that:
e 7 :Y — RT isaintegrable non-negative function on Y satisfying

f t(y)dmy(y) =1;
Y

e £:Y xR — Ris the cocycle determined by

E(y.0) E(v.0)
(= [ rwnds= [ w@fyas
0 0

. qb,U ‘' 1Y — Y is given by the relation
6T () = utO Ny,

Remark 2.2. Note that ¢,U - d)tU . In addition, one can check that d)tU T preserves the
probability measure on Y defined by dv := tdmy, where my is the Lebesgue measure on
Y. However, if T is smooth, then the time change qb,U ’* is the flow on Y generated by the
smooth vector field U, .= U/t.

In practice, we define z : ¥ x R — R by

t
2(y, t) = / t(w’y) ds.
0
It follows that

E=20,60,0), i@ =0/ () =u'y. 2.9)

Let « > 0 and K, (Y) be the collection of all positive integrable functions T on Y such
that 7, T~ ! are bounded and satisfy

2
‘/yr(y)t(u’y) dv(y) — (/yr(y)V(y))

< Dt ™" (2.10)
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for some D; > 0. Let K(Y) = UK>0 K, (Y). This is the effective mixing property of the
unipotent flow ¢>tU . Note that [KM99] (see also [Ven10]) has shown that there is k > 0
such that

'(d), (- 8) (/ f(y)V(y))</1Vg(y)V(y)>‘ L4 DTN S lws g lhws

for f, g € C°°(X), where s > dim(K) and W* denotes the Sobolev norm on Y = G/T.
According to Lemma 3.1 [Rat86], when v € K, (Y), we have the effective ergodicity: there
is K C Y withv(K) > 1 — o and tg > 0 such that

It —z(y, )| = 0('™) 2.11)

forall > tx and y € K. Later on, we shall make use of the effective mixing/ergodicity to
study the shearing property of unipotent flows (see §4 and equation (5.1)).

2.4. Cohomology. We first introduce the 1-coboundary of two functions.

Definition 2.1. (Cohomology) We say that two functions 71, 72 on Y are measurable
(respectively L?, smooth, etc.) cohomologous over the flow ¢; if there exists a measurable
(respectively L2, smooth, etc.) function f on Y, called the transfer function, such that

T
/0 t1(pry) — nadry) dt = f(pry) — f (V). (2.12)

Fori € {1, 2}, let (Y;, Vi, vi, t(i)) be measure-preserving flows, and let 7; : ¥; — R be
measurable functions on Y;. In addition, we extend 7; to Y| x Y> by setting

T Ly Ty, i=1,2

Definition 2.2. (Joint cohomology) Letp € J (qb(l) qb,(z)) be a joining of qb,(l) and ¢,(2). We
say that 71 and 1, are jointly cohomologous via p if 7] and 15 (considered as functions on
Y1 x Y») are cohomologous over c/)t( ¢(2) on (Y1 x Y2, p). More specifically, if 7; and
Tp are cohomologous over qb,(l) X ¢,( with a transfer function f : Y1 x Yo — R, then we
say that t1 and 1 are jointly cohomologous via (p, f), and we have

f (1 — )@ y1, 07y dt = F@ 1, 0P v) — fFn, 3 (213)
for p-a.e. (y1, ) € Y1 x Yoandall T € R.

Let A = {AxYy:A eV}, Ay :={Y1 x A: A € )»}. Then there is a unique family
{ ,0;.‘11 . y1 € Y1} of probability measure, called the conditional measures, on Y, such that

2
E* (gl AD () = / g1, y2)dpi (), p;}:)yl =@ )py (214
Y 1
for every g € LY(Y; x Y, p),t € R,and vi-a.e. y; € Yj. Taking the integration over ,o;‘l‘l,
the expressions of equations (2.13) and (2.14) show that if the transfer function f(y1, -) €
LY(Y,, p;}l) for vi-a.e. y; € Yq, then 71 and E”(1|.A;) are cohomologous along qbt(l) via

E*(f].A1). We have just proved the following proposition.
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PROPOSITION 2.3. Let 7; : Y; — R be measurable functions on Y;, i = 1, 2. Suppose that
11 and t; are jointly cohomologous via (p, f) with f(y1,-) € L' (Ya, ,o)“fl‘l) Jor pi-a.e.
y1 € Yy. Then 11 and EP (12| A1) are cohomologous over qﬁ,(l) via EP(f|A)).

3. Shearing property I, H-flow on one factor
3.1. Joinings. Let G = SO(n, 1), I" be alattice of G, (X, i) be the homogeneous space
X = G/ T equipped with the Lebesgue measure u, and let ¢V be a unipotent flow on X.
Let (Y, v, S) be a measure-preserving system. We want to study the joinings of (X, u, ¢>f})
and (Y, v, S). Thus, let p be an ergodic joining of ¢f] and S, that is, p is a probability
measure on X x Y, whose marginals on X and Y are p and v, respectively, and which is
¢V x S)-ergodic.

Let C (¢>1U ) be the commutant of ¢]U , that is, the collection of all measure-preserving
transformations on X that commute with ¢f] . The following is a basic criterion for p in
terms of the commutant of qbf].

LEMMA 3.1. Let the notation and assumptions be as above. Assume further that
T e C(d)f]) is ergodic on (X, ). Then

either (T xid),p L p or p=pu xv.

Proof. First, by the commutative property of 7, we easily see that (7 x id)4p is again
(¢f] x §)-ergodic on X x Y. It implies that either (T x id)4p L p or (T x id)xp = p.
Now assume that (7' x id).p = p, thatis, p is (T x id)-invariant. Then via disintegration,
we know that p, is T-invariant on X for v-a.e. y € Y, where

p= /Y py dv(y). (3.1

Now assume for contradiction that there exists B C Y with v(B) > 0 such that p, # u
for y € B.Itfollows thatfor y € B, thereis Ay C X with 1(Ay) > Osuch that, forx € Ay,
we have

(py)E # u, (3.2)

where (py)f is given by the T-ergodic decomposition

py = f (0y)5 dpu(x).
X

Notice that by the ergodicity, there is a p-conull set 2 C X, namely the set of 7-generic
points of x, such that (py)f (2) = 0 for the measures (py)f in equation (3.2). Then by the
assumption of joining, we have

W@ = plr () = /Y py() dv(y)
_ / py(Q) dv(y) + f py(Q) dv(y)
B Y\B

< /B fx (p)E(Q) dpe(x) dv(y) + v(Y \ B)
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=/ / ()% () dpu(x) dv(y) + v(Y \ B)
B Jx\A,

< [ wx\ ) o) +ur\B)
B
<v(B)+v(Y\B) =1,
which is a contradiction. Thus, we conclude that p, = u for v-a.e. y €Y and so
0= X V. [

By Moore’s ergodicity theorem, we deduce the following corollary.

COROLLARY 3.2. Ifw € Cy(U) so that (exp tw);cRr is not compact, then
either (¢1’ x id)sp L p or p=puxv.
3.2. H-property. In this section, we want to introduce the H-property (or Ratner

property) to study the joining p in terms of the unipotent flow ¢>,U on X. The classic
H-property can be formulated as the following theorem.

THEOREM 3.3. (H-property, [Wit85]) Let u be a unipotent element of G. Given any
neighborhood Q of e in Cg (u), there is a compact subset 3 Q of Q \ {e} such that, for any
€ >0and M > 0, there are « = a(u, Q,€) > 0and § = 6(u, Q, €, M) > 0 such that if
X1, X2 € X withdx(x1, x2) < 6, then one of the following holds:

e xp = cxy for some c € Cg(u) withdg (e, c) < 8;

o thereare L > M/a and q € 0 Q such that

dx(W"xp, qu'x)) < € 3.3)
whenevern € [L, (1 +«a)L].

Remark 3.4. In fact, for xp = gx; with g =exp(v) € BSG, the element g € Cg(U) in
Theorem 3.3 is chosen by

q = ﬂCg(U) exp(LU).v, (34)

where 7c ) 19— Cg(U) is the natural projection and exp(LU).v is the adjoint
representation (see equation (2.5)). We often call g as the fastest relative motion between
X1, x2; see [Mor05] for more discussion. In what follows, we choose Q = Bf 6 {6 be
the ball of radius X of e in C¢ () for sufficiently small A (independent of €), and then 0 Q
is the sphere of radius A. Now by equations (2.3) and (2.4), we have the decomposition

v = v+ V2,
wherevg € Y, V0 and vy € sly + ) v/?. Thus, |Jvoll, ||v2] < 8 and
q = vo + TTcy ) exp(LU).v;.
Since ||g|| = A, we see that vg is negligible. In other words, we can replace g by

q = Tcyw) exp(LU).v2 (3.5)
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and then Theorem 3.3 still holds. However, note that ¢’ € n = RU + né (cf. equation
(2.8)). Thus, the one-parameter group {exp(tq’));cr generated by ¢’ is not compact.

In the following, we shall generalize the idea in [Rat83] and prove Theorem 1.1.

THEOREM 3.5. Let the notation and assumptions be as above. Then either p = i X v or
(qbf] X S, p) is a compact extension of (S, v). More precisely, if p # L X v, then there
exists a v-conull set ® C Y, a compact subgroup C” C Cg(u), and n > 0 such that, for
any y € O, there existxly, ..., X, in the support of py with

, 1
yy
py(CPx;) = p
fori=1,...,n, wherep = fy py dv(y) is the disintegration along Y (cf. equation (3.1)).

Assume that p # u x v. Then by Corollary 3.2, there is a p-conull set 2 C X x Y,
namely the set of (¢1U x §)-generic points, such that (¢}’ x id)(Q2) N Q =@ forall w € n.
Given a sufficiently small A > 0, we define the sphere of radius A of 0 by

B ={wen:|w| =21}
Then, one can find a compact subset K1 C Q with u(Kp) > 199/200. Then,

U @1 xidx1)

weB!
is compact. Thus, there are € > 0 and K, C K| with «(K32) > 99/100 such that
dny<Kz, U @} x id)(K1)> > e.
weB!
It follows that if (x1, y), (x2, ¥) € K3 then
dx (x2,¢7'x1) = € (3.6)

for all w € B}'. Let a = a(¢) > 0 be as in Theorem 3.3. Comparing equation (3.6) with
equation (3.3), we conclude the following lemma.

LEMMA 3.6. Assume that p 7% u X v. There is a positive number § = §(€) > 0, a mea-
surable set K4 C Q with p(K4) > 0 such that if (x1, ), (x2, ¥) € K4 and dx(x1, x2) <4,
then xp € Cg(u)xq.

Proof. Suppose that M, §, K4 are given, and xo & Cg(u)x; with dx(x, x2) < &. Then by
the H-property of the unipotent flow (Theorem 3.3 and Remark 3.4), we know that there
are L > M/a and w € B}' such that

dx (oY x1, ¢1'9Y x2) < € 3.7)

forn € [L, (1 + «)L]. Next, we shall find some qualified x1, x € X such that the distance
between ¢} x1 and ¢}"¢Y x5 is at least €. This will lead to a contradiction.
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First, applying the ergodic theorem, there is a measurable set K3 C 2 with p(K3) >
1 —a/2(100 + ), a number M; > 0 such that

1 9
r_¢|{k €[0,n]: (¢f x *(x,y) € K2}l > I (3-8)

for (x,y) € K3 and n > M. Applying the ergodic theorem one more time, there is a
measurable set K4 C 2 with p(K4) > 0, a number M, > 0 such that

o
10 + o

1
;|{k €[0,n]: (Y x H*(x,y) € K3}| > 1 — (3.9)

for (x,y) € Kgyand n > M>.

Choose M = max{My, M>} and then L > M/a and § = (e, M) > 0 as obtained
from the H-property (Theorem 3.3). Let (x1, y), (x2, ¥) € K4 with dx(x1, x2) < 8. Then
replacing n by (1 4+ «/10)L and applying equation (3.9), we know that

@V x $)°(x1, ), (@Y x 8)(x2,y) € K3

for some integers s,t € [L, (1 +«/10)L]. Further, replacing the interval [0, n] by
[s, (1 +a)L] (respectively [z, (1 + «)L]) and applying equation (3.8), we know that

9
Trar 5 kel A+all: @ x 9.y e Kall > 1.

9
k€ 1, A+ a)L]: (@] x ) (x2, y) € Ko}l > Tk

(I4+a)L —1t
It follows that there exists n € [(1 + «/10)L, (1 + «)L] such that
@7 x )" (x1.y). @] x )" (x2.y) € K.

Then by equation (3.6), we have

dx (@Y x1, pl'9Y x2) > €,

which contradicts equation (3.7). O]

Recall that via disintegration (cf. equation (3.1)), we have

p= f py dv(y).
Y
Then by the ergodic theory, we have the following lemma.

LEMMA 3.7. Assume that p 7% i X v. There exists a v-conull set ® C Y and n > 0 such
that, for any y € O, there exist xly, ..., X, in the support of py with

y 1
py(Cou)x; ) = ;
fori=1,...,n.
Proof. Let f : Y — R be defined by

S 1y > sup py(Co(u)x).

xeX
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By Lemma 3.6, we know that for y € Kf ={yeY:py{xeX:(x,y) € K4} > 0},
f(y) > 0. Note also that v(K I ) > 0 and f is S-invariant. By the ergodicity, f is a positive
constant, say f = ¢, on a v-conull set ®; C Y.

Next, consider

D:={(x,y) e X xY:y€0q,p,(Ccu)x)=c}
Then D is (qS]U x §)-invariant and p(D) > 0. Thus, p(D) = 1. Next, define
O ={yeO:p{xeX:(x,y) e D} =1}.

Then ® C Y is an S-invariant v-conull set. Thus, for any y € ®, we have

py(Ccw)x) =c
for any x € X with (x, y) € D. It forces n = 1/c to be an integer. In addition, for any
y € O, there are only finitely many points xiv ,...,x; with

py(C(w)x)) = %
fori=1,...,n. O]

Thus, by Lemma 3.7, we see that p, supportson|_|/_; Cg (u)xlfv whenever y € ©. With
a further effort, we observe that these o, must have a compact support.

Proof of Theorem 3.5. For a Borel measurable subset A C Cg(#), consider the map
fa: X x Y — R be defined by

fa:(x, ) > py(Ax).
Note that since p is ((/){] x §)-invariant, we have
(¢1)spy = Psy-
It follows that
fa(e,y) = py(Ax) = psy (@) Ax) = psy(AdY x) = fa(d] x, Sy).

In other words, f4 is (d){] x §)-invariant and therefore is p-almost everywhere a constant,
say m(A). Thus, forany A € B(Cg(u)), there exists a p-conull set 24 C X x Y, such that

py(Ax) = m(A) (3.10)

for (x, y) € Q4.

Next, we consider the fundamental domain, that is, a Borel subset F C Cg(u) such
that the natural map F — Cg(u)/(Cg(u) NT) defined by g — gI" is bijective. Then
since B(F) is countably generated, by Carathéodory’s extension theorem, we know that
m : B(F) — R¥ is a measure. In addition, it follows from equation (3.10) that there exists
a p-conull set 2 C X x Y, such that

py(Ax) = m(A) (3.11)
for (x,y) € Q, A € B(F).
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Now assume that equation (3.11) holds for (x, y), (gx, y) € Q2 and g € Cg(u). Then,
m(A) = py(Agx) = m(Ag)

for A € B(F). In other words, m is g-(right) invariant and so is (right) Haar. Note that
Cq(u) is unimodular (since its Lie algebra Cy(U) is a direct sum of a compact and a
nilpotent Lie subalgebra). We conclude that m is also a (left) Haar measure, and therefore
py is (left) Haar on Cg (u)x for (x, y) € Q.

