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Abstract. Let utX be a unipotent flow on X = SO(n, 1)/�, utY be a unipotent flow on
Y = G/�′. Let ũtX, ũtY be time changes of utX, utY , respectively. We show the disjointness
(in the sense of Furstenberg) between utX and ũtY (or ũtX and utY ) in certain situations. Our
method refines the works of Ratner’s shearing argument. The method also extends a recent
work of Dong, Kanigowski, and Wei [Rigidity of joinings for some measure preserving
systems. Ergod. Th. & Dynam. Sys. 42 (2022), 665–690].
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1. Introduction
1.1. Main results. In this paper, we study the rigidity of joinings of time changes of
unipotent flows. First, let:
• GX = SO(nX, 1), GY be a semisimple Lie group with finite center and no compact

factors and �X ⊂ GX, �Y ⊂ GY be irreducible lattices;
• (X, mX), (Y , mY ) be the homogeneous spaces X = GX/�X, Y = GY/�Y equipped

with the Lebesgue measures mX, mY respectively;
• utX, utY be unipotent flows on X and Y, respectively;
• τX, τY be positive functions with integral mX(τX) = mY (τY ) = 1 under certain

regularity on X and Y, respectively;
• ũtX, ũtY be the time changes of utX, utY induced by τX, τY , respectively;
• dμ = τXdmX, dν = τY dmY be the ũX-, ũY -invariant measures, respectively.
We shall verify the disjointness and so classify the joinings of utX and ũtY (or ũtX and utY )
in certain situations.

Recall that a joining of ũtX and ũtY is a (ũtX × ũtY )-invariant probability measure on
X × Y , whose marginals on X and Y are μ and ν, respectively. It was first introduced
by Furstenberg in [Fur81], and is a natural generalization of measurable conjugacies.
The classical results on classifying joinings under this context were established by Ratner
[Rat82, Rat83, Rat86, Rat87, Rat90]. First, the celebrated Ratner’s theorem indicates
that all joinings between utX and utY have to be algebraic. In addition, for GX = SO(2, 1),
Ratner studied the H-property (or Ratner’s property) of horocycle flows utX, as well as their
time changes ũtX, and then showed that any non-trivial (that is not the product measure
μ× ν) ergodic joining of ũtX and ũtY is a finite extension of ν. (In fact, this is even true
for any measure-preserving system on (Y , ν).) Using this, Ratner was able to show that for
GX = GY = SO(2, 1), the existence of a non-trivial ergodic joining of ũtX and ũtY implies
that τX and τY are algebraically cohomologous. In other words, whether ũtX and ũtY are
disjoint is determined by cohomological equations.

It is natural to ask if it is possible to extend the results to GX = SO(nX, 1) for nX ≥ 3.
The difficulty is that the time change ũtX needs not have the H-property. It is one of
the main ingredients of unipotent flows. Roughly speaking, H-property states that the
divergence of nearby unipotent orbits happens always along some direction from the
centralizer CGX(uX) of the flow utX. In particular, for GX = SO(2, 1), the direction can
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only be the flow direction utX itself. Moreover, Ratner [Rat87] naturally extended this
notion to the general measure-preserving systems and verified it for the time changes ũtX
of horocycle flows. However, for nX ≥ 3, it seems that there is no suitable way to describe
the ‘centralizer’ of the time change ũtX. Thus, classifying joinings of ũtX and ũtY for nX ≥ 3
becomes a difficult problem.

Recently, Dong, Kanigowski, and Wei [DKW22] considered the case when
GX = SO(2, 1), GY is semisimple as above, and �X and �Y are cocompact lattices.
After comparing the H-property of ũtX and utY , they showed that ũtX and utY are disjoint
once the Lie algebra gY ofGY contains at least one weight vector of weight at least 1 other
than the sl2-triples generated by utY .

In this paper, we try to generalize the results stated above for nX ≥ 3. First, we follow
the idea of Ratner and study the H-property of utX and deduce the following theorem.

THEOREM 1.1. Let (Y , ν, S) be a measure-preserving system of some map S : Y → Y ,
and ρ be an ergodic joining of u1

X and S. Then either ρ = μ× ν or (u1
X × S, ρ) is a

compact extension of (S, ν). More precisely, if ρ �= μ× ν, then there exists a compact
subgroup Cρ ⊂ CGX(uX), and n > 0 such that, for ν-almost every (a.e.) y ∈ Y , there
exist xy1 , . . . , xyn in the support of ρy with

ρy(C
ρx
y
i ) = 1

n

for i = 1, . . . , n, where ρ = ∫
Y
ρy dν(y) is the disintegration along Y.