Let C” be the stabilizer of m. Then the above result shows that p is (C? x id)-invariant.
Thus, according to Corollary 3.2, C” must be compact. This finishes the proof of
Theorem 3.5. O

Using Theorem 3.5, for any ergodic joining p of (;5? and S on X x Y, we obtain
an ergodic joining p = mp of ¢f/ and S on C”\X x Y under the natural projection
w:X xY — CP\X x Y. Moreover, when p # [t X v is not the product measure, it is a
finite extension of v, that is, supp o, consists of exactly n points X7, . .., X; for v-ae.
y € Y (without loss of generality, we shall assume that it holds for all y € Y). Note
that y — fl} need not be measurable. However, this can be resolved by using Kunugui’s
theorem (see [Kal75, Kun40]).

Therefore,letY:zCP\X,nx X xY — X,JTY:YX Y > X,7y:XxY —> Ybe
the natural projections. By Kunugui’s theorem, we are able to find IZfi (Y > X x Y for
i=1,...,nsuchthat ry o y/; = id and ¥; (Y) N §/; (Y) = @ whenever i # j. Let

Q= Pi(Y), U, =mgo (3.12)

Then p(2;) = 1/n,|J ©; = supp p, and € N supp Py consists of exactly one point. Next,
we can apply Kunugui’s theorem again and obtain v; : ¥ — X so that Py o ¥; = ¥;,
where Py : X — X.

4. Shearing property II, time changes of unipotent flows

We continue to study the shearing property of unipotent flows. More precisely, we
shall study the shearing in directions different from §3.2 and deduce the following
Proposition 4.16. In fact, in §3.2, we study the shearing between points of the form
(x,y),(gx,y) € X xY for some g € Gy sufficiently close to the identity. Thus, the
information basically comes from the X-factor. However, in this section, we shall study
the shearing between points of the form (V¥ (y), y), (¥ (gy), gy) € C°\X x Y, where
¥ 1Y — CP\X is ameasurable map and g € Gy is sufficiently close to the identity. Thus,
the time change on Y comes into play. The technique used in Proposition 4.16 generalizes
the ideas in [Rat86, Tan22], and provides us with a quantitative estimate of a unipotent
shearing on the double quotient space C”\G x/I'x. Roughly speaking, Proposition 4.16
helps us better understand the non-shifting time under a unipotent shearing.

4.1. Preliminaries. We start with a combinatorial result. Let 7 be an interval in R and
let J;, J; be disjoint subintervals of I, J; = [x;, yi], i < xjif i < j. Denote

d(J;, Jj) = Leb[y,-, Xj] =X;j— Vi
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For a collection g of finitely many intervals, we define
18| == Leb ( U J).
Jep

In addition, for a collection g of finitely many intervals, an interval I, let
BNIl={INJ:Jep}

PrOPOSITION 4.1. (Existence of large intervals, Solovay [Rat79]) Given n € (0, 1),
£ €(0,1), there is 0 = 0(¢, n) € (0, 1) such that if I is an interval of length A > 1 and
a=1{Ji,...,Jn} =GUBisa partition of I into good and bad intervals such that:

(1) for any two good intervals J;, J; € G, we have
d(J;, J;) = [min{Leb(J;), Leb(J))}]'*"; 4.1

(2) Leb(J) < ¢A for any good interval J € G;
(3) Leb(J) > 1 for any bad interval J € B;

then the measure of bad intervals Leb({J ;.5 J) = OA. More precisely, we can take

6 =0, m=[]a+cen™!
n=0

for some constant C > 0 (independent of ¢, n).
Proof. Assume that gl’k <A< {’k for some k > 1. Let
Gni=1{JeG:¢"Ta < I <",

G<n =U/_, Gi, and B<, be the collection of the remaining intervals forming
I\ U1e9<n J.Thenforn e N, J € B<,, by equation (4.1), we have

BwriNJ| B<ut1 N J| B (1 |Gt N | )“
Leb(J) 1Gnr1 N T+ | B<pr1 N J| [B<ny1 N J]
lg—ﬂ“rl)\' -1 (k n)
_ —n)ny—1
= <1 taz 1);(n+2)<1+n>,\1+n) =+ )

where / > 2 is the number of intervals in G,,+1 N J, and C > 0 is some constant depending
on 7 and ¢. One can also show that when k = 0, 1, we have a similar relation. By summing
over J € B<,, we obtain

|B<pt1l

> (14 Ccgh=mm=1,
|B§n|

Note that by item (2), | B<o| = A, and by item (3), B<, = B<,+1 foralln > k. We calculate

oo k
. |B<n+1 | (k—n)ny—1
= = = — . > n .
1B| |k[>0] Bl = lim [B| n|_0| TR _n|_|0(1+c; )7
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Now note that

00 k
0@, n) = l_[(l +c"~! < l_[(l + cgh=mmy=1
n=0 n=0

and the proposition follows. O
In light of equation (4.1), we make the following definition.

Definition 4.1. (Effective gaps between intervals) We say that two intervals /, J C R have
an effective gap if

d(I, J) > [min{Leb(I), Leb(J)}]' "

for some n > 0. Later, we shall obtain some quantitative results relative to the effective
gap.

Remark 4.2. Tt is worth noting that if .4 and B are collections of intervals with effective
gaps, then the intersections ANB:={INJ: I € A, J e B} also have effective gaps.
More generally, assume that A and B are collections of intervals with effective gaps. If
J1, Jo € AN B have an effective gap, then there is a pair of intervals I, I, either in A or
in B, such that J; C I, J, C I, and Iy, I, have an effective gap.

In the following, we shall use the asymptotic notation:

e A K B or A= O(B) means there is a constant C > 0 such that A < CB (we also
write A <, B if the constant C(«x) depends on some coefficient «);

e A =o0(B)meansthat A/B — Oas B — 0;

e A = B means there is a constant C > 1 such that C"1B < A < CB;

e A~ Omeans A € (0,1)closeto0,and A ~ 1 means A € (0, 1) close to 1.

Similar to [Tan22], we need to following quantitative property of polynomials.

LEMMA 4.3. Fix numbers Ry > 0,k € (0, 1], a real polynomial p(x) = vg+ vix +
<ot yxk e Rlx]. Assume further that there exist intervals [0, 11U, h]U---U
(L, Im] such that

Ip(1)| < max{Ro, t' ™} ifand only ift € [0,111U L, LIV~ - - Ullp, Il (4.2)

Then 1 has the lower bound | depending on max; |v;|, Ro, k, and the implicit constant
such thatl /' oo as max; |v;i| N\ O for fixed Ry, k. In addition, m < k and we have:

() |vi] <ix Roly ' “forall 1 <i <k
(2)  fix n = 0. Assume that for certain 1 < j < m — 1, sufficiently large Zj, the intervals
[0, Zj] and [lj1, Z.H- 1] do not have an effective gap:

lj+l —Zj Smin{ij,zj'_,_l —lj+1}1+n. “4.3)
Then there exists 1 ~ &(n, k) € (0, 1) with E(n, k) — 1 as n — 0 such that

& (k) (1—i—k)
Vil e 1

foralll <i <k.
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Proof. The number m of intervals in equation (4.2) can be bounded by & via an elementary
argument of polynomials.
(D Let F(x) = vi({1x)° + -+ - + ve({1x)*~ 1% for x € [0, 1]. Then we have

vl (1/0F (/M o (/1T Rk
vl Q) Q) @ k)R FQ/k)
wlh e 1 1 e 1 F(1)
By equation (4.2), we know that |F(1/k)|, |F(2/k)|, ..., |F(1)] < Ro. Thus, we obtain

vi| x Rol; ' forall 1 <i <k.

(2) This follows by induction. Assume that the statement holds for j — 1. For j, the only
difficult situation is when /; < ;41 — 1 and I+ — lj41 < lj41 — ;. If this is the case,
then

= - < = +1+n
list=Ujp1 —Lig) + U = 1) +1; <30 .
Thus, by induction hypothesis, we get

76, ) (1—i— s£(m.j)/ A+ (1 —i—
Ivi|<<l§<"j)( i—K) <<l§'3-71])/( M (1—i—xk)

foralll <i <k. O]

4.2. Effective estimates of shearing phenomena. Now we begin to study the shearing
between two nearby orbits of time changes of unipotent flows. Let G = SO(n, 1). First,
since all maximal compact subgroups of Cg(U) are conjugate, we can assume without
loss of generality that C” is in the compact group generated by EJC-. Thus, via equations
(2.3), (2.4), and (2.8), we consider the decomposition

a=sh @V @Lie(C), V=3 Ve Vi
i J

£t =t @ Lie(CP),

where Lie(C”) denotes the Lie algebra of C” and note that Lie(C”) consists of weight 0
spaces. Since C” is compact, there is a G-right invariant metric dco\g (-, -) on C\G. Let
P : G — CP\G be the natural projection

P:g— CPg=3.
Then, for g,, g, € G, we have
den G (Zx. 8y) = den (CPgx, CPgy) = den (CPgrgy ! CP) = denGlgrgy s @)

Moreover, d P induces an isometry between sl + V1# and T5(C”\G). See for example
[GQ19] for more details.

Assume g € Bco\G (e, €) for sufficiently small 0 < €. Since C” in fact commutes with
SOp(2, 1), we can identify

g=CPhexpv 4.4)

https://doi.org/10.1017/etds.2022.83 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.83

Rigidity of joinings for time changes of unipotent flows on quotients 3815

for some & € Bso,@1)(e.€) and v € Byi,(0,€). In addition, for h=[¢ Z] €
Bsoy2,1)(e, €), we must have ||, [c] < €,1 —€ < al,|d| <1+e€.
Next, let #(s) € RT be a function of s € R*. Then we want to study the difference

u'gu—* of two nearby orbits of time changes of unipotent flows. By equation (2.5), we

have

uw'gu™ =CPu'hexpvu = CP(u'hu")u® exp(v)u™)

n
= CP(u'hu™) exp(Ad u*.v) = CP(u'hu™*) exp < Z b; (I?)s"_"vn)
n=0 i=0 !
4.5)

\

Then one may conclude that u’gu™* < ¢ if and only if

¢ n
_ n\ .
whu™ < e, AduS.v=ZZbi<i)s" "op K €, (4.6)

n=0 i=0

where g < € for g € G means dcr\G (g, e) K €. Therefore, later on, we shall split the
elements closing to the identity into two parts, say the SO(2, 1)-part and the V--"-part.

As shown in equation (4.6), we consider the elements of the form wu’hu=* €
Bso2,1)(e, €). One may calculate

e Y A

a — bs b
:[c+(a—d)s—b52+(t—s)(a—bs) d+bt}' @D

If we further impose the Holder inequality |s — f| <, max{Ry, s! ™} for some Ry > €
(see §2.3 or equation (4.33)), then we have the crude estimate

| —bs’>+(a—d)s+c+ (=bs+a)t—s)| <e
= | — bs? + (a—d)s|—|c| —|(=bs +a)(t —s)| <€
= | —bs®+ (a — d)s| <2 +2|t —s]|
= | —bs> + (a — d)s| <, max{Ro, s~}

By Lemma 4.3, we immediately obtain the following lemma.

LEMMA 4.4. (Estimates for SOy (2, 1)-coefficients) Givenx ~ 0, Ry > 0, € =~ 0, a matrix
h=1[¢ Z 1 € Bso@,1)(e, €), then the solutions s € [0, 00) of the following inequality

| — bs® + (a — d)s| <, max{Ro, s' ™} (4.8)

consist of at most two intervals, say [0, 1L U [la(h), I2(h)], where 1, has the lower
bound (e, Ry, k) such that l(e, Ry, k) /' 0o as € \{ 0 for fixed Ry, k. Moreover, we have:

) bl < I} andla—d) < 17
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(2) if we further assume that the intervals [0, 111 and (12, 12] do not have an effective gap
as in equation (4.3), that is, l, — 71 < min{Zl, 72 — l2}1+” for some n = 0, then

7§(n)(—1—K) 7%‘(0)(—/()
2 ’ 2 :

|b| < la —d| <

Next, we study the situation when Ad u®.v < €. Again by Lemma 4.3, we have the
following lemma.

LEMMA 4.5. (Estimates for V1P-coefficients) Fix v = bovg + - - - + bgve € By (0, €).
Assume that

Adu’v < e ifandonlyifs € [0,11(v)]U---U[L,(v), [n(v)],

where 1 has the lower bound 1(e, Ry, ) such that I(e, Ry, k) oo as € \( 0 for fixed
Ry, k. Then m = m(v) is bounded by a constant depending on ¢. Moreover, for 1 < j <
¢ — 1, the intervals [0, 7j] and [lj41, 7j+1] do not have an effective gap as in equation
(4.3), that is, Lj 11 — Zj < min{Zj, 7j+1 — lj+1}1+", then we have

75(.5) (=g +i)
|bi|<<§,;(ljn§ gl.

Next, we shall combine the results of Lemmas 4.4 and 4.5. The basic idea is to consider
the intersection of the collections of intervals obtained from the above lemmas. For sim-
plicity, we assume that the ‘V-*-part’ consists of a single sl,-irreducible representation.
For the general case, we can repeat the argument for each sl,-irreducible representation
(cf. §2.2). First, for g = CPh exp(v) € CP\G, we write as in Lemmas 4.4 and 4.5

u'hu™ < eifand only if s € [0, 11 (h)] U [lr(h), [ ()],
Adu’.v < e ifand only if s € [0, 1; (V)] U - - - U [Lyw)(©), Ln(w) (0)].

Write /1 (h) = [1(v) = 0 and we shall consider the family of intervals
{1, Le(@) Tk = {Li (), LW N [1; (W), L ()1} j» (4.9)

where I} (g) < I;41(g) for all k. Thus, in particular, /1 (g) = 0 and [0, [1(g)] = [0, [ (h)] N
[0, 71 ()], ) )

Now assume that there exists k such that [0, /x(g)] and [lx+1(g), lx+1(g)] do not have
an effective gap as in equation (4.3), that is,

lis1(g) — Ik(g) < min{lk(g), lk+1(8) — lks1(g)} .

Then by Remark 4.2, the corresponding ‘SO(2, 1)-part’ and ‘V+*-part’ should not have
effective gaps either. More precisely, for the SO(2, 1)-part, we define

i, =min{i € {1,2}: k() <Ii(h)}, i<k+1 :=max{i €{L,2}:L41(g) = Li(h)}
Thus, we know

[0, 1)) C 10, Loy W], ier1(8), 1)) C Wisyeyy (B, Liyyy (W]
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and hence [0, Zizk (MW]and [l;_,,, (h), Zigk +1 ("] do not have an effective gap as in equation
(4.3). Similarly, for the V”’-part, we define
Jek =min{j : [ (g) <1;()},  j<xg1 =max{j : r1(g) > ()}

Then we know

[0, k(] C [0, 1o, W], [lkt1(8): L1 ()] C [Ljyyy ), Ljyy (V)]

and hence [0, ijk (v]and [/;_ ., (v), Zj§k+l (v)] do not have an effective gap as in equation
(4.3). Further, one observes
[0, k()] = [0, i, (W] N[0, I}, (v)],
Ukt 1 (@) L1 (@)1 = Wiy (B, Loy DT OV Ly (), Ly ()]

Now recall by the definition in equation (4.9) that the number of intervals in
{llk(2), Zk(g)]}k is bounded by a constant ¢(¢) > 0 because the numbers of intervals
{[L; (), L; (W1}, {1 (v), 1 (v)]}; are. Since ¢ <2 when g = so(n, 1), we see that c(g)
is uniformly bounded for all ¢. Thus, we conclude that the number of intervals in

{[7x(2), It (g)1}x is uniformly bounded for all g € G. Then, combining Lemmas 4.5 and
4.4, we obtain the following lemma.

LEMMA 4.6. (Estimates for CPf\G-coefficients) Let « ~0, Ryp>0, €=0,
g =CPhexpv € Ber\Gle, €) be as above, where

h= [‘z 2] €S00(2, 1), v=bovo+ -+ beve € V.

Next, let t(s) € R be a function of s € R™ which satisfies the effectiveness
|s — 1(s)] < max{Ro, s' .
Then there exist intervals {[Ix(g), Ik () 1}k such that

w'gu™ <e, impliess € | Jlk(g). Ik ()], (4.10)
k

where 11 has the lower bound (e, Ry, k) such that l(e, R, k) S oo as € \( 0 for fixed
Ry, k. In addition, k < c for some constant ¢ = c(g) > 0, and:

() 1] K Li(@) 7175, la — d| < 1), |bil Kgue 11(9)™SH forall0 <i < g;

(2)  If we further assume that the intervals [0, Tk (g)] and [lx+1(g), Zk+1 (g)] do not have
an effective gap as in equation (4.3), then there exists 1 ~ & = &(n) € (0, 1) with
& — 1 asn — 0 such that

bl <o (@) 5 o —d) < Ik(@) 75, |bil Koy li(g) 567D
foralll <i <yg.

In practical use, we consider two strictly increasing functions ¢ (r), s (r) € RT of r € R
satisfying the effective estimates

Ir — t(r)| < max{Ro, r' 7}, |r —s(r)| <. max{Ro, r' ~*}. 4.11)
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It follows that ¢ is also an increasing function of s and satisfies
£(r) = s(M)| < |t (r) = r| + Ir — s(r)| < max{Ro, r' ™} <, max{Ro,s(r)' ™}

Then by Lemma 4.6 and the monotonic nature, we deduce the following corollary.

COROLLARY 4.7. (Change of variables) Let k 0, Rgp >0, e 0, g=CPhexpv €
Beo\G (e, €) be as above, where

h= [i 2] €S00(2. 1), v=bhovo+ -+ beve € V.

Assume that we have equation (4.11). Then there exist intervals {[I;(g), Ix (¢)1}x such that

W' Dgu™" < ¢ implies r € U[Lk(g),fk(g)], 4.12)
k

where L1 has the lower bound L(e, Ry, ) such that L(e, Ry, k) 7 00 as € \ 0 for fixed
Ry, k. Then we have k < c for some constant ¢ = c(g) > 0, and:

(1) bl < Li(@) ™17, la — d| <« L1(8)7%, |bil K L1(g)~T forall0 <i <g;

(2) if we further assume that the intervals [0, L ()] and [Li+1(g), Zk_H(g)] do not
have an effective gap, as in equation (4.3), then there exists 1 * £ = &(n) € (0, 1)
with& — 1 as n — 0 such that

bl < Li(9) I, Ja —d| < Li(®) ™5, |bi| K Li(g) 5™

foralll <i <g.

4.3. e-blocks and effective gaps. let x € X, y € Bw(x,€). We say that (g, gy) €
CP\G x CP\G covers (x,y) if dcr\G(gx, gy) < € and P(gy) = x, F(g_y) =y, where
P :C°\G — CP\G/T is the projection. Since Lie(C”\G) = sl + V**, given a rep-
resentative g, of gy, we may choose g, € G such that P(g,) = g, and

log(gygy ') € sly + V7.

We shall always make such a choice if no further explanation.

Definition 4.2. (e-block) Suppose that x € X, y € Bx(x, €), (gx, gy) covers (x, y), and
R € (0, oo] satisfies

dcp\G(us(R)g_x, u’(R)g) <e.
Then we define the e-block of gx, gy of length r by
BL(gx. 8y) = {* gz, u'Vgy) € CP\G x CP\G : 0 <r < R}.
Similarly, we define the e-block of x, y of length r by

BL(x, y) := P(BL(gy, &) = {(*"gr,u'"gy) e X x X : 0 <r < R}.
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In either case, we call [0, R] the corresponding time interval and define the length | BL |
of BL by
| BL | .= R.

We also write

BL(x, y) = {(x, y), @ ®x, ' ®y)} = {(x, ), @, 7)}

emphasizing that (x, y) is the first and (X, y) is the last pair of the block BL(x, ).
For a pair of e-blocks, a shifting problem may occur.

Definition 4.3. (Shifting) Let BL = {(x/, y'), &, ¥)}, BL = {(",y"), & 7")} be
two e-blocks. Then x” = u’g,/, y” = u'y’ for some s, t > 0. Further, there is a unique
y € I" such that

deo\G (8x7, 8y'y) <€, (4.13)
where g, == u’gy, gy = u'g,. We define:

e (Shifting) (x’, y) L (x”, y") if y # e in equation (4.13);
e  (Non-shifting) (x’, y") R (x”, ¥") if y = e in equation (4.13).

The key observation here is that whenever the difference of g,, g, can be estimated
by the length in an appropriate way, a shifting must lead to an effective gap between two
e-blocks. This follows from the natural renormalization of unipotent flows via diagonal
flows.

PROPOSITION 4.8. (Shiftings imply effective gaps) There are quantities no ~ 0, og ~ 0,
€9 ~ 0, ro > 0 determined orderly such that, for any
e 1€ (0, no),

e o € (0,00(n),
o ¢ e (0,¢(0)),

there exists a compact set K C X with t(K) > 1 — o such that the following holds (see
Figure ).
Assume that there are two e-blocks BL = {(x’,y"), *,7)}, BL' ={(x",y"),
(x”,5")} such that the y-endpoints lie in K (that is, y', ¥, y",y" € K ) and satisfy
gy =h exp(v)gy, gy =h"expv”)gyr, (4.14)
where ', " € SO (2, 1), v/, v" € V. can be estimated by
1+0@™2n)  oF~172

oy oy — —§¢ e
h,h" = |: 00 1+0(r_2’7)]’ v, v =0 %)y + + O (€)ve
(4.15)

for somer > ro(o, €y), where & = &E(n) =~ 1 is given by Corollary 4.7. Assume further that
I —
x"=u'x,y" =u'y, and t < s. IfBL/ ~BL, then

s, 1> it (4.16)
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FIGURE 1. The solid straight lines are the unipotent orbits in the BL' and BL”, and the dashed lines are the rest
of the unipotent orbits. The bent curves indicate the length defined by the letters.

Proof. We only consider ¢ = 2. Denote
gy =h exp(@)gy (4.17)

for i € SO¢(2, 1), 7' € V5. By Definition 4.2, we know that 8y 8y are obtained by the
unipotent action on gy, g/, and the difference of gy, g5 is controlled by €. Combining
equation (4.15), we get that

7 [1 +0(@) O@~'1=2m)

o
O(e) 1+0@J’ U =00+ O(e)vy + O(e)va. (4.18)

Since BL' ~ BL” and gy = u’ gy, we get that
gy =cu'gyy forsomee#y €T, ceC’. (4.19)
Then by equations (4.14), (4.17), and (4.19), we have
gy =N exp(@)u gy,
gyy = TR exp(v”) gy (4.20)
Assume that one of s, ¢ is not greater than #1417 Then since s = ¢, we know
0<s,t<0@F™. 4.21)
Next, we determine the quantities for the proposition.
e (Choice of 1, § (also 179)) Choose a small n =~ 0 that satisfies
1425 <1+2n<282n), (4.22)

where £(2n) was defined in Corollary 4.7, and § := 3n/4. Here, no =~ 0 can be defined
to be the maximal 1 so that equation (4.22) holds.
e (Choice of o) Then 0 = o () > 0 can be chosen as

3n
4+6n

e (Choice of €y, K1; injectivity radius) Since I' is discrete, there is a compact subset

o<

4.23)

KiCc X, (K >1— 4—1‘0 and €y > 0 such that for any g, € P! (K1) satisfying

dce\G(8y, &yY) < O(€o) (4.24)
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for some y € I', then y = e. Here the constants hidden in O (¢(p) will be determined
after the estimate of equation (4.28) (see also equation (4.29)).

e (Choice of K», K, Ty, rg; ergodicity of aT) Since the diagonal action a’ is ergodic on
(X, 1), there is a compact subset K» C X, w(K>) > 1 — 4—1‘0 and Ty = To(K3) > 0
such that the relative length measure K on [y, al y] (and [a_Ty, y]) is greater than
1 —o forany y € K», |T| > Ty. Assume that

T

K=K NKy ry>elt27 T (4.25)

Note that £(K) > 1 — o. The quantity ro will be even larger and determined by € if
necessary (see equation (4.29)).

Now we are in the position to apply the renomalization via the diagonal action a®.
Since r > rg = e(1+207'T0_Jet @0 := 11420 and we know wy > Tp. Since ¥/ € K C Ka,
it follows from the choice of K3 and Ty that the relative length measure of K on [y, a“°y']
is greater than 1 — o. This implies that there is w satisfying

(I1—0)wy <w < wy
such that a®y’ € K and therefore
a’gy € P (K). (4.26)
By equation (4.20), we have
a“’gy/ = (a“’ﬁ/a_w) exp(Ad a®v)(a®u" a"?)a“ g,
a®gyy = ¢ Na®u""a=)(ah" a=?) exp(Ad a®.v")a®g.r. 4.27)

Then by equations (4.18), (4.15), and (4.21), we estimate

awz/afw _ 1+ 0(e) 0(r25—277)
L 0@ 14+ 0() [
g _ [1HOCT) 0P
B 0(e) 1+00™]
Ada®V = 0 E )y + 0(e)vy + O(e)va,
Ada®v’ = 0 B2 + O(e)vy + O(r—U=U+20)y,,, (4.28)
Cu—ta—® = u—te*’” _ uo(rl+nr7(lfa)(l+25))’
dCu—ta—C — u—se*“’ _ uO(rH”r*“*")(l“‘”)'

Notice that by the choice of o, § (see equations (4.22) and (4.23)), we have
l+n—(1-0)1+20)=1+n—(1-0)(1+3n) <—1in
Also, by equation (4.22), we have

28— 2 <0, =26 +1+25 <0.
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Thus, by enlarging r¢ if necessary, all terms of equation (4.28) can be quantitatively
dominated by O (€p). Then by equation (4.27), we have

denG(@®gyy, a®gy) = derg(@®gyy (a®ge) ™", a®gy(a®ge) ™) < O(ep). (4.29)

Thus, by equation (4.24), we get y = e, which contradicts our assumptions. [

4.4. Construction of €-blocks. In light of Proposition 4.8, we try to construct a
collection of e-blocks based on the unipotent flows between two nearby points so that
each pair of e-blocks has an effective gap.

First, given np =~ 0 as in Proposition 4.8, we fix a sufficiently small « € (0, 27n9), and
then choose n = n(k) & 0 such that

14 2n
£(2n)

where £(2n) = 1 is given by Corollary 4.7. Then, o9 = op(n) =~ 0 given in Proposition 4.8
has been determined. Next, assume that there exist:

<14k <14 2no, (4.30)

e 0 €(0,00);
e Rp>1;
o ¢g=¢€p(0)~0,e =¢€(Ry) € (0, €g) so small that

L (g) = L(e, Ro, k) > max{ro(o, €p), Ro} (4.31)

whenever g € Bg (e, €), where Ly, L are defined by Corollary 4.7,
such that, for K c X with w(K) > 1 — o given by Proposition 4.8, x, y € X, we have
A = A(x,y) C RT such that:
(1) ifr € A, then

W'Dy ek and dy@Ox,u'y) <e (4.32)

for continuous increasing functions ¢, s : [0, co) — [0, 00);
(2) we have the Holder inequalities:

() — 1) — ¢ =) <’ = r|'7F, (4.33)
I(s() = s(r) — ' = )| <Ir’ —r|'7*,

forallr,r € Awithr' > r, ¥ —r > Ry.
It is worth noting from equation (4.24) that points in K have injectivity radius at least €.
For simplicity, we shall assume that 0 € A in what follows.

Remark 4.9. For the conditions (i) and (ii), the quantities s, ¢ are symmetric. Thus, for
instance, one can also consider s as an increasing function of ¢, and obtain similar Holder
inequalities. We have already made such a change of variables in §4.2 for notational
simplicity

However, the assumptions in equations (4.32), (4.33) coincide with equations (4.11),
(4.12). So Corollary 4.7 can apply.
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FIGURE 2. A collection of e-blocks {BLy, ..., BL,}. The solid straight lines are the unipotent orbits in the
e-blocks and the dashed lines are the rest of the unipotent orbits. The bent curves indicate the length defined by
the letters.

4.4.1. Construction of B1. For A € A, denote A, = AN[0, A]. Now we construct a
collection B1(A;) of e-blocks. Let x| :=x, y; :=y. We follow the assumptions in
equations (4.32) and (4.33). Suppose that (g, gy,) € C’\G x CP\G covers (x1, y1) and

71 = sup{r € Ax N[0, L1(gy, 85, )] 1 do' W gy u*Vgy) < e}, 51 :=s(F1),

where L is defined by Corollary 4.7. Let BL; be the e-block of x1, y; of length 7y,
BL; = {(x1, y1), (x1, y;)}. To define BL;, we take

rp=inf{r € Ay :r >71}, s :=s5(r),

and apply the above procedure to

t(r2)

D xy, oy =y,

X2 =u

(note that by equation (4.12), rp > r1). This process defines a collection B1(A;) =
{BLi,...,BL,} of e-blocks on the orbit intervals [x1, u*®xi], [y1, u'Pyi] (see
Figure 2):

xi=uxi, ET=ux, yi=uy, y;=uy,
si=s(r), 5i=sF), t=t@), ti=tF).

Note also that by the assumption of A, we have x;, x; € K for all i, the corresponding time
interval of BL; is [r;, 7;], and the length | BL; | of BL; is

|BLi | I=7i — ;.

Note that any BL; = {(x;, y;), (X, ;)} € Bi(Ay) has length | BL; | < L; (gy,-gx_,.l)- By
Corollary 4.7, we immediately obtain an estimate for the difference of g, and gy, in terms
of the length of e-blocks.
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COROLLARY 4.10. (Difference of 81 (Ay)) Assume that gy, gx_l.1 = CPh; exp(v;), where
a b
h; = |:C d] € SO0p(2, 1), v =bovg+---+bcve € Ve.

Then we have

L [1 +00 ) 0@

| — 7g Y
O(e) 1+0(ri_’()i|’ vi = O(r; " )vg + - - + O(e)vg

for some r; > max{rg, Ro, |BL;|}.

We then immediately conclude from Proposition 4.8 that for any BL', BL” € 81(A;)

. r . . .
with BL’ ~ BL"”, there is an effective gap between them, that is,

d(BL', BL") > [min{| BL'|, | BL"[}]'**/2,

However, when BL’ ~ BL", they do not necessarily have an effective gap. This enlightens
us to connect these e-blocks and generate a new collection 8, (Aj).

4.4.2. Construction of By. Now we construct a new collection B2(A;) = (BL,, ...,
BLy} by the following procedure. The idea is to connect e-blocks in Bj(A;) =
{BL4,...,BL,} so that each pair of new blocks must have an effective gap. Let
BL; € B1(A)), &y, = h exp(v)gx,, and

h:[‘cl 2] €S0, 1), v=bovo+---+bcv. € V..