By Theorem 1.1, for any non-trivial ergodic joining ρ of utX and ũtY , there are
measurable maps ψ1, . . . , ψn : Y → X such that

ρ(f ) =
∫
Y

∫
Cρ

1
n

n∑
p=1

f (kψp(y), y) dm(k) dν(y) (1.1)

for f ∈ C(X × Y ), where m is the Lebesgue measure of the compact group Cρ . Projecting
ρ to (Cρ\X)× Y , we get

ρ(f ) =
∫
Y

1
n

n∑
p=1

f (ψp(y), y) dν(y)

for f ∈ C((Cρ\X)× Y ). Then, we can study the rigidity of ρ by thinking about
ψ1, . . . , ψn. Also, ρ is a non-trivial ergodic joining of utX and ũtY .

Then we can establish the rigidity ofψp by studying the shearing of utX. The idea comes
from [Rat86, Tan22]. We require the time changes having the effective mixing property.
Thus, let K(Y ) be the set of all positive integrable functions τ on Y such that τ , τ−1 are
bounded and satisfies∣∣∣∣ ∫

Y

τ(y)τ (utY y) dν(y)−
( ∫

Y

τ(y)ν(y)

)2∣∣∣∣ ≤ Dτ |t |−κτ

for some Dτ , κτ > 0. In other words, elements τ ∈ K(Y ) have polynomial decay of
correlations. Let 〈uX, aX, uX〉, 〈uY , aY , uY 〉 be sl2-triples of GX and GY , respectively.
Let NGY (uY ) be the normalizer of uY . Then we obtain the following theorem.
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THEOREM 1.2. (Extra central invariance of ρ) Let τY ∈ K(Y ), ũtY be the time change of
utY induced by τY and ρ be a non-trivial ergodic joining of utX, ũtY . Then there exist maps
α : NGY (uY )× Y → R, β : NGY (uY ) → CGY (uY ) such that the following hold.
(1) Restricted to the centralizer CGY (uY ), α : CGY (uY )× Y → R is a cocycle,

β : CGY (uY ) → CGX(uX) is a homomorphism. In addition, τY (cy) and τY (y)

are (measurably) cohomologous along utY via the transfer function α(c, y) for
all c ∈ CGY (uY ); in other words,∫ T

0
τY (cu

t
Y y)− τY (utY y) dt = α(c, uTY y)− α(c, y).

(2) There is a map S : NGY (uY )×X × Y → X × Y that satisfies the following proper-
ties.
• For c ∈ CGY (uY ), the map Sc : X × Y → X × Y defined by

Sc : (x, y) �→ (β(c)x, ũ−α(c,y)
Y (cy))

commutes with utX × ũ tY , and is ρ-invariant. In addition, Sc1c2 = Sc1 ◦ Sc2 for
any c1, c2 ∈ CGY (uY ), and SutY = id for t ∈ R.

• For r ∈ R, the map SarY : X × Y → X × Y defined by

SarY : (x, y) �→ (β(arY )a
r
Xx, ũ

−α(arY ,y)
Y (arY y))

satisfies

SarY ◦ (utX × ũ tY ) = (ue
−r t
X × ũ e−r tY ) ◦ SarY

and is ρ-invariant. In addition, S
a
r1+r2
Y

= S
a
r1
Y
S
a
r2
Y

for any r1, r2 ∈ R, and

SaY ◦ Sc ◦ S
a−1
Y

= S
aY ca

−1
Y

for any c ∈ CGY (uY ).
For the opposite unipotent direction uY , we cannot obtain the invariance for ρ directly.

However, we can fix it by making the ‘a-adjustment.’ Here, we further require that τY
be smooth and α(c, ·) be integrable. The idea comes from [Rat87]. Then, since uY and
CGY (uY ) generate the whole group GY , we are able to use Ratner’s theorem to get the
rigidity of ψ1, . . . , ψn.

THEOREM 1.3. (Cohomological criterion) Let GX = SO(nX, 1), GY be a semisimple Lie
group with finite center and no compact factors and �X ⊂ GX, �Y ⊂ GY be irreducible
lattices. Let UY ∈ gY be a nilpotent vector so that CgY (UY ) only contains vectors of weight
at most 2, and let uY = exp(UY ). Let τY ∈ K(Y ) ∩ C1(Y ) so that τY (cy) and τY (y) are
L1-cohomologous along utY for any c = exp(v) ∈ CGY (uY ) with positive weight. If there is
a non-trivial ergodic joining ρ of utX and ũtY , then τX ≡ 1 and τY are joint cohomologous
(see Definition 2.2 for the precise definition).