Then by Corollary 4.7, one can write u’ ") gu=*") € Bg (e, €) for

r e JiLi(2), Li(2)], (4.34)
k

where k < ¢ is uniformly bounded for all g € G. Then consider the following two cases.
(1) Thereisno j € {2, ..., n}such that (x1, y1) < (xj, yj).
(2) Thereis j € {2,...,n}such that (x;, y1) ~ (x;, y}).

In case (i), we set BL; = BL;. Then by Corollary 4.10, we have

bl < L1(8y,85,) "™, la—d| <Li(gy,85,)7". (4.35)

In case (ii), suppose that g, = u%igy,, gy, = u'igy,. Clearly, by the construction,
> L, (&y, gx_ll). However, by equation (4.34), we get

7j e JILe(gy g0 Ligy g5,h)]
k

and k < C is uniformly bounded for all g € G. Assume that j.x is the maximal j among
7; € [La(gy, 85,1 L2(8y, 85,11 Whether [0, L1(gy, g5,")] and [L2(gy, 85,1, La(gy, 85,1
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have an effective gap leads to a dichotomy of choices:
BL {remains unchanged if Lo(gy, gx_ll) — L (gy; g;}l) > Zl(gy1 gx_ll)1+2”,
1 —

{1, Y1)s K> Vjma )} Otherwise.

If the first case occurs, we will not change BL, anymore. If the second case occurs, that is,

we redefine BL| = {(x, Y1)y X ¥ jmax)}’ then we repeat the construction for the new

BL; again.

(1)  Suppose that thereis7; > L( gy g;ll). Then assume jax to be the maximal j among
rj€ [L3(gy1gx_11), L; (gylgx_ll)]. Then again, we set

BT {remains unchanged if L3(gygy ") — La(gy 85,") > La(gy g5, 2",
1 =

{15 ¥1)s (K ja> Y jma )} Otherwise,

and so on.
The process will stop since the number of intervals is uniformly bounded for all g € G.
Now BL; € B2(A;) has been constructed. By the choice of BL; and Corollary 4.7, we
conclude that

b] < | BLy |50 g —d| < | BLy |75, |bi| <c | BLy 75670 (4.36)

for§ =&Q@n)~landforalll <i <c¢.

Next, we repeat the above argument to construct BL,, ;. More precisely, suppose
that BL,, = (X415 Vi 4+1)s X s ijm)} € B2(A,) has been constructed. To define
BL,, 41, we repeat the above argument to BL, 11 € 81(Ay). Thus, B2(A;) is completely
defined. Further, one may conclude the difference of points of e-blocks in 8;(A;).

LEMMA 4.11. (Difference of B2(A;)) For any BL; = {(x], y}), (X}, ¥})} in the collection
Ba(Ay) = {ﬁl, e, ﬁN} of e-blocks, we have

g8, = C’hi exp(v)),
where

o 1+0@ ) o '™
l 0(e) 1+ 0@ "

:|’ v = O(I‘i_sg)vo +- 4+ O0(e)ve  (437)

for some r; > max{ro, Ro, |BL;|}.

Proof. Equation (4.37) follows immediately from equations (4.35), (4.36), (4.30), and
(4.31). O]

Then, recall that by the construction of 8,(A),,), for any ﬁ/, BL B2(A;) with BL ~
BL', there is an effective gap between them, that is,

d(BL', BL") > [max{rg, Ro, min{|BL'|, [BL[}}]'*?".
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However, when BL' iy BL", by Proposition 4.8 and Lemma 4.11, we have
d(BL',BL") = [max{ro, Ro, min{[BL'l, [BL"|}}]'*".
Thus, we conclude from Proposition 4.1 the following proposition.

PROPOSITION 4.12. (Effective gaps of $2(Ay,)) Let the notation and assumptions be as
above. For any ﬁ/, BL e B2(Aj), we have

d(BL, BL") > [max{ro, Ro, min{{BL'|, [BL"[}}]' 7.
Thus, for any ¢ € [0, 1], if
1 o
~Leb(42) 2 8y(0) = 1= 6G1.0) = 1 = [Ta+ ¢
n=0
then there is an €-block BL € B2(Ay) that has

IBL| > ¢

4.5. Non-shifting time. Now assume that for some A, ¢ > 0, we know that

Leb(A;) > 0,(0)A.
Then Proposition 4.12 provides us with an e-block BL = {(x’, y'), (X', 7)} € B2(A;) with
IBL| > ¢A. In other words, if we write

x/ — ux(R])x, f/ — uS(Rz)x’ y/ — ut(R|)y’ y/ — Mt(RZ)y, (438)
then we can find Ry, R, > 0 with Ry — Ry > ¢ A such that

1(Ry) 5= ,,s(R1)

deog (' ™V gy, u t(Ry) 5—  s(Ry)

8x) <€, deongu gy, U .gy) < €.
It is already quite surprising. However, it is still possible that
dcp\c(ut(r).g_y, wWg) > e
for some r € [Ry, R2] N A. Thus, define
ARk, = {r € [Ri, RINA : deog 'V gy, ' ".g7) > €}

and we want to show that Leb(ZRl R,)/A has a upper bound in certain situations.

Remark 4.13. By equation (4.37), we can estimate the difference between x’, y’; more
precisely, we have

gyg,' = Chexp(v),
where

h= [1 + 0N 0TI

= =&
O(e) 1+ 0(((%)2”)]’ v= 01 ") + + O (€)v.
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4.5.1. Construction of E 1» EZ- Now we consider the shifting time of the e-block BL =
{', ¥, &, )} € B2(A;). Define a collection Bi(Ag,g,) of e-blocks on the orbit
intervals [x’, x”'], [y, ¥"] according to the following steps. Suppose that

t(Ry) .,/

SRy = u Ry

ri=min{r € [R;,Ry] : r € ZRle}, X1 =u

and that (g,,, gy,) € C”\G x CP\G covers (x1, y1) and

71 :=sup{R € Ag,r, : dg(u' " gy, u* " gy,) < € forany r € Ag,g, N[0, R]}.
Let BL; € ,51 (ZRle) be the e-block of xj,y; of length 7, and write BL; =
{(x1, y1), (x1,y1)}. To define BL,, we take
ry = inf{r € Ag,g, : 7 > 71}
and apply the above procedure to

t(r2)

s(rZ))q, Y2 =u Vi

X2 =Uu

This process defines a collection ,51 (ZRle) = {BLy,...,BL,,} of e-blocks on the orbit
intervals [u’"Dx/, ux(Fm)x’] [u! "Dy’ 4! Tm) "] Completely similar to 81, we can connect
some of the e-blocks in ﬂl(ARle) and form a new collection ,32(AR1R2) such that
each pair of e-blocks in ﬁg(A R, R,) has an effective gap. Then, we conclude again from
Proposition 4.1 the following lemma.

LEMMA 4.14. (Difference and effective gaps of Br(A R\R,)) For any BL, = = {(x, ),
(x,-, y,-)} in the collection ﬂ2(AR1R2) = {BL1, ce, BLM} of e-blocks, we have

gy gz = C’hi exp(vy),
where

e [1 +ou ™ oM

=0 5 4.
0(e) 1+0(r<277)i|’ V=00t 0l (439)

for some r; > max{ro, Ro, |BL [}.
Moreover, for any BL BL" ﬁz(ARle) we have
d(BL', BL") > [max{ro, Ro, min{|BL'|, [BL"[}}]'*".
Thus, for any E e [0, 1], if
1 o
— Leb(Ag,g,) = 0,@) =1 - [[a+cg™™,
A
n=0
then there is an e-block BL € EZ (XRIRZ) that has
IBL| > 7.
Thus, given Ee (0,¢), we can apply Lemma 4.14 and obtain an e-block BL =

{®,3), &, )} € B2(AR, r,) that has length [BL| > ZA. Then by equation (4.39), we get
that
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g8z ' = CPhexp(@),
where

W [1 0@ 0@
- O(e) 1+ 0(Cn™")

], V=0(@N g+ + O(e)vg.
Then combining Remark 4.13 and Proposition 4.8, we conclude that
re > (.
Since 1 € [R}, Ra], we obtain (ZA)!*" < A or
E < (gk—n)l/(l+n).

In other words, we obtain the following lemma.

LEMMA 4.15. (Shifting is sparse in a big e-block) Given . > 0, ¢ € (0, 1), n = 0, assume
that

Leb(A3) = 0, ().

Then there is an €-block BL € B2 (Ay) with the corresponding time interval [R1, Ry] and
IBL| = Ry — Ry > ¢A. In addition, denote the shifting time of BL by

AR,r, = {r € AN[Ry, Rol : deog ' gy, u* ) gr) > €.
Then we have
[e )
Leb(Ag,g,)/% < B,y = 1 — [T+ Cammym/d+my=t,
n=0
In particular, Leb(ZRle)/A =o()M).
In the following, we present a key proposition below that will be used in the proof of

Proposition 5.1. It basically says that non-shifting is always observable when the time scale
is large.

PROPOSITION 4.16. (Non-shifting time is not negligible) Given an integer n > 2,
k € (0, 2n9), there exist Ao > 0, og = 0, ¥ ~ 0 such that, for any

o disjoint subsets A', . .., A" C [0, 00) that satisfy equations (4.32) and (4.33),

o A> ),

o 0 € (0, 0p) satisfying

Leb ( ]_[ Al N0, A]) > (1 —20)4,
i=1

there exists one A'® and [Ri A), Ré (M)] C [0, A] such that there exists an e-block BL €
Bo(AIM N[R, R})]) with the corresponding time interval [Ry, R2] such that

Ry — Ry > 9%, Leb(AlY N[Ry, Ry]) > 92,
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where Aim = {r e AI® :dcp\G(u’(’).g_y, W' gy) <€) is the non-shifting time of

AD),

Proof. First, fix n satisfying equation (4.30), ¢; € (0, 1) so that 5,, 1) =1/(n+1) and
choose ¢» = 0 such that
—1 _

_ )
—L 4.4
01(&2) < 247 (4.40)

and then Ag > 0 such that

0,(2)¢1 — 0y (A MYTDY > 19 (06 (4.41)

for L > XAg. Then choose

(1, 1
0p = min {Zél , m} (4.42)

1—
¥ = 36y (4.43)

Given o € (0, 0g), A > Ag, we write [Rg())’ Réo)] = [0, A], bg = 20, and then apply the
following algorithmon k =0, 1, ..., n — 1 orderly.
First, assume that:
e i,...,ix €{l,...,n}have been chosen without repetition;
e b, ..., b > 0have been chosen,;
and they satisfy

Leb ( [] A'nirP. Rg‘)]) /Leb(RY, RS > 1 — by (4.44)
P {1, ik}
(Note that by the choice of {; and oy, equation (4.44) is possible for k = 0.) Then there is
one A+ for some ik+1 € {i1, - . ., ix} with

Leb(A™+ N [R{, REOD) > 0(¢1) - Leb((R\", RSV)).

Applying Lemma 4.15 to A’*+!, we obtain an e-block BL; | with the corresponding time
interval [R¥TD, RV < [RY, R and

BLipil = RV — RETD > ¢ Leb((RWY, RPV)) = 51 > 9. (4.45)

It follows from equation (4.44) that

Leb ( L[ Ai m [Rik-'r]), R§k+l)])

P E{in,e ik}
c
= Leb([R§k+1)’ R§k+l)]) — Leb (( ]_[ Ai) N [Rik—&-l)’ R§k+l)])
i i1,k
C
ot ( L1 ) vt
i{i1sik)

> Leb([R*V, REFV]) — by - Leb((R®, RY))
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and so by equation (4.45), we obtain

Leb ( [ A nirED, Rg"“)])/ Leb((R*Y, RITV) > 1 — byt (4.46)
P01 i)
Then we face a dichotomy:
(1) Leb(A%+t n[R{TY, REFV) / Leb([R{HD, RIHD)) > 0, (22);
@) Leb(Ak+t N [RETD RETDY) / Leb((RETY, RETV]) < 8,(00).
In case (1), we take i(%) = ir1, [R|(A), Ry(W)] =[R™, R\Y], BL = B4y, By
equations (4.41), (4.43), and (4.45), we have

Leb(AL® N [R{D, REFDY)
= Leb(A™™ N [R{Y, REFV]) — Leb((ALM)e 0 A'® 0 [REFD, REFY)
> 8,(52) - Leb([R{ ™Y, REFVD) =8, (A~ - Leb(RYY, RYVD)
= @261 — By (@27 D)) - Leb((R, R

1
> 5@t - LEn = 0 (4.47)

and the consequence of Proposition 4.16 follows. In case (2), by equation (4.46), we have

P (i1t}

(4.48)

Now note that:
o i1 &{i1,...,ix} has been chosen;
o choose i1 = by +6,(8);
and then equation (4.48) coincides with equation (4.44) by replacing k by k + 1. Thus, we
can apply the algorithm again by replacing k by k + 1.
After applying the algorithm, we either stop in the middle and finish the proof, or we
determine:
® if,...,in—1 €{l,...,n} without repetition;
e asequence {bk}z;(l) of positive numbers with by = 20 and

b1 = by +0,(0). (4.49)

Let i(A) be the only element in {1,...,n}\{i1,...,i,—1}. Let [R{(}), R5(W)] =
[Rg”_l), Ré"_l)]. In addition, by equation (4.49), we calculate
(D

bn,] = 26(1_("_1) +§’7(§2)1_1—1
M

Now we try to do the algorithm one more time. Thus, we apply again Lemma 4.15 to
A!™® and then we obtain an e-block BL = BL,, with the corresponding time interval
(R, R™] c [RV"D, RV~ satistying equations (4.45) and (4.46), that is,
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IBL,| = Leb([R"™, R{"1) = ¢1 - Leb([R" ™", RV = ¢f'a > 94, (4.50)

Leb(A'® N [R, RY"1)/ Leb([R}", RS")

> 1 _bn—lé'l_l =1-20¢" -0 (4'2)4‘1;;_{11

> 0,(52), (4.51)
where the last inequality of equation (4.51) follows from equations (4.40) and (4.42). Then,
as in equation (4.47), we calculate

Leb(AL®™ N [R™, R])
> (@261 = 0y (227D T))  Leb(IR{" ™V, RSV > 9,

where the last inequality follows from equations (4.41), (4.43), and (4.50). O]

5. Invariance

Let Gx = SO(ny, 1) and I'y C Gy be a lattice. Let (X, ) be the homogeneous space
X = Gx/I'x equipped with the Lebesgue measure 4, and let ¢tU X = "‘tx be a unipotent
flow on X as before. In addition, let Gy be a Lie group and I'y C Gy be a lattice. Let
(Y, my) be the homogeneous space Y = Gy/I'y equipped with the Lebesgue measure
my and let ¢,U - u’y be a unipotent flow on Y. Next, choose 7y € K, (Y) a positive
integrable function 7y on Y such that 7y, 7 ! are bounded and satisfies equation (2.10).
Then define the measure dv := tydmy and so the time-change flow dJ,U "W = U} preserves
the measure v by Remark 2.2. Also recall from equation (2.9) that

uyy = @0 T ) =720 ).

We shall to study the joinings of (X, w, u X) and (Y, v, iy ). Let p be an ergodic joining
of u’, X and u uy, that is, p is a probability measure on X x Y, whose marginals on X and
Y are u and v, respectively, and which is (u’X X ﬁ;)—ergodic. As indicated at the end of
§3, when p is not the product measure © x v, we apply Theorem 3.5 and then obtain a
compact subgroup C” C Cgy (Ux) such that p := m,p is an ergodic joining u'y and i}
on CP\X x Y under the natural projection 7 : X x ¥ — CP\X x Y. In addition, it is
a finite extension of v, that is, supp p, consists of exactly n points A C) R )
for v-a.e. y € Y (without loss of generality, we shall assume that it holds for all

y € ¥). By Kunugui’s theorem, we obtain v; : ¥ — X so that Py o; = ;, where
Px : X — CP\X.

5.1. Central direction. We want to study the behavior of yr p along the central direction
Cg, (Uy) of Uy. In the following, assume that p is a (u’, x i})-joining. Then by equation
(3.12), we get that

Y, ly) =V, 5)) = i ),

where the index i, =i,(y,t) € {1, ..., n}is determined by

™™ x iy O, @E ), T () € i, (1),
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Now we orderly fix the following data so that the propositions in §4 can be used:

o fix k € (0, 2n) satisfying equation (2.10), where ng > 0 comes from Proposition 4.8;

e fixo € (0, 0g), where o9 ~ 0 comes from both Propositions 4.8 and 4.16;

e fix € € (0, ¢9) as in equation (4.31);

such that the following holds.

o (Effective ergodicity) By equation (2.11), there is K; C Y with v(K;) > 1 —0/6 and
tg, > 0 such that

It —z(y. ) = 0(t'™) (5.1)
forall t > tg, and y € K. Note that using ergodic theorem, we have
[t —z(y, )] = o) (5.2)

for v-almostall y € Y.
e (Distinguishing wp, wq) There is K C Y with v(K3) > 1 — 0/6 such that

d(W (), ¥, () > 100€ (5.3)

forye K, 1 <p<gq<n.
e (Lusin’s theorem) There is K3 C Y such that v(K3) > 1 —o/6 and thg3 is uni-

formly continuous for all p € {1, . .., n}. Thus, there is § > 0 such that
dx (W, (1), ¥, (2)) < € (5.4)
for p e {1,...,n},dy(y1,y2) <$é,and y1, y2 € K3.
Given K C X by Proposition 4.8, let
n
0._ -1
K_mmmm&mﬂwﬂm. (5.5)
p=1

Here we choose (K being so large that my (K% > 1—0/2.
Fix ¢ € Cg,(Uy) N Bg, (e, §). We choose arbitrarily a representative 8y (v € Gy of
P

Wp (¥). Then there is a representative 8% (cy) € G so that:
P

* &,m and 87 ,(cy) lie in the same fundamental domain;

e the difference g(y) = 87 (e = hP) (y) exp(v'?)(y)), where
V4

~1
)g@; ()

a(p)(y) b(p)(y)
P (y) = |:c(”)(y) d(p)(y)} € S0p(2, 1),

v = b vo + - -+ 6P (s € Ve (56)

Further, applying the effectiveness of the unipotent flow, we shall show that the difference
g(y) has to lie in the centralizer Cg, (Ux).

PROPOSITION 5.1. Let the notation and assumptions be as above. For the quantities in
equation (5.0), there is a measurable set S(c) C Y with v(S(c)) > 0 such that

B () =0, aPMN=dP =1 b M == (=0

fory e S(), pefl,...,n}.
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Proof. Consider the measure of the set
Yi(c) = {y € Y : [pP (), [a” (y) — 1], [dP(y) — 1,
b DI, - - 1B () < 1/1, forany p € {1,.. ., n}}

for [ € Z*. We shall show that S(c) := () Yi(c) satisfies the requirement. By ergodic
theorem, we have

N
mY(YZ(C))leinolono Ly o (uyy) dr (5.7

formy-a.e. y € Y, where my denotes the Lebesgue measure on Y.

However, by ergodic theorem, for my-a.e. y € Y, there is A, C R* and Ao(y) > 0
such that:
e forr € Acy, we have

uyy, uycy € KY;

o Leb(Acy N[0, A]) > (1 — 20)A whenever A > Ao(y).
Then, by the assumptions, we have

Ac,y C {r € [09 OO) : dy(wlj(u;’y)’ Wp(u;cy)) < 6’ p € {17 e n}} (58)
It follows that for r € A, y, we have

dy(ué((y’r)Wip(y,r) ), uig(cy’r)%,,(cy,r) (cy)) <€ (5.9)
for any p € {1,...,n}. Now we restrict our attention on A,y N[0, A] with A > Ag(y).
For simplicity, we assume that 0 € Ac,. Let I = ((p1, p2),...,(P2m—1,P2m)) €
{1, ..., n}zn be a sequence of indexes and

Ag’y ={reAcy:pu—1=ir(y,r), pa =ix(cy,r)forallk e {1,...,n}}. (5.10)

Then A = Agyy, Ro =tk,, t(r) =z(cy,r), s(r) = z(y, r) satisfy equations (4.32) and

(4.33) for points

Ve s Wy (€3) € K
forallk € {1, ..., n}.

Proposition 4.16, for any A > A, there exists one Ag,(y'\) and [R!, Ré] C [0, A] such

that there exists an e-block BL = {(x’, y), (x", y")} € ﬂz(Aéy(yA) N[R}, R5]) with the

corresponding time interval [ R, R>] such that

Ry — Ry > 94, Leb(A{ N[Ry, Ro]) > 92,
where Aé ) is the non-shifting time of Ag,(y)“). Then by the definition of Ag ()”), we know
that

z(cy,r) P z(y,r) Peseam—"
dCﬂ\G (MX .gllfip(zry,r)(cy)’ uX 'gllfip()',r)(y)) <€
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forr € Ai(”, p € {1, ..., n}. Recall from equation (4.24) that points in K have injectivity
radius at least €q. Thus, for r e AI()‘)

z(y r) — z(ey,r) ———————
g% P& r)()) and MX .gWip(cy,r)(Cy)
lie in the same fundamental domain. Thus, if r € AI(A) nd
o — 7( ) ——
8y, hy) = Vi)
then we get
— ey ——————
ng/ (u cy) — Uy g://ip(cy,r)(cy)’
Recall that the difference of uZ(} ) uZ(Cy = for r € A'O“) N
g‘”lww(V)’ X g'//"p(cyn(‘y)

[R1, R>] was estimated by equation (4.37) (see also equations (4.5), (4.6), and (4.7)). In
particular, for r € Aém N [R1, R>], the quantities of

z(cy r) z(y.r)

,
gluyy) = 8y (cuyy)gw (' }) gl//,p@,)(cy)( 8y, (m<y))

that need to be estimated in ¥;(c) are all decreasing as A — oo. Then given [ € Z™, there
is a sufficiently large A such that

A
f 1y, (uyy) dr > Leb(A"%) N[Ry, Ry]) > OA.
0

Thus, by equation (5.7), we have my (Y;(c)) > 9. Now letting A — oo and then [ — o0,
we see that my([); Yi(c)) > ¢. Finally, by Remark 2.2 and 7y € K((Y), we obtain
v((); Yi(c)) > 0. O

Using Proposition 5.1, we immediately obtain the following corollary.

COROLLARY 5.2. There is a measurable map w : Cg,(Uy) x X XY — Cg4(Ux) that
induces a map S, : supp(p) — supp(p) by

S 1 (6, ) = (@ (e, x, y)x, cy) (5.11)
forallc € Cg,(Uy), p-a.e. (x,y) € X x Y. Moreover, we have

z(cy,t)

@ (e, %, y) = ux" e (e, @ x @ i), yuid, (5.12)

w(cic, x, y) = @ (c1, w(c2, X, )X, c2y)w (€2, X, y) (5.13)

forc,ci,c2 € Cg,(Uy), p-ae (x,y) e X xY, t eR

Remark 5.3. Note that when ¢ € exp(RUy), @ reduces to an element in exp(RUy); in
fact, we have

@ Wy, x, y) = " = exp(z(y, HUx)

forall € R.
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However, for distinct g1, g2 € {1, ..., n},any ¢ € Cg, (Uy), we have
w(c, Vg, (9), MYq () € CPUp (v),  wle, Y, (0), Vg, () € CPYpy (v)  (5.14)
for distinct p1, p2 € {1, ..., n}; for otherwise it would lead to ¥z, () € Cg, (Ux) ¥y, (),

which contradicts the definition of i (cf. §3.2).

Proof of Corollary 5.2. Fix ¢ € Cg, (Uy) N B(e, §). Proposition 5.1 provides us a subset
S(c) C Y with v(S(c)) > 0 such that

Ypley) = wple, )Yp(y) (5.15)
fory € S(c), wy(c, y) € Cgy(Ux). In addition, for y, u},y € S(c), we know that

wp (e, Wy YU Vi (v ) = Wplyey) = u " wi ey (€ MW evi ().

Thus, l/fip(y,r)(y) € CGX(UX)Wi,,(cy,r) (y)and soi,(y,r) =ip(cy, r). It follows that

wp (e, wy " = ui Wi ey (6 3) = 0} Wi, y)  (516)
for y, uty € S(c).
Thus, for y € S(c), we define

@ (¢, Yp(¥), ¥) = wy(c, y).

Let mry : supp(p) — Y be the natural projection. Then for (x, y) € n)Tl(S(c)), we know
that CPx = C?yp, (y) for some p, € {1, ..., n}. Thus, given ¥, (y) = k?x for some
kY e CP, we define

@ (e, x, y) = (kD) w,, (¢, yIKL. (5.17)

Thus, we successfully define @w (c, -, -) for n;l (S(c)). Then the (utX X IZ’Y)-ﬁow helps us
to define w (c, -, -) for all p-a.e. (x, y) € X x Y. More precisely, for (x, y) € X x Y (ina
p-conull set), we can choose t = #(x, y) € R such that (uif(y’[)x, ul,y) € 7y '(S(c)). Then

define

w (c, ui((y’[)x, utYy)ui((y’t)

_ u;(c)”t)w(c, (ugf(y,t) % E}f(}”’)).(x, y))u;(y,t). (5.18)

(Note that equation (5.16) tells us that equation (5.18) holds true for y, u’Y y € S(c) and
thus @ is well defined.) Finally, for general ¢ € Cg, (Uy), choose k € Cg, (Uy) N B(e, 4)
such that k™ = ¢, and then define iteratively

okt x,y) =o', wk, x, y)x, ky)w (k, x, y)
and finally reach ¢ = k. Then the map of equation (5.11) is well defined on supp(p). O
In light of Corollary 5.2, we consider the decomposition in equation (2.7) and write

@ (e, x, y) = ul Y Be, x, y), (5.19)
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where a(c, x, y) € Rand B(c, x, y) € exp Vé-x. Then by equation (5.12), we have

z(ey, 1) +ale, x, ) = ale, @O x T (x, y) + 2(, 1), (5.20)
Blc, x,y) = Blc, @ x w#0D) (x, y)) (5.21)
forall r € R.

First consider a. Recall that for fixed y € Y, supp(py) = |_|Z=1 CPy,(y). Then by
equation (5.20), for v-a.e. y € Y, x € supp(py), we have

ale, x, y) —ale, @) x @) (x, y)) = z2(y, 1) — z(cy, 1) (5.22)
for all r € R. In addition, by equation (5.17), we have
a(c,x,y) =alc, kx, y) (5.23)

for all x € supp(py), k € C*. By equation (5.20), for any (x1, y), (x2, y) € supp(p), we
have

ale, x1,y) —a(c, x2,y) = ale, @' xu').(x1,y)) —ale, @' xu').(x2,y)). (5.24)
Define ormax : Cgy (Uy) x X x Y — R by
Omax @ (¢, x,y) > max{r e R: py{x’ € X :a(c,x’, y) —alc, x,y) =r} > 0}.
Then by equation (5.24), we have
max (€, (X, ¥)) = otmax (¢, (uy X Ty).(x, y))

forany r € R, p-a.e. (x,y) € X x Y. Thus, omax(c, X, ¥) = &max (¢). Now if apmax(c) > 0,
then for p-a.e. (x, y), there is x” € X such that a(c, x’, y) = a(c, x, y) + amax(c), which
contradicts the fact that amax (¢, x, y) take at most finitely many different values for fixed
y (by equation (5.23)). Thus, we conclude that o« (c) = 0 and so

alec, x,y) =alc,y)

forall c € Cg, (Uy), p-ae. (x,y) € X x Y.
However, via the ergodicity of the flow utX X ﬁ}, we conclude from equation (5.21) that

Blc,x,y) = B(c)

for all c € Cgy (Uy). In particular, we have

(e, x,y) =w(c,y) =ulV )

for all ¢ € Cg, (Uy), p-ae. (x,y) € X x Y. In addition, we know from equation (5.13)
that B(cic2) = B(c1)B(c2) via the definition of 8. Further, we always have d8(Uy) = 0.
Therefore, we can restrict our attention to VCJ- and conclude that d,3|vé : Vé'y — V(f:X isa
Lie algebra homomorphism.

In sum, we obtain Theorem 1.2 for the centralizer Cg, (Uy).
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THEOREM 5.4. (Extra central invariance of p) For any ¢ € Cg, (Uy), the map S : X x
Y — X x Y defined by

Se (6, 3) = (BOx, iy " (ey)

commutes with u'y x Uy, and is p-invariant. In addition, S¢,c, = Se, o S¢, forany cy, c3 €
Coy(Uy), and S1 = id fort € R.

Proof. Clearly, S, is well defined:
Se(x, ) = (g™ x iy ") S, (x, y) € supp(p) (5.25)

whenever (x, y) € supp(p). Also, one may check that S ., =S¢ S¢, for any cy, c; €
Cgy (Uy), and Su; =id for ¢ € R. Next, by equation (5.20), one verifies

W X TS ) = S X ) (x, )

forany r € R, (x, y) € supp(p). That s, (u'y x i}) o Sc = Sc o (u’y x Uiy).

Finally, let 2 be the set of (utX X Zi{,)-generic points, and we want to show that there is
a point (xg, yo) € QN SS 1o, By equation (5.25), it suffices to show that there is a point
(x0, y0) € N S7'Q. Fix ¢ € Cg, (Uy) N B(e, 8). Recall that

1 n
t=p@ = [ [ 3 tal, (). dnto dv),
y Jee T
Thus, there is Qy C Y with v(Qy) = 1 such that

1 n
[+ ¥ tat, ). dndo =1 (5.26)
cr

for y € Qy. Since v and my are equivalent, and Qy Nk~ 1Qy is my-conull, we get
that Qy N ¢~ !1Qy is v-conull. Choose yo € Qy N ¢ 1Qy N S(c), where S(c¢) is given by
Proposition 5.1 (cf. equation (5.15)). Then equation (5.26) leads to

/;p 1ok (yo), yo) dm(k) =1, /;p 1a(kyri(cyo), cyo) dm(k) = 1.

Then we can choose kg € CP such that (ko¥1(yo), o), (kovr1(cyo), cyo) € Q. Let
x0 := ko1 (o). Then by equations (5.15) and (5.17), we have

Se(x0, y0) = (@ (¢, Y0)X0, €¥0) = (kow(c, yo)kg kowr1 (30), €y0) = (kowr1 (cY0), €Y0).

Thus, (xo, yo) € 2N S.'Q.
Hence, since u'y x iy is p-ergodic, by ergodic theorem, for any bounded continuous
function f, we have

T
/ fdp = lim l / f((utX X ﬁly).Sc(xo, Yo)) dt
T—oo T Jo

1 T
= Jim 2 [ f(Sudro. don di = [ fo5dp
T—oo T Jo
and so p = (S¢)«p. O]

In particular, we obtain the following corollary.
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COROLLARY 5.5. (Extra central invariance of v) For any ¢ € Cg, (Uy), the map SZ :
Y — Y defined by

SCY 1y > ﬁ;a(c’y)(cy)

commutes with U', and is v-invariant. In addition, Sg’lcz = SCY1 SCY2 for any c1,c2 €
Cgy(Uy), and S, =id fort € R,
Y

It is worth noting that equation (5.11) can be interpreted through the language of
cohomology. More precisely, equation (5.11) implies the time change ty and 7y o ¢ are
measurably cohomologous.