Remark 1.4. When τX ≡ 1 and τY are joint cohomologous, one can deduce that 1 (on Y)
and τY are (measurably) cohomologous over the flow utY . See Proposition 2.14 for further
discussion.
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In [Tan22], we see that forGY = SO(nY , 1), some cocompact lattice �Y , there exists a
function τY ∈ K(Y ) ∩ C1(Y ) such that:
• τY and 1 are not measurably cohomologous;
• for any c ∈ CGY (uY ), τY (cy) and τY (y) are not measurably cohomologous if they are

not L2-cohomologous.
Applying Theorems 1.2(1) and 1.3 to τY , we get the following corollary.

COROLLARY 1.5. (Existence of non-trivial time changes) For GY = SO(nY , 1), there
exists a cocompact lattice �Y and a function τY on Y = GY/�Y such that utX and ũtY
are disjoint (that is, the only joining of utX and ũtY is the product measure μ× ν).

In addition, the homomorphism β|CGY (uY ) obtained by Theorem 1.2 also provides some
information. Combining Ratner’s theorem, we conclude that the existence of non-trivial
joinings requires the algebraic structure GY to be similar to GX.

THEOREM 1.6. (Algebraic criterion) Let the notation and assumptions be as in
Theorem 1.3. If there is a non-trivial ergodic joining ρ of utX and ũtY , then ρ is a finite
extension of ν (that is, the Cρ provided by Theorem 1.1 is trivial). In addition, consider
the decomposition (see equation (2.7)):

CgY (UY ) = RUY ⊕ V ⊥
CY

, CgX(UX) = RUX ⊕ V ⊥
CX

.

Then the derivative dβ|V⊥
C

: V ⊥
CY

→ V ⊥
CX

is an injective Lie algebra homomorphism.

Remark 1.7. Theorems 1.3 and 1.6 provide criteria for the disjointness of utX and ũtY .
However, they require that the functions τY (cy) and τY (y) are L1-cohomologous for
all c ∈ CGY (uY ) with positive weight (Theorem 1.2(1) indicates that they are always
measurably cohomologous whenever utX and ũtY are not disjoint). This condition in general
is not easy to verify.

However, when the time changes happen on quotients X of Lorentz groups, we no longer
have Theorem 1.1, because of the lack of H-property. Nevertheless, if there exists a joining
ρ as in equation (1.1), we can follow the same idea as in Theorem 1.2 and obtain the rigidity
in certain situations.

THEOREM 1.8. Let GX = SO(nX, 1), GY be a semisimple Lie group with finite center
and no compact factors, and �X ⊂ GX, �Y ⊂ GY be irreducible lattices. Let UY ∈ gY be
nilpotent. Let τY ≡ 1 and τX ∈ K(X). Suppose that there exists an ergodic joining ρ of
ũtX and utY that is a compact extension of ν, that is, satisfies equation (1.1). Then there
exist maps α : NGY (uY )× Y → R, β : NGY (uY ) → CGY (uY ) such that the following
properties hold.
(1) Restricted to the centralizer CGY (uY ), α : CGY (uY )× Y → R is a cocycle,

β : CGY (uY ) → CGX(uX) is a homomorphism. In addition, τX(cx) and τX(x)

are (measurably) cohomologous for all c ∈ CGX(uX).
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(2) There is a map S̃ : NGY (uY )×X × Y → X × Y that satisfies the following
properties.
• For c ∈ CGY (uY ), the map S̃c : X × Y → X × Y defined by

S̃c : (x, y) �→ (u
α(c,y)
X β(c)x, cy)

commutes with ũtX × utY , and is ρ-invariant. In addition, S̃c1c2 = S̃c1 ◦ S̃c2 for
any c1, c2 ∈ CGY (uY ), and S̃utY = ũtX for t ∈ R.

• The map SaY : X × Y → X × Y defined for r ∈ R by

S̃arY
: (x, y) �→ (u

α(arY ,y)
X β(arY )a

r
Xx, arY y)

is ρ-invariant. In addition, S̃
a
r1+r2
Y

= S̃
a
r1
Y
S̃
a
r2
Y

for any r1, r2 ∈ R, and

S̃aY ◦ S̃c ◦ S̃
a−1
Y

= S̃
aY ca

−1
Y

for any c ∈ CGY (uY ).
Moreover, for any weight vector v ∈ V ⊥

CY
of positive weight, the derivative

dβ|V⊥
C
(v) �= 0. (1.2)

Remark 1.9. In other words, equation (1.2) asserts that dβ is injective on the nilpotent part
of V ⊥

CY
. One direct consequence of equation (1.2) is that CgY (UY ) (under the assumptions

of Theorem 1.8) does not contain any weight vector of weight �= 0, 2 (see Lemma 6.5).

In particular, recall that [Rat87] showed that whenGX = SO(2, 1), any time change ũtX
with τX ∈ K(X) ∩ C1(X) has H-property. It meets all the requirements of Theorem 1.8.
Then combining [Rat87], we obtain a slight extension of [DKW22].

THEOREM 1.10. LetGX = SO(2, 1),GY be a semisimple Lie group with finite center and
no compact factors and �X ⊂ GX, �Y ⊂ GY be irreducible lattices. Let τX ∈ K(X) ∩
C1(X). If the Lie algebra gY � sl2, then ũtX and utY are disjoint.

1.2. Structure of the paper. In §2, we recall basic definitions, including some basic
material on the Lie algebra so(n, 1) (in §§2.1 and 2.2), as well as time changes (§2.3)
and coboundaries (§2.4). In §3, we make use of the H-property of unipotent flows and
deduce Theorem 1.1. This requires studying the shearing property of utX for nearby
points of the form (x, y) and (gx, y). In §4, we state and prove a number of results
which will be used as tools to prove the extra invariance of joinings ρ (Theorem 1.2),
in particular Proposition 4.16 which pulls the shearing phenomenon on the homogeneous
space X back to the Lie group GX. We also give a quantitative estimate of the difference
between two nearby points in terms of the length of the shearing (Lemma 4.11). In §5, we
present the proof of Theorem 1.2 (§§5.1 and 5.2) and a technical result for the opposite
unipotent direction (Theorem 5.15). The latter result also requires studying the H-property
of unipotent flows. Finally, using the results we got and Ratner’s theorem, we present in §6
the proof of Theorems 1.3, 1.6 (in §6.1), 1.8 and 1.10 (in §6.2).
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2. Preliminaries
2.1. Definitions. Let G := SO(n, 1) be the set of g ∈ SLn+1(R) satisfying[

In

−1

]
gT
[
In

−1

]
= g−1,

where In is the n× n identity matrix. The corresponding Lie algebra g then consists of
v ∈ sln+1(R) satisfying [

In

−1

]
vT
[
In

−1

]
= −v.

Then the Cartan decomposition can be given by

g = l ⊕ p =
{[

l
0

]
: l ∈ so(n)

}
⊕
{[

0 p
pT 0

]
: p ∈ Rn

}
.

Let Eij be the (n× n)-matrix with 1 in the (i, j)-entry and 0 otherwise. Let ek ∈ Rn be
the kth standard basis (vertical) vector. Set

Yk :=
[

0 ek

eTk 0

]
, �ij :=

[
Eji − Eij 0

0 0

]
.

Then Yi , �ij form a basis of g = so(n, 1).
Let a = RYn ⊂ p be a maximal abelian subspace of p. Then the root space

decomposition of g is given by

g = g−1 ⊕ m ⊕ a ⊕ g1. (2.1)

Denote by n := g1 the sum of the positive root spaces. Let ρ be the half sum of positive
roots. We also adopt the convention by identifying a∗ with C via λ �→ λ(Yn). Thus,
ρ = ρ(Yn) = (n− 1)/2.

Let � ⊂ G be a lattice, X := G/�, μ be the Haar probability measure on X. Fix a
nilpotent U ∈ g−1. On G/�, denote by:
• φ

Yn
t (x) := exp(tYn)x = atx a geodesic flow;

• φUt (x) := exp(tU)x = utx a unipotent flow.
It is worth noting that

[Yn, U ] = −U .

Then there exists U ∈ g such that {U , Yn, U} is an sl2-triple. Denote

ut := exp(tU).

For convenience, we choose

U :=

⎡⎢⎢⎣
0 en−1 en−1

−eTn−1 0 0

eTn−1 0 0

⎤⎥⎥⎦, U :=

⎡⎢⎢⎣
0 −en−1 en−1

eTn−1 0 0

eTn−1 0 0

⎤⎥⎥⎦. (2.2)

Then 〈ut , at , ut 〉 generates SO(2, 1) ⊂ SO(n, 1).
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2.2. sl2-weight decomposition. First, consider an arbitrary Lie algebra g as a
sl2-representation via the adjoint map (after identifying an image of sl2 by Jacobson–
Morozov theorem), then by the complete reducibility of sl2, there is a decomposition of
sl2-representations

g = sl2 ⊕ V ⊥, (2.3)

where V ⊥ ⊂ g is the sum of sl2-irreducible representations other than sl2. In particular,
for g = so(n, 1), we have

V ⊥ =
∑
i

V 0
i ⊕

∑
j

V 2
j , (2.4)

where V 0
i and V 2

j are sl2-irreducible representations with highest weights 0 and 2. More
precisely, we have the following lemma.