THEOREM 5.6. Let ty € K, (Y). Suppose that there is a non-trivial ergodic joining
p € J(uly, qS,UY’Ty). Then ty (y) and ty(cy) are (measurably) cohomologous along u’, for
all ¢ € Cg, (Uy). More precisely, the transfer function can be taken to be

Fe(y) = alc, y).

Proof. By equation (5.20), for my-a.e. y € Y, x € supp(py), we have
t
/ Ty (uyy) — ty (uycy) ds
0

t t
= / Ty (uyy) ds — / Ty (uycy) ds
0 0

=z(y, 1) — z(cy, 1)

= a(c, y) — alc, uyy).
Thus, we can take the transfer function as
Fe(y) =ale, y).
Then 7y (y) and Ty (cy) are (measurably) cohomologous for all ¢ € Cg, (Uy). O

If Ty (y) and 7y (cy) are cohomologous with an L! transfer function, then we are able to
do more via the ergodic theorem.

LEMMA 5.7. Given c € Cg, (Uy), if:
e cismy-ergodic (as a left action on Y);
e 1y(y) and ty(cy) are cohomologous with a L' transfer function F.(y);

then for my-a.e. y € Y, we have
1

lim —a(c, y) = / a(e,y) dmy(y).
t—>o00 t

Proof. By equations (5.13) and (5.14), for ¢, ¢3 € Cg, (Uy), my-a.e. y € Y, we have the
cocycle identity

a(cicz, y) = aler, c2y) +ale2, y).
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Thus, if F.(-) € L'(Y), then by the ergodicity, we get

lim l(x(ck y) = lim lia(ci y)=/a(c y) dmy (y) (5.27)
k—oo k ’ k—o0 k ’ ’ ’ ’

i=0
O

Remark 5.8. The results obtained in §5.1 also hold true for p being a finite
extension of v, when (X, ¢>tU XXy s a time change of the unipotent flow on
X = SO(ny, 1)/ 'x. For example, we consider the case when ny =2, tx € CI(X),
7y = 1 (in other words, ¢IUY’TY = ,UY = u', is the usual unipotent flow, and v = my).
First, [Rat87] shows that (X, qb,U X:IX) has H-property. In particular, suppose that
p € J(@7™ oY) is not the product measure y x v. Then H-property of il = Uxetx

deduces that p is a finite extension of v (see Theorem 3, [Rat83]):
1 n
5 d s = - 5 d .
f £, y)dp(x, y) / - I; S, y) dv(y)

However, since VCLX = 0, by Corollary 5.2 (and equation (5.19)), we again have a map
Sc @ supp(p) — supp(p) given by
§C T (x,y) (u?((c’y)x, cy). (5.28)

In contrast to Theorem 5.4, S is p-invariant in this situation. We can further specify
a(c, x, y) in certain situation as follows.
First, under the current setting, equation (5.20) changes to

EWp(ey), D) +ale, y) = ale, ulyy) + EWp(y), 1)
for ¢t € R. It follows that

EWp().)
0= /0 Wy () — Ty () ds
E(Wrp(cy).t) Erp(3).1)
_ /0 T p(cy)) ds — /0 Ty, (v)) ds

W@ EWp ()0
=/ Ty " Yp(y) ds —/ Ty ¥p(y) ds
0 0

/Ot(c,y)-i-é(‘/fp (cy).0)

ale,y)
Ty, (y)) ds — /0 Ty yp(y)) ds

0

EWp(y)1) )
- fo t(uyx¥p(y)) ds

/*ot(c,u'yy)+$(1//p .0

EWp ()
A Ty yp(y) ds — /0 Ty ¥p(y) ds

ale,y)
- /0 Ty, (y)) ds

aleulyy) ~ alc.y)
= /0 t(uyil'y (Vp(y))) ds —/0 Ty ¥, (y)) ds.

https://doi.org/10.1017/etds.2022.83 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.83

3840 S. Tang

In other words, we have

aleulyy) alcey)
/(; T(uily(x)) ds = /0 T(uyx) ds

for p-a.e. (x, y) € X x Y and therefore

a(c,y)
/ T(uyx) ds = re
0

for some r. € R. It follows that

ale, y) =&, re) (5.29)
for p-a.e. (x, y) € X x Y. Moreover, we apply ity © X uy'* to equation (5.28), and get that
(x,y) — (u‘;((c’y)x, cy) — (x, u;r"cy) (5.30)

is p-invariant. In particular, suppose that Gy is a semisimple Lie group with finite
center and no compact factors and I'y C Gy is a irreducible lattice. Suppose the
sl,-weight decomposition gy = sl + VL of gy (see equation (2.3)) contains at least one
slp-irreducible representation V. C VL with a positive highest weight ¢ > 0. Choosing
¢ = exp(v¢), by Moore’s ergodicity theorem, we must have p = p x v (cf. Lemma 3.1).
Note that this coincides with the result obtained in [DKW22]. In addition, even if the
highest weight of V¢ is ¢ = 0 forany V. C VL, the only possible situation for p # p x v
is that a(exp v, y) =0 for all v € VL. Thus, by equation (5.30), we conclude that p is
(id x exp(v))-invariant for any v € VL. In §6.2, we shall see that (exp(v)) C Gy is a
normal subgroup, which leads to a contradiction. Thus, we conclude that VL =0and so
gy = sly.

5.2. Normal direction. Applying a similar argument in §5.1, we can study the behavior
of Jp along the normal direction Ng, (Uy) of Uy as well. Here we only study the diagonal
action provided by the sl-triple. Thus, let

Span{Uy, Ay, Uy} C gy, Span{Ux, Y,, Ux} C gx
be sl,-triples in gy, gx, respectively, where Y, is given in §2.1. Denote
ay = exp(tAy), ay =exp(tYy,).

We adopt the same notation and orderly fix the data as in §5.1; thus, 0, €, 1g,, 6, K, K 0
are chosen so that equations (5.1), (5.3), and (5.4) hold. (Here we further assume § < €.)
Fix |tg| < §,ay = ai?, anday = atXO. By ergodic theorem, there is A, , C Rtandiy >0
such that:

e forr € Ayy,y, we have
uyy,ayuyy € KO;
o Leb(As y N[A,17"]) = (1 —20)(" — 1) whenever " — 1" > Agand A" € Ag, .

Then by the assumptions, we have

Agyy C {r €10, 00) :dy(axwp(ugzy), Ep(ayugzy)) <2 pefl,...,n}}. (5.3
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It follows that for r € Ay, y, we have

2¢ > dx(ax ¥ ,(uyy), ¥ ,(ayuyy))
= dywx%(u’yy) ¥, Tayy))

z(ayy.e 0r)—-

=dy (aXuX 1»[fz,,(yr)(y) Uy
0
= g O ax Ty D 1 Ty eion @y y)

forany p € {1, ..., n} (cf. equation (5.9)).
Assume that 0 € Agyy. Let I = ((p1, p2),-..,(P2n—1,p20)) €{1, ..., n}?" be a
sequence of indexes and

wzp(ayy e tOr)(ayy))

Al =1{r € Aayy : pu—1 = ix(y. 1), pa = ixayy, e ) forallk € {1,...,n}}.

Then, A = Aéy v Ro=tk,, s(r) = e 0z(y,r), t(r) = z(ayy, e "r) satisfy equations

(4.32) and (4.33) for points

aXWPZk*l (y) € Y? szk (aY)’) € K

forall k € {1,..., n}. We can then apply Proposition 4.16 to Agy,y = [ ¢y, npn Aéy’y

forany A > Ap. Then we follow the same argument as in Proposition 5.1 (see also Corollary
5.2), and obtain the following proposition.

PROPOSITION 5.9. There is a measurable map @ : exp(RAy) x X x Y — Cg,(Ux)
that induces a map Sa; : supp(p) — supp(p) by

Su 1 (¥, y) > (@ (dy. x, y)agx, apy) (5.32)
forallr € R, p-a.e. (x,y) € X x Y. Moreover, we have

@@y, %, y) = uy " w ap, G ) ).y T, (533)

ri+r,
al 2

o ( , X, Y) = w(ay,w(ay,x y)aXx as, y)axw(ay,x y)aXl (5.34)

forr,ri,rm eR, p-ae (x,y) e X xY, t eR

Similar to the discussion after Corollary 5.2, we consider the decomposition in equation
(2.7) and write

a(ay X,Y)

Blay, x, y), (5.35)

where a(ay, x, y) € Rand B(ay, x, y) € exp VCX' Then by equation (5.33), we have

w(ay, x,y) =

2(dyy, 1) + (@, x, y) = alay, @ x T ) F e 2y '), (5.36)
Bldy. x,y) = Blay, """ x iy ).(x, ) (5.37)

for all , + € R. The same argument then shows that

a(ay, x,y) = alay,y), Blay,x,y) = Blay)
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for all » e R, p-ae. (x,y) € X x Y. In addition, following the same lines as in
Theorem 5.4, we obtain Theorem 1.2.

THEOREM 5.10. (Extra normal invariance of p) For any ay € exp(RAy), the map S, :
X x Y — X x Y defined by

Say © (X, ¥) > (Blay)axx, iy (ayy))
satisfies
Tt

Sar o Wy xTp) = (u§ " x Ty ") oSy

and is p-invariant. In addition, Sar1+r2 = San Sarz for any ri, ro € R. Also, we have
Y Y Y

Say 08¢ 0 Sa;l = Sayca;l

for any ay € exp(RAy), ¢ € Cg, (Uy).

COROLLARY 5.11. (Extra normal invariance of v) For any ay € exp(RAy), the map
Sgy : Y — Y defined by

Y . ~—a(ay,y)
Say 1y Uy (ayy)
satisfies
Y ~t _ ~e 't Y
Sa;ouy—uy oSa;
and is v-invariant. In addition, SY,IH2 = SY,1 SY,2 or any r1, r» € R. Also, we have
ay ay ay

Y Y oY _ oY
Say oS, o Sa;] = Sayca;l
for any ay € exp(RAy), c € Cg, (Uy).
THEOREM 5.12. Let ty € K (Y). Suppose that there is an ergodic joining

p € J(uly, qS,UY’Ty). Then ty(y) and ty(ayy) are (measurably) cohomologous along
uly for all af, € exp(RAy). More precisely, the transfer function can be taken to be

Fa (y) =€ a(ay, y).

Proof. By equation (5.20), for my-a.e. y € Y, x € supp(py), we have

r

et
e " / T(uyy) — tlayuyy) ds
0

et t
=e / T(uyy) ds — / t(uyayy) ds
0 0
=e "z(y,e't) —z(ayy, 1)
= a(ay, y) —alay, @00 (y)

= a(ay, y) — alay, uf,r’y).
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Thus, we can take the transfer function as

Fg, () = e"a(ay, y).

Then t(y) and 7 (ayy) are (measurably) cohomologous for all ay € exp(RAy). O

5.3. Opposite unipotent direction. Now we shall study the opposite unipotent direction
uy = exp(rUy), wy = exp(rU x). Unlike previous sections, we cannot directly obtain p is
invariant under the opposite unipotent direction. However, we compensate for it by making
the ‘a-adjustment.” More precisely, by choosing appropriate coefficients A > 0, set

Wi p () = ay i, (ay ™)

for a.e. y € Y. Then we shall show that (see Theorem 5.15)
i g (Wi p @ ), Ty Wi p () = 0.

Here we adopt the argument given by Ratner [Rat87] and make a slight generalization. It
is again convenient to consider u, a, u € SL(2, R) as (2 x 2)-matrices. We first introduce
a basic lemma by Ratner that estimates the time difference of the ¢,U T _flow under the
u’,-direction.

First of all, one directly calculates

u,ﬁ,_lo rrf|{ 1 r
Y2y =t 1 1lo 1| |t 14t

1 r 1 1 0
_ |: 1+ rt :| 1+ rt ¢ X _ ﬁ;,/(1+rl)a;2 log(l-i-rt)uly/(1+rt)'

0 1 1+rt 1+t

(5.38)

We are interested in the fastest relative motion of u',-shearing

¢ t t/(14rt)
A (@)=t — Tor and A (y, 1) = / Ty (uyuyy) ds — / Ty (uyy) ds.
+rt 0 0
(5.39)

LEMMA 5.13. [Rat87, Lemma 1.2] Assume ty € C'(Y). Then given sufficiently small
€ > 0, there are:

o §=465(e) =0

o [=I()>0;

o E=E(E)CYwithpu(E)>1—c¢

such that if y, w\yy € E for some |r| < 8/1, then

AV (y, 1) — Ay ()] < O(e)| A (1)] (5.40)
forallt € [L,8|r|7"1.
Proof. Denote

Ty (al,y) — v (v) Ty @y y) — 1y (y)

Ta(y) = th_r)% p , m(y) = t]l_r)l’(l) ;
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The functions t,, 74 are continuous on Y and
Ity D [Ta D] TzaO)] = Ty llerery (5.41)

for all y € Y. In addition, we have

/y ra(y) dmy (y) = fy ra(y) dmy () = 0.

Given € > 0, we fix the data as follows.
Let K C Y be an open subset of Y such that K is compact and

my(K)>1—¢, my(W@K)=0,

where 0K denotes the boundary of K.
e Fix a sufficiently small §' = §'(¢) ~ 0 such that:
(1) w(B(@K,8)) <e, where B(0K, §') denotes the §’-neighborhood of 9K (it
follows that (K \ B(0K, 8")) > 1 — 2¢);
(2) ifyi,y2 € K,dy(y1, y2) < ¥, then

ITa(y1) — Ta(2)| < €. (5.42)

e Fix § € (0, (1/100)8") such that if |r¢| < §, then for all s € [0, ],
1/ +rs)>2—1  2s
1/tA(t) t

e Fix 1y =t1(¢) >0 and a subset £ = E(¢) C Y with my(E) > 1 — € such that if
y € E, t € [t], 00), then the relative length measure of K \ B(0K, 8") on the orbit
interval [y, u’Yy] is at least 1 — 3¢ and |e2(2)| < €, |e3(¢)| < €, where

le1s(s)] <€ wheree; (s) = (5.43)

t

1 ! 1
e(t) = A / y(uyy)ds —1, e3(r) = A / Ta(uyy) ds. (5.44)
0 0
e Fix [ =I(€) > t1 such that
n/l <e. (5.45)

We shall show that if y,ﬁg/y € E for some |r| <§/1, and t € [, 8|r|_1], then equation
(5.40) holds if € is sufficiently small.
Now let us estimate A/ (v, t). Recall that

t t/(14rt)
A (y, 1) = /0 Ty (uyuyy) ds — /0 Ty (uyy) ds.

Then by equation (5.38) and the mean value theorem, we have

t/(1+rt) t d
1473 s
fo oy y) ds = fo oy /)y

(1+rs)?
/’ (@2 R o) s o ds
= Tyla u uvu G —_—
0 ridy Y yUyy (1 +rs)2
! ds
= T Sut - _—
./0 v (uyltyy) (1+rs)2
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r o ks s ds
- /0 H_—rsfﬁ(uy uyiyy) - Arrs)?
+ /t 2log(1 + ro)a(@§Ty T Vuy iy
) aldy Uy Uyltyy (A +rs)2
where kg € [—r/(1 +rs), 0] and g € [0, 2 log(1 + rs)]. This implies

T ! S —=r l
Ary(y,t)=/0 TY(“Y”Y)’)( dtr )2>

/Z - T(kys YUuyy) - LR
Uy Uyl
o 1+rs " vy (1+rs)?

t
—/ 210g(1+rs)ta(ay uyr/(H”) Yuyy) -
0

=Ji+ L+ J5

ds
(1+rs)?

We estimate the integrals Ji, J2, J3 separately.
(1) Using equations (5.43) and (5.44), we have

1 ! _ 1 [t _
Ji = 2A,(t)t—2 /0 sty (uyuyy) ds + Ar(t); /0 €11 () ty (uyuyy) ds

1 ! _
= 2Ar(t)t—2 /0 sty (uyyy) ds + A (1) O(e),

since u}yy € E. Now by the integration by parts and equations (5.44), (5.41), and (5.45),
we have

1 t
1_2,/0 sty (uyuyy) ds

1 ! S —r 1 ! ! P—r
— Ty (uylyy) ds — = Ty (uyuyy) dp | ds
t Jo = Jo 0
1 t 1 s
1 +et) — —2[/ + / ](/ Ty (ufy iy y) dP) ds
4 f 0 0

1 ! 1
=1+e() — P / s(14+e€x(s))ds + O(e) = 3 + O(e).
4]

It follows that

J
‘ ! —1‘50(6).
Ap(1)
(2) For J,, by equation (5.45), we have
t
r ks 5 ds |A(2)]
Ll = ; — | <0 < 0(e)|A(1)].
1] /01+ @) s | < ( 1) < o@ian

(3) Note that since dy (57, " usw, y, ul @y y) < 8, we know ¥,/ Vs,

y € Kifuluyy € K\ B(8K,8’).N0w set

I, = {s €[0,1] : u}iyy € K \ B(OK, 8)}.
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Then by equation (5.44), one has Leb(If, ) < 3et. Then for J3, using equations (5.41) and
(5.42), we have

' - ds
= = ) 2lee oY) - s

.L,a(ags——r/(l‘i’”) K} —r

< | log(1 —|—rt)|[/

Iy

vy) — ra(uYuYy)‘ ds + etlltyllcl(y)]

< 1] log(1 + r0)(e + ellTyllcryy) < O©IA, (D).

We also have

ds
(1 +rs)?

1
‘/ 2 log(1 + rs)t, (uyuyy) - <m — 1> ds
LA Oyl ey < O©IA D).

t t
‘ / 2 log(1 + rs)t, (uyuyy) - — / 2log(1 +rs)t, (uyuyy) ds
0

Finally, by using the integration by parts, we get

t
‘ / log(1 + rs)ta(uyuyy) ds
0

t t s
S —=r _ p=r r
10g(1+rt)/ T (uy iy y) ds /0 </0 Ta(uyUyy) dP>1+rs ds
A ()] / T, (uyuyy) ds| + A (t)|‘/ < Ta(ul;ﬂgfﬂ dP) ds

A R
= e3(D)|A, (t)l-i-| (t)l‘[/ / ](/ ra(u§ﬁ§y) dp) ds

A ()|
- 1 ”TY”CI(Y)"'f sez(s) ds

n

L e)|A ()] +

KL 0(©)|A(D)].

Thus, we conclude that |J3] < O(e)|A(2)].
Therefore, combining the above estimates, we have

A (3, 1) = Ar(D] < O() AL (1),
This completes the proof of the lemma. O

The following lemma tells us that we only need to know the fastest relative motion at
finitely many different time points to determine the difference of two nearby points.

LEMMA 5.14. (Shearing comparison) Given € > 0, let x,y,z € X be three e-nearby
points such that the fastest relative motions between the pairs (x, z) and (y, z) at timet > 0
are q1(t) and q»(t), respectively. Assume that there are s1, s > Qwiths| € [%sz, %sz] such
that

dy(uyx, uyqi(s)z) <€, dyuyy, uyqr(si)z) <€, day(qi(si), qa(si) <€
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fori € {1, 2}. Then we have

dy(uixx, uth) < 0O(e) (5.46)
fort € [0, s3]
Proof. This is a direct consequence of Lemma 4.3. Assume that x = gy, x = hjz,

y = hpz for some g, hy, ho € Gx. Then by the definition in equation (3.4), there are §1(¢),
82(t) € Gx withdg, (81(t), e) < €,dgy(82(1), e) < € such that

uhiy' = 81(qi(1),  uyhouy' = 8(1)qa (1)
for t € [0, s]. By the assumption, we have
wguy' = uihihy luy' = 81(0q1 (g (1) 820! (5.47)
and
G16DR6D ™ <€ g <e (5.48)

Note that ¢ (t)qz(t)’l € Cgy (Ux) and so their corresponding vectors in the Lie algebra
are polynomials of ¢ with the degree at most 2 (see equations (2.5) and (3.4)). Thus, we
can write

s(j)

hiis! = exp <Z > b’]v’]> G1(ga ()~ = exp (Z pj(t)ng(j))
i=0 -

J
where p;(t) = Zfi{)) bf(‘i)_i (¢)¢" is a polynomial having the degree at most 2, |b;| < €,

and v; € Vj is the ith weight vector of the sl;-irreducible representation V;. Then equation
(5.48) and the proof of Lemma 4.3(1) with « = 1 imply that

|b]§.(j)_i| < 0()s; . (5.49)
It follows that for ¢ € [0, s3],
Ipj(1)] < O(e) andso qi1()g2()™" < O(e).
Then by equation (5.47), we obtain equation (5.46). O
Next, we shall prove Theorem 5.15. The idea is to consider the fastest relative motion
of the pairs (Wy ,(uyy), Wi p(¥)) and (u'y Wi p(y), Wi, p(¥)) at finitely many time points,
and then apply Lemma 5.14. First, we orderly fix the following data.
e (Injectivity radius) Since I'x is discrete, there is a compact K; C X with
U(W;(Kl)) > 999/1000 and D; = D{(K) > 0 such that if g e ?_I(Kl), then
D is an isometry on the ball Beo\gy(g, D1) of radius D; centered at g. Here,
P:CP\Gx — CP\Gyx/T'xy = X is the projection

P:CPg> CPgly.
e (Distinguishing Ep, Eq) There is K, C Y with v(K32) > 999/1000 such that

dx(Y ,(¥), ¥y (») > D2 (5.50)
forye Ky, 1 <p<q <n.
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Define D = min{D1, D», 1}.

(Lemma 5.13) Let 8 = min{8((1/10)27%D), (1/10)27%D}, [, = 1((1/10)27% D) and
Ex = E((1/10)27¥D) C Y be as in Lemma 5.13 for ty.

e (Lusin’s theorem) There is K; C Y such that v(K}) > 1 — (1/10)27* and WHKL is

uniformly continuous for all p € {1, ..., n}. Thus, for any € > 0, there is §'(¢) > 0
such that, for p € {1, ..., n},dy(y1, y2) < 8'(e) and y1, y2 € K, we have
dx (¥ ,(yD). ¥ ,(2)) < €. (5.51)

Let 8, = min{é'((1/10)27% D), (1/10)27*D}.

e (Ergodicity) Fix ty € C'(Y). By the ergodicity of unipotent flows, there are T} >
max{lx, 208; ', 208"} and subsets K} C ¥ with v(K}) > 1 — (1/10)27F such that
ify € K.t > Ty, then:

(1) the relative length measure of K;{ NE;NK;N ﬂp E;I(Kl) on the orbit
interval [y, u}, y] is at least 998/1000;
(2) we have, by the ergodic theorem,

1 1 ! P 1 __4
—z(y,t) — 1| = |- ty(uyy)ds — 1| < —27"D. (5.52)
t t Jo 10

e (Fastest relative motion)

(1) Forr eR,let Lil(r) denote the first £ > 0 with A, (1) = izD/10 fori € {1, 2},
where A, (¢) is defined in equation (5.39). Note that for sufficiently small r, one
may calculate that

9 11
1 2 2
Li(r) e |:2—0L1(r), %Ll(r)}. (5.53)

(2) Asinequation (4.4), for x, X3 € X close enough, we can write X7 = gx», where
g = exp(v) for v € sly + VP+. Then the H-property (Remark 3.4) tells us that
attime t € R, the fastest relative motion is given by

q(X1, %2, 1) = TTCq(Ux) Ad(u’y).v.

Then let L (x7, X2) denote the first # > 0 with [|¢ (%7, X2, 1)|| = i*D/10.
Fory eY,i € {1, 2}, let
L'(y,r) = min{L{(r), LY, @ y), U1 - . .. L5, @ y), ¥, 0N} (5.54)

By applying Theorem 3.3 to Q = BCGY(UY)(E’ i2D/10) and € = (1/10)27%, we can
choose small 0 < wy < min{8, 8;} such thatif |r| < wy, y,u"y € K}, i € {1, 2}, then

we have
. . 10i°D
L' = L'(y,r) > max { 10T}, — (5.55)
k
andforall p € {1, ..., p},
=2 g kT @ ). ukg Dy 0)) < 274D 5.56
”ql)” = W’ X(uXI/fp(u )’)’ quP( )WP(Y)) = E > ( . )

where g, = g( ,@" ), ¥, (), LY).
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Now let
K := K, N K}/ N Ex. (5.57)
It follows that v(K,?) >1—27% Let
10
M =2 max { log = log Tk}, Q= KD, Wi, () = a¥,ay™y).

I1>1 k>1
(5.58)

It follows that v(2) > 1.

THEOREM 5.15. Let the notation and assumption be as above. Then forr € R, y € Q, we
have

Jim dy (Wi @), Wy Wi p () = 0.

Proof. Suppose that y, uyy € =1 iz ay' (KD). Then y,ityy € aj*(K?) for suffi-
ciently large k. For r € R, let r, = e~ r. Then for sufficiently large k,
a;kkﬁg,y = ﬁ;fa;)‘ky and |rg| < |r|a),% < wy.
Thus, equation (5.55) holds true for Li(y, r¢) for any sufficiently large k, i € {1, 2}. In the
following, we fix i = 1 (for the case i = 2 is similar).
Next, since by equation (5.55) L'(y, ry) > 10T}, there exists #; € [(98/100)L!(y, ry),
(99/100) L' (y, r)] such that

uYaY)Lku;’y’ “t;a;kky €eK,NKxN ﬂ E;I(Kl), (5.59)
p
where t,/( = 1/ (1 + r¢t). Then by equation (5.38), we get

—Ak—r Tk —Tk

dy (u* vy uyy,u ay y):dy(uyuyay y,u ay D)
1
rk 4 7
=dy 1+ rite ”Y“Y kv, u a y < min{dg, Bk} (5.60)
0 1+ rity

where the last inequality follows from equation (5.39):

Ap@) _ A (LG, r) _ D min{de, &)
ko T - 10 20

This implies via Lemma 5.13 that

[rete] <2

< min{&, §;}. (5.61)

1
A7 @y ™y, 1) = A (1] < 527D (5.62)
since ay *y, Wfay ™y € Ey and ty € [Ty, Slrel ™1 C ks Sxlrcl ™1,
Next, consider

Ak r

- —h— - f W= A - T =
“i?l/’p(aY “Uyy) = ‘pi(p,k)(“;aY YY) “kap(aY y) = 1pj(p,k)(“;aY V).
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where s; and ), are defined by
2ay iy, 1) =6 2(ayyy. 1) = hy. (5.63)

Then A;) (ay. ky, t) = sk — h), and by equation (5.52), we have s; € [(97/100)L"(y, r¢).
(995/1000)L (v, r)].

CLAIM 5.16. Forp € {l,...,n},

h,—s 2
d(qp(si), uy ™) < 02 kD,

where q,(sk) = q( ,@*ay ™ ), ¥, (ay ™ ), sp).

Proof. Since |ry| < wy and aY 7] aY ky e Kk, by equation (5.54) and Lemma 5.13,

we know that
AT @by, 101 < 1A (1)) < =D (5.64)
Yk =10 " =100 :
It follows that
dg W ,(ay™ ), Wl (@™ y)) < AD. (5.65)

However, by equation (5.56), we have

lgp(so)ll < % dg Wy , @ ay™ y), wlqp(s)wplay ™) < ll—oszD. (5.66)
It follows that
dz Sy , @ ay ™ y), u ¥ ,(ay ™) < 5D (5.67)
for p € {1, ..., p}. Therefore, equations (5.65) and (5.67) tell us that
d5 Wiy, k><u’;a;“ﬁ’yy>,%<,, k)<u’éa;“y>>
= dxux vy, @yay™y), ux Wp(ay “¥) < D.

Then by equation (5.50), we must have i(p, k) = j(p, k). Then by Lusin theorem
equations (5.51) and (5.60), we further obtain

dg W , @ ay™ y), Wi (ay™ y) (5.68)
_ . — t 1 __
= dx(i(pa (W ay Ty ). Vi (wpay™ ) < 5274D.
Combining equation (5.66), we get

hk Sk

ds(qp(se) - Wk prpay ™ y), uy " Sy, (ay ™ y)

- @ 2
= dx(uxqp(sk)lffp(ay ) uX 1//l’(aY ) = E 27D,
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Since by equation (5.59), uX wp(ay vy e Ki, llgp(sill < (1/10)D, |sx — hi |l =
|A (aka, t)| < (11/100) D, we conclude that

B —si 2 __
d(gp(si), uyt ) < 02 kD

forany p € {1,...,n}. O]

It then follows from the definition of L!(y, r) in equation (5.54) that

9 9
lgp (sl = TR Ry — skl = Too? (5.69)

for any p € {1, . n}.
However, denote hk = hk/(l — rkh ).

CLAIM 5.17. We have
\hi — si] < 2'7%D.
Proof. One can calculate via equation (5.62)

|hi — skl = |hi — hy, — (s — hy)|
= |Ay (hg) — Ary(ay v, i)l
< A (i) = Ap (0| + | Ap (1) — AFY (ay v, i)l

1
= 1An () = Ar )l + 7527 “D. (5.70)

However, by the ergodicity equations (5.63) and (5.52), we have
1 2
W, —t] < —=2"*D.1, < —27%D . 4.
e =l = 15 k=10 ¢

Then by equation (5.61) and |A,, ()| < D/10, we have

hy, by —1; ¢
|he — 1] = _—2 D - t.
L —reh), l—rktk (1 = rehy) (1 = rz))| = 10
It follows that
|Ar (hie) — Ay (01| = Irichihy, — retety]

< |rkhk(h;< — )|+ |"kt]/¢(hk — 1)l
< —02 kD - rehn + —02 kD -ty
< 42 kD A + 82 kD 1A < 122 kD.
=10 “1T 0 “1=10

Then equation (5.70) is clearly not greater than 2' =% D. O
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Now Claims 5.16 and 5.17 imply that ;. € [(96/100)L"(y, r¢), (999/1000) L (v, r)],
|h, — hi| € [(9/100) D, (11/100)D], and

o 2
dg W @ ay™ ), i ay ) < 527D,

10
_ 2 .
AT, (ay ™ ). uy T p(ay™ y) < 02D,
B, —h 2
dey(qp(hi), uy ™) < 7527°D,

forpef{l,...,n}.
Similarly, for i = 2, there exists i € [(96/100)L2(y, r1), (999/1000)L2(y, r)] and
h},, € Rwith |k}, — hial| € [(9/100)22D, (11/100)2% D] such that

hip— — Mp—  — 2
dx ™, @ ay™ ) uy Wy (ay ™ y) < £5274D,

hga— _ B, 2

dx(uy TRV pay™ ), ux Wy (ay ™ y) < 2'74D,
) ,—h 2

doy (@ (hip) uy® ) < —217%D,

for p € {1, ..., n}. Note that by equation (5.53), we have h; € [%hkg, %hk,g]. Thus, we
have met the requirement of Lemma 5.14 with pairs

W, @ ay™ ), ¥, ay™y)) and  @EW ,(ay ™ 9), ¥ p(ay ™ y))
at time ¢t = hy, hi . Then Lemma 5.14 implies that

AW, (@ ay ™ y), Wy Wy ,(ay ™ y) < 0( 02 kD) =002

for ¢ € [0, hx2]. Moreover, if we write w (u aY “y) = gp, kuxwp(aY y) and

s(j)
gpk = eXp (Zzb’ ’>,
J

where v;'. are the weight vectors of the sl;-irreducible representation V;, then by equation
(5.49), we deduce

s(j)—i —kyg—i
|b/.f 1< 0Q N,

Finally, one calculates via equations (2.6), (5.55), and (5.58)

(i)
a)xfkgp,ka;(kk < exp (Z Z o~ k)hg(” A ’ g(]) ;)

J

s()
= exp (Z Z 0(2—k)h;'2v’> <0@Q™.
j =0
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Therefore, we conclude that

ds (Vg @y ), Wy Wi, (1) < 0275

for p € {1, ..., n}. The theorem follows. O

Remark 5.18. Similar to Remark 5.8, Theorem 5.15 also holds true for p being a
finite extension of v when (X, ¢tU X™X) is a time change of the unipotent flow on X =
SO(ny, 1)/ x:iffor f € C(X xY),

1 n
/ [, Ydp(x, y) = / =D fWp(), 9 dv(y),
p=1

then we still have
Jim_ dx (Wi @ y). Wy Wi p (7)) = 0

forpe{l,...,n}andae.yeY.