LEMMA 2.1. By the weight decomposition, an irreducible sl2-representation V ς is the
direct sum of weight spaces, each of which is 1-dimensional. More precisely, there exists a
basis v0, . . . , vς ∈ V ς such that

U .vi = (i + 1)vi+1, Yn.vi = ς − 2i
2

vi .

Thus, if V ς is an irreducible representation of sl2 with the highest weight ς ≤ 2, then
for any v = b0v0 + · · · + bςvς ∈ V ς , we have

exp(tU).v =
ς∑
j=0

j∑
i=0

bi

(
j

i

)
tj−ivj , (2.5)

exp(ωYn).v =
ς∑
j=0

bj e
(ς−2j)ω/2vj . (2.6)

For elements g ∈ exp g close to identity, we decompose

g = h exp(v), h ∈ SO0(2, 1), v ∈ V ⊥

where SO0(2, 1) is the connected component of SO(2, 1). Moreover, it is con-
venient to think about h ∈ SO0(2, 1) as a (2 × 2)-matrix with determinant 1.
Thus, consider the two-to-one isogeny ι : SL2(R) → SO(2, 1) ⊂ G induced by
sl2(R) → Span{U , Yn, Ū} ⊂ g. In the following, for h ∈ SO0(2, 1) and v in an irreducible
representation, we write

h =
[
a b

c d

]
, v = b0v0 + · · · + bςvς

where vi are weight vectors in g of weight i. Notice that h should more appropriately
be written as ι(h). In addition, for notational simplicity, we shall usually assume that
v ∈ V ⊥ lies in a single irreducible representation, since the proofs will mostly focus on
the Ad ut -action and so the general case will be identical but tedious to write down.
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For the centralizer Cg(U) (for an arbitrary Lie algebra g), we have the corresponding
decomposition:

Cg(U) = RU ⊕ V ⊥
C , (2.7)

where V ⊥
C ⊂ V ⊥ consists of the highest weight vectors other than U. In particular, for

g = so(n, 1), under the setting of equation (2.2), one may calculate

Cg(U) = RU ⊕ V ⊥
C = RU ⊕ k⊥C ⊕ n⊥

C

= RU ⊕
[

so(n− 2)
0

]
⊕

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

0 0 u u
0 0 0 0

−uT 0 0 0
uT 0 0 0

⎤⎥⎥⎦ : u ∈ Rn−2

⎫⎪⎪⎬⎪⎪⎭. (2.8)

Note that k⊥C consists of semisimple elements and n⊥
C consists of nilpotent elements, and

they satisfy [k⊥C , n⊥
C ] = n⊥

C .

2.3. Time changes. Let Y be a homogeneous space and U be a nilpotent. Let φU ,τ
t be a

time change for the unipotent flow φUt , t ∈ R. Thus, we assume that:
• τ : Y → R+ is a integrable non-negative function on Y satisfying∫

Y

τ(y) dmY (y) = 1;

• ξ : Y × R → R is the cocycle determined by

t =
∫ ξ(y,t)

0
τ(usy) ds =

∫ ξ(y,t)

0
τ(φUt y) ds;

• φ
U ,τ
t : Y → Y is given by the relation

φ
U ,τ
t (y) := uξ(y,t)y.

Remark 2.2. Note that φU ,1
t = φUt . In addition, one can check that φU ,τ

t preserves the
probability measure on Y defined by dν := τdmY , where mY is the Lebesgue measure on
Y. However, if τ is smooth, then the time change φU ,τ

t is the flow on Y generated by the
smooth vector field Uτ := U/τ .

In practice, we define z : Y × R → R by

z(y, t) =
∫ t

0
τ(usy) ds.

It follows that

t = z(y, ξ(y, t)), φ
U ,τ
z(y,t)(x) = φUt (y) = uty. (2.9)

Let κ > 0 and Kκ(Y ) be the collection of all positive integrable functions τ on Y such
that τ , τ−1 are bounded and satisfy∣∣∣∣ ∫

Y

τ(y)τ (uty) dν(y)−
( ∫

Y

τ(y)ν(y)

)2∣∣∣∣ ≤ Dτ |t |−κ (2.10)
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for some Dτ > 0. Let K(Y ) =⋃κ>0 Kκ(Y ). This is the effective mixing property of the
unipotent flow φUt . Note that [KM99] (see also [Ven10]) has shown that there is κ > 0
such that∣∣∣∣〈φUt (f ), g〉 −

( ∫
Y

f (y)ν(y)

)( ∫
Y

g(y)ν(y)

)∣∣∣∣� (1 + |t |)−κ‖f ‖Ws‖g‖Ws

for f , g ∈ C∞(X), where s ≥ dim(K) and Ws denotes the Sobolev norm on Y = G/�.
According to Lemma 3.1 [Rat86], when τ ∈ Kκ(Y ), we have the effective ergodicity: there
is K ⊂ Y with ν(K) > 1 − σ and tK > 0 such that

|t − z(y, t)| = O(t1−κ) (2.11)

for all t ≥ tK and y ∈ K . Later on, we shall make use of the effective mixing/ergodicity to
study the shearing property of unipotent flows (see §4 and equation (5.1)).

2.4. Cohomology. We first introduce the 1-coboundary of two functions.

Definition 2.1. (Cohomology) We say that two functions τ1, τ2 on Y are measurable
(respectively L2, smooth, etc.) cohomologous over the flow φt if there exists a measurable
(respectively L2, smooth, etc.) function f on Y, called the transfer function, such that∫ T

0
τ1(φty)− τ2(φty) dt = f (φT y)− f (y). (2.12)

For i ∈ {1, 2}, let (Yi , Yi , νi , φ(i)t ) be measure-preserving flows, and let τi : Yi → R be
measurable functions on Yi . In addition, we extend τi to Y1 × Y2 by setting

τi : (y1, y2) �→ τi(yi), i = 1, 2.

Definition 2.2. (Joint cohomology) Let ρ ∈ J (φ(1)t , φ(2)t ) be a joining of φ(1)t and φ(2)t . We
say that τ1 and τ2 are jointly cohomologous via ρ if τ1 and τ2 (considered as functions on
Y1 × Y2) are cohomologous over φ(1)t × φ(2)t on (Y1 × Y2, ρ). More specifically, if τ1 and
τ2 are cohomologous over φ(1)t × φ(2)t with a transfer function f : Y1 × Y2 → R, then we
say that τ1 and τ2 are jointly cohomologous via (ρ, f ), and we have∫ T

0
(τ1 − τ2)(φ

(1)
t y1, φ(2)t y2) dt = f (φ

(1)
T y1, φ(2)T y2)− f (y1, y2) (2.13)

for ρ-a.e. (y1, y2) ∈ Y1 × Y2 and all T ∈ R.

Let A1 := {A× Y2 : A ∈ Y1}, A2 := {Y1 × A : A ∈ Y2}. Then there is a unique family
{ρA1
y1 : y1 ∈ Y1} of probability measure, called the conditional measures, on Y2 such that

Eρ(g|A1)(y1) =
∫
Y2

g(y1, y2)dρ
A1
y1
(y2), ρ

A1

φ
(1)
t y1

= (φ
(2)
t )∗ρA1

y1
(2.14)

for every g ∈ L1(Y1 × Y2, ρ), t ∈ R, and ν1-a.e. y1 ∈ Y1. Taking the integration over ρA1
y1 ,

the expressions of equations (2.13) and (2.14) show that if the transfer function f (y1, ·) ∈
L1(Y2, ρA1

y1 ) for ν1-a.e. y1 ∈ Y1, then τ1 and Eρ(τ2|A1) are cohomologous along φ(1)t via
Eρ(f |A1). We have just proved the following proposition.
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PROPOSITION 2.3. Let τi : Yi → R be measurable functions on Yi , i = 1, 2. Suppose that
τ1 and τ2 are jointly cohomologous via (ρ, f ) with f (y1, ·) ∈ L1(Y2, ρA1

y1 ) for μ1-a.e.
y1 ∈ Y1. Then τ1 and Eρ(τ2|A1) are cohomologous over φ(1)t via Eρ(f |A1).

3. Shearing property I, H-flow on one factor
3.1. Joinings. LetG = SO(n, 1), � be a lattice of G, (X, μ) be the homogeneous space
X = G/� equipped with the Lebesgue measure μ, and let φUt be a unipotent flow on X.
Let (Y , ν, S) be a measure-preserving system. We want to study the joinings of (X, μ, φU1 )
and (Y , ν, S). Thus, let ρ be an ergodic joining of φU1 and S, that is, ρ is a probability
measure on X × Y , whose marginals on X and Y are μ and ν, respectively, and which is
(φU1 × S)-ergodic.