6. Applications
In the previous sections, we considered the measure of the form

l &
[ rao= |+ 3 ST dvi
p:

for some measurable functions Ep. In addition, we studied the equivariant properties of

¥ - In this section, we use these results to develop the rigidity of p.

6.1. Unipotent flows of SO(n, 1) versus time changes of unipotent flows. In this section,
we shall prove Theorems 1.3 and 1.6. Let Gx = SO(nx, 1), Gy be a semisimple Lie group
with finite center and no compact factors, and 'y C Gx, I'y C Gy be irreducible lattices.
Let (X, u) be the homogeneous space X = Gx/'x equipped with the Lebesgue measure
1, and let qb,U ¥ = u', be a unipotent flow on X. Suppose that:
e Y is the homogeneous space Y = Gy/T'y;
e my is the Lebesgue measure on Y;
e uy € Gy is a unipotent element that Cgy, (uy) only contains vectors of weight at
most 2;
e 1y eK (Y)N c! (Y) is a positive integrable and C! function on Y such that ty, r;l
are bounded and satisfy equation (2.10);
iy = IUY’TY of the unipotent flow uy;
visa ftly-invariant measure on Y;

o pelJl, ¢,U Y™y is a non-trivial (that is, not the product u x v) ergodic joining.

PROPOSITION 6.1. ty(y) and ty(cy) are (measurably) cohomologous along u’Y for all
¢ € Cg,(Uy). Further, if ty(y) and ty(cy) are Ll—cohomologous, then after passing a
subsequence if necessary,

WH(y) = lim WE(y)
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exists for v-a.e. y € Y, where \If,f(y) =Y p(y) i pell,...,n}} and Vi p(y) is given
by equation (5.58).

Proof. The first consequence follows from Theorem 5.6. For the second one, we first apply
Lemma 5.7 and obtain

1
lim —-a(c,y) = / al(e, y) dmy(y)
t—00 t

for m-a.e. y € Y whenever ¢ is my-ergodic. Note that df : Cq, (Uy) — Vclx sends
nilpotent elements to nilpotent elements. Thus, for weight vector v € Cy4, (Uy) of weight
¢ <2,v-almostall y € Y, we have
- 2 /20N v _

, uS, ORI g ey (esM 20 W () for ¢ > 1,
\Ijk (CXP(U)Y) = e’)‘ka(exp(v) y) A A
Uy ay Blexp(v))ay* WiE(y) for ¢ = 0.
Thus, after passing to a subsequence if necessary, we have

J elexp(v),)

Uy B(exp(v)) limg 00 Wi (y) for¢ =2,
lim Wi (exp(v)y) = | limg oo WF (1), forc =1 (6.1)
k— 00

exp(vo) limg— 0o W7 () for ¢ =0,

where B(exp(v)) = exp(vp + vz) for vg, v2 € Vé'x of weight 0 and 2, respectively. In
particular, limg_, oo W} (exp(v)y) exists whenever limy_, o W} (y) exists. In addition, by
Theorem 5.15, we have

. L ¥ /=] — * —
nllfgo d (Vi (uyy), 'y Wi (y) =0

forr e R,v-ae.yeY.
It remains to show that for v-almost all y € Y, there exists a subsequence {k(y, [)};en C
Nand W, (y) € X such that

lim Wiy p(v) = Wy (y). (6.2)
[—o00
To do this, write X = U;—; Ki, where K; are compact and t(K;) /' 1 asi — oo. Let

o =UNUN ¥k

i=1 k=1 j>k p=1
CLAIM 6.2. v(Q2) = 1.
Proof. From a direct calculation (recall that dv := tdmy), we know

m(UNU N widmo) = AU N vi30m0)

i>1k>1 j>k p=1 k=1 j>k p=1

:kli“é‘omY( Uun \If;,i(m) > my (, a M K;)

jzk p=1

for any p, j, and i. As t(K;) /' 1 asi — oo, the claim follows. O
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Then by Claim 6.2 for y € €2, there exists i > 1 such that W; ,(y) € K; for infinitely
many j. Thus, we proved equation (6.2). Therefore, since the opposite unipotent and central
directions generate the whole group (uy, Cg, (Uy)) = Gy, we conclude that after passing
a subsequence if necessary,

lim Wy ,(y)
n—od
exists for v-a.e. y € Y. O

Then, define a measure p on XxY by

~_ [y
[ rar=| 32 0. dmy )

for f € C(Y x Y), where ¥*(y) = {W;(y), ..., ¥,(y)}. Then p is a non-trivial (u’X X
uty)—invariant measure on X x Y such that (m)«p = wand (y)«p = my. Then, Rater’s
theorem [Rat90] asserts that C” = {e} and

p(stab(p ).(xo0, yo)) = 1

for some (xo, yo) € X x ¥, where stab(p') := {(g1, g2) € Gx x Gy : (g1, 82)+P =0 }.

Then let:

e staby(p):={(e,g2) € Gx x Gy : (e, g2)+«p = p } (note that staby(p ) < Gy is a
normal subgroup of Gy);

° Fi ={y:¢g 'ygeTly})forg e Gyx.

Then Ratner’s theorem [Rat90] further asserts that there is gg € Gy and a continuous

surjective homomorphism ® : Gy — Gy with kernel staby (0 ), ®(g) = g for g € SL»

such that

{W1(hTy), ..., Y (hTy)} = {®(W)y1goTx, . . ., P(W)yngol'x} (6.3)
for all 1 € Gy, where the intersection I'g ;== ®(I'y) N F§° is of finite index in ®(I'"y) and
in Ff(o, n=|a(l'y)/Tgland ®(I'y) = {yplo: p €{l,...,n}}.

Next, by using Proposition 6.1 and equation (6.3), for any o > Oe > 0, there exists a
subset K C Y with v(K) > 1 — o and kg > 0O such that

max min dx (W, (hTy), ®(h)y,g0lx) < €
P q
for hI'y € K, k > k. In particular, by the ergodic theorem, we know that for v-a.e. y € ¥,

there is Ay C R and Ag(y) > O such that:

e forr € Ay, wehaveuyy € K;

e Leb(AyN[0,A]) > (1 —20)A whenever A > Ao(y).

Therefore, one can repeat the same argument as in §5.1, and then conclude that there exists
' (hTy) € Cgy (Uy), ¢'(p, hTy) € {1, ..., n} such that

Wi p(hTy) = ' (hTy) @ (h) Yy (p.iry) 80T x

for v-a.e. h['y € Y. We can then write

Yp(hl'y) = c(hly)®(h)yq(p.ary) 80l x
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for some c(hl'y) € Cg,(Uy), q(p,hl'y) € {1,...,n}, v-ae. hl'y € Y. Thus, let
I =(q1,q2,--.,qy) be apermutation of {1, . .., n},

Sp={yeY:q(l,y)=q1,....q(1n,y) =qn}
and let
Up(») =Yg, (») wheny € Sg....q.)-
Then 1;,, () plays the same role as ¥, (y) and satisfies
Vp(hTy) = c(hTy)®(h)ypgolx (6.4)

for v-a.e. hI'y € Y. Thus, without loss of generality, we assume that r,, satisfies equation
(6.4). It follows that the map Y : supp(p) — X x Y defined by

Y :(phTy), hT'y) = (P (W) ypg0Tx, hily) forp e {1,...,n}
is bijective and satisfies
Y (ulex, iy () = G5 x us )., ) (6.5)
for p-a.e. (x, y) and ¢t € R. Equivalently, we obtain the following proposition.

PROPOSITION 6.3. Assume that ty(y) and ty(cy) are L'-cohomologous for all
¢ € Cgy(Uy). Then, tx = 1 and ty are joint cohomologous.

Proof. By equation (6.5), we can write down the decomposition in equation (2.7) for c¢(y)
as

) =uib
and
a(y) +1 =@, ) +awi"y).

1t follows that
E(y.t) E(y.)
/ ) — 1ds = 1 — (v, 1) = a@SP"y) — a(y).
0

Thus, 1 and ty are joint cohomologous via (p, a). O

Recall from equation (6.1) that when a weight vector v € Cy,, (Uy) of weight ¢ > 1, we
know that 5 is invariant under

J alexp(v).)

uy B(exp(v)) x exp(v) forg¢ =2,
id x exp(v) for¢ =1, (6.6)
exp(vg) X exp(v) for ¢ =0,

where B (exp(v)) = exp(vo + v2). Since p is also (u’, x u',)-invariant, if B(exp(v)) = e,
then Moore’s ergodicity theorem and Lemma 3.1 imply that (exp(v)) C ker ® is a compact
normal subgroup of Gy. It is a contradiction. Thus, we make the following conclusion.
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PROPOSITION 6.4. The map df| Vi Vé‘y — Vé‘x is an injective Lie algebra homomorphism.

6.2. Time changes of unipotent flows of SO(n, 1) vs. unipotent flows. In this section, we
shall prove Theorem 1.8. Let Gx = SO(ny, 1), Gy be a semisimple Lie group with finite
center and no compact factors and I'y C Gy, I'y C Gy be irreducible lattices. Let (Y, v)

be the homogeneous space Y = Gy /'y equipped with the Lebesgue measure v, and let

tU " = u}, be a unipotent flow on Y. Suppose that:

e X is the homogeneous space X = Gx/I'x;

e ux € Gy is a unipotent element;

o 1x € K, (X) is a positive integrable and C ! function on Y such that ty, Ty ! are
bounded and satisfies equation (2.10);
iy = ¢IUX’T of the unipotent flow ux;
Wisa ﬁtx-invariant measure on X;
p € J (i, u}y) is an ergodic joining that is a compact extension of v, that is, has the
form

1 n
o= [ [ 53 £ty ) dmd dviy)
y Jee T
for f € C(X x Y) and compact C* € Cg, (Ux).
Recall that in Remark 5.8, for ¢ € Cg, (Uy), we know that p is invariant under the map
Se: (6, 3) > W BO)x, )
(cf. equation (5.28)). In addition, «, 8 satisfy

EWpey), 1) +alc, y) = alc, ulyy) + EWp(y), 1),

a(ciez, y) = alcr, 2y) +alez, y),  B(cicz) = B(c1)B(c2), (6.7)

where

E(x,1)
t = / Tx (uyx) ds.
0
Moreover, if B(c) = e for some ¢ € Cg, (Uy), then we have equation (5.29):

ale, y) = &(x, re) (6.8)
for some r. € R. Note that equation (6.8) implies that
(x,y) — (ul;((c’y)x, cy) — (x, u;r"cy)
is p-invariant. Thus, Moore’s ergodicity theorem and Lemma 3.1 force
a(exp(v),y) =0 and (exp(v)) C Gy (6.9)

is compact. In particular, we obtain equation (1.2):

dplys(v) #0
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for any weight vector v € VCLY of positive weight. Inspired by this, we deduce the following
lemma.

LEMMA 6.5. For weight vectors v € Cq, (Uy) of weight ¢ # 0, 2, we must have
dpg) =0.

Proof. Similar to Theorem 5.10, one can deduce that for r € R,

S a(ay,y)
Say, @ (x, y) > (uy " B(ay)ayx, ayy)

is p-invariant. Also, we have

1

Say OSCOSa;l =S

aycay
for any ay € exp(RAy), ¢ € Cg, (Uy). In particular, one deduces
Blay)ayBlayNay" =e, PBlay)ayp(c)playay” = Blaycay”).
Thus, suppose that v € Cg, (Uy) is a weight vector of weight ¢ # 0, 2. Then,
Blexp()™” = Blexp(e?v)) = p(aj exp(v)ay”)

= Blay)ayB(exp(v))B(ayNay" = ﬂ(afy)a;(ﬂ(exp(v))a;rﬂ(afy)_l-
(6.10)

Assume that B(exp(v)) = exp(w) for some w € Cg4, (Ux). By the assumption, w has to be
nilpotent and so

ayBexp(v))ay” = ay exp(w)ay" = exp(e"w). (6.11)
Combining equations (6.10) and (6.11), we get
Pl = |l Pwll = || Ad Bay).e’wl = [le"w] = ¢ |[w],
which leads to a contradiction. O

Then by Moore’s ergodicity theorem and Lemma 3.1 (cf. Remark 5.8), we make the
following conclusion.

COROLLARY 6.6. If Cg, (Uy) contains a weight vector of weight ¢ # 0, 2, then
P =W XV

Now we focus on the case ny = 2 and vy € K(X) N C'(X). Note that in this case,
Ratner [Rat87] showed that EttX also has H-property. Thus, we can repeat the same idea
as in §6.1 to discuss the case when Cg, (Uy) consists only of weight vectors of weight
¢ = 0, 2. Note that since 8 = 0, by equation (6.8), we must have a(c, -) € L°°(Y) for any
¢ € Cg, (Uy). Then, similar to Proposition 6.1, we have the following proposition.

PROPOSITION 6.7. Assume that Cg,(Uy) consists only of weight vectors of weight
¢ =0, 2. Then after passing a subsequence if necessary,

W) = lim W () (6.12)
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exists for v-a.e. y € Y, where \IJ,f(y) =Y p(y) i pell,...,n}} and Vi p(y) is given
by equation (5.58).

Remark 6.8. One non-trivial step of Proposition 6.7 is to obtain a similar version of
Theorem 5.15. This requires that the time change iy also has H-property. See [Rat87]
Lemma 3.1 for further details.

Then by Ratner’s theorem (cf. equation (6.4)), there exists c(hl'y) € Cgy(Ux) =
exp(RUYx), a homomorphism ® (%), vp, g0 € Gx such that ¥, can be written as

Yp(hl'y) = c(hTy)®(h)ypgol'x (6.13)

for A"y € Y. Then as in Proposition 6.3, we get the following proposition.
PROPOSITION 6.9. tx and ty = 1 are joint cohomologous.

Finally, consider p is non-trivial v € Cg, (Uy). Since B(exp(v)) = e, equation (6.9)
asserts that

a(exp(v),y) =0 and (exp(v)) C Gy

is compact. However, Ratner’s theorem implies that (exp(v)) C ker ® is a normal sub-
group of Gy. It is a contradiction. Thus, we conclude

Ve, =0.

Therefore, we have proved Theorem 1.10.
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