Let C(φU1 ) be the commutant of φU1 , that is, the collection of all measure-preserving
transformations on X that commute with φU1 . The following is a basic criterion for ρ in
terms of the commutant of φU1 .

LEMMA 3.1. Let the notation and assumptions be as above. Assume further that
T ∈ C(φU1 ) is ergodic on (X, μ). Then

either (T × id)∗ρ ⊥ ρ or ρ = μ× ν.

Proof. First, by the commutative property of T, we easily see that (T × id)∗ρ is again
(φU1 × S)-ergodic on X × Y . It implies that either (T × id)∗ρ ⊥ ρ or (T × id)∗ρ = ρ.
Now assume that (T × id)∗ρ = ρ, that is, ρ is (T × id)-invariant. Then via disintegration,
we know that ρy is T-invariant on X for ν-a.e. y ∈ Y , where

ρ =
∫
Y

ρy dν(y). (3.1)

Now assume for contradiction that there exists B ⊂ Y with ν(B) > 0 such that ρy �= μ

for y ∈ B. It follows that for y ∈ B, there isAy ⊂ X withμ(Ay) > 0 such that, for x ∈ Ay ,
we have

(ρy)
E
x �= μ, (3.2)

where (ρy)Ex is given by the T-ergodic decomposition

ρy =
∫
X

(ρy)
E
x dμ(x).

Notice that by the ergodicity, there is a μ-conull set � ⊂ X, namely the set of T-generic
points of μ, such that (ρy)Ex (�) = 0 for the measures (ρy)Ex in equation (3.2). Then by the
assumption of joining, we have

μ(�) = ρ(π−1
X (�)) =

∫
Y

ρy(�) dν(y)

=
∫
B

ρy(�) dν(y)+
∫
Y\B

ρy(�) dν(y)

≤
∫
B

∫
X

(ρy)
E
x (�) dμ(x) dν(y)+ ν(Y \ B)
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=
∫
B

∫
X\Ay

(ρy)
E
x (�) dμ(x) dν(y)+ ν(Y \ B)

≤
∫
B

μ(X \ Ay) dν(y)+ ν(Y \ B)
< ν(B)+ ν(Y \ B) = 1,

which is a contradiction. Thus, we conclude that ρy = μ for ν-a.e. y ∈ Y and so
ρ = μ× ν.

By Moore’s ergodicity theorem, we deduce the following corollary.

COROLLARY 3.2. If w ∈ Cg(U) so that 〈exp tw〉t∈R is not compact, then

either (φw1 × id)∗ρ ⊥ ρ or ρ = μ× ν.

3.2. H-property. In this section, we want to introduce the H-property (or Ratner
property) to study the joining ρ in terms of the unipotent flow φUt on X. The classic
H-property can be formulated as the following theorem.

THEOREM 3.3. (H-property, [Wit85]) Let u be a unipotent element of G. Given any
neighborhood Q of e in CG(u), there is a compact subset ∂Q of Q \ {e} such that, for any
ε > 0 and M > 0, there are α = α(u, Q, ε) > 0 and δ = δ(u, Q, ε, M) > 0 such that if
x1, x2 ∈ X with dX(x1, x2) < δ, then one of the following holds:
• x2 = cx1 for some c ∈ CG(u) with dG(e, c) < δ;
• there are L > M/α and q ∈ ∂Q such that

dX(u
nx2, qunx1) < ε (3.3)

whenever n ∈ [L, (1 + α)L].

Remark 3.4. In fact, for x2 = gx1 with g = exp(v) ∈ BGδ , the element q ∈ Cg(U) in
Theorem 3.3 is chosen by

q = πCg(U) exp(LU).v, (3.4)

where πCg(U) : g → Cg(U) is the natural projection and exp(LU).v is the adjoint
representation (see equation (2.5)). We often call q as the fastest relative motion between
x1, x2; see [Mor05] for more discussion. In what follows, we choose Q = B

CG(u)
λ to be

the ball of radius λ of e in CG(u) for sufficiently small λ (independent of ε), and then ∂Q
is the sphere of radius λ. Now by equations (2.3) and (2.4), we have the decomposition

v = v0 + v2,

where v0 ∈∑i V
0
i and v2 ∈ sl2 +∑j V

2
j . Thus, ‖v0‖, ‖v2‖ < δ and

q = v0 + πCg(U) exp(LU).v2.

Since ‖q‖ = λ, we see that v0 is negligible. In other words, we can replace q by

q ′ := πCg(U) exp(LU).v2 (3.5)
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and then Theorem 3.3 still holds. However, note that q ′ ∈ n = RU + n⊥
C (cf. equation

(2.8)). Thus, the one-parameter group 〈exp(tq ′)〉t∈R generated by q ′ is not compact.

In the following, we shall generalize the idea in [Rat83] and prove Theorem 1.1.

THEOREM 3.5. Let the notation and assumptions be as above. Then either ρ = μ× ν or
(φU1 × S, ρ) is a compact extension of (S, ν). More precisely, if ρ �= μ× ν, then there
exists a ν-conull set � ⊂ Y , a compact subgroup Cρ ⊂ CG(u), and n > 0 such that, for
any y ∈ �, there exist xy1 , . . . , xyn in the support of ρy with

ρy(C
ρx
y
i ) = 1

n

for i = 1, . . . , n, where ρ = ∫
Y
ρy dν(y) is the disintegration along Y (cf. equation (3.1)).

Assume that ρ �= μ× ν. Then by Corollary 3.2, there is a ρ-conull set � ⊂ X × Y ,
namely the set of (φU1 × S)-generic points, such that (φw1 × id)(�) ∩� = ∅ for all w ∈ n.
Given a sufficiently small λ > 0, we define the sphere of radius λ of 0 by

Bn
λ := {w ∈ n : ‖w‖ = λ}.

Then, one can find a compact subset K1 ⊂ � with μ(K1) > 199/200. Then,⋃
w∈Bn

λ

(φw1 × id)(K1)

is compact. Thus, there are ε > 0 and K2 ⊂ K1 with μ(K2) > 99/100 such that

dX×Y
(
K2,

⋃
w∈Bn

λ

(φw1 × id)(K1)

)
> ε.

It follows that if (x1, y), (x2, y) ∈ K2 then

dX(x2, φw1 x1) ≥ ε (3.6)

for all w ∈ Bn
λ . Let α = α(ε) > 0 be as in Theorem 3.3. Comparing equation (3.6) with

equation (3.3), we conclude the following lemma.

LEMMA 3.6. Assume that ρ �= μ× ν. There is a positive number δ = δ(ε) > 0, a mea-
surable setK4 ⊂ � with ρ(K4) > 0 such that if (x1, y), (x2, y) ∈ K4 and dX(x1, x2) < δ,
then x2 ∈ CG(u)x1.

Proof. Suppose that M, δ, K4 are given, and x2 �∈ CG(u)x1 with dX(x1, x2) < δ. Then by
the H-property of the unipotent flow (Theorem 3.3 and Remark 3.4), we know that there
are L > M/α and w ∈ Bn

λ such that

dX(φ
U
n x1, φw1 φ

U
n x2) < ε (3.7)

for n ∈ [L, (1 + α)L]. Next, we shall find some qualified x1, x2 ∈ X such that the distance
between φUn x1 and φw1 φ

U
n x2 is at least ε. This will lead to a contradiction.
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First, applying the ergodic theorem, there is a measurable set K3 ⊂ � with ρ(K3) >

1 − α/2(100 + α), a number M1 > 0 such that

1
n
|{k ∈ [0, n] : (φU1 × S)k(x, y) ∈ K2}| > 9

10
(3.8)

for (x, y) ∈ K3 and n > M1. Applying the ergodic theorem one more time, there is a
measurable set K4 ⊂ � with ρ(K4) > 0, a number M2 > 0 such that

1
n
|{k ∈ [0, n] : (φU1 × S)k(x, y) ∈ K3}| > 1 − α

10 + α (3.9)

for (x, y) ∈ K4 and n > M2.
Choose M = max{M1, M2} and then L > M/α and δ = δ(ε, M) > 0 as obtained

from the H-property (Theorem 3.3). Let (x1, y), (x2, y) ∈ K4 with dX(x1, x2) < δ. Then
replacing n by (1 + α/10)L and applying equation (3.9), we know that

(φU1 × S)s(x1, y), (φU1 × S)t (x2, y) ∈ K3

for some integers s, t ∈ [L, (1 + α/10)L]. Further, replacing the interval [0, n] by
[s, (1 + α)L] (respectively [t , (1 + α)L]) and applying equation (3.8), we know that

1
(1 + α)L− s |{k ∈ [s, (1 + α)L] : (φU1 × S)k(x1, y) ∈ K2}| > 9

10
,

1
(1 + α)L− t |{k ∈ [t , (1 + α)L] : (φU1 × S)k(x2, y) ∈ K2}| > 9

10
.

It follows that there exists n ∈ [(1 + α/10)L, (1 + α)L] such that

(φU1 × S)n(x1, y), (φU1 × S)n(x2, y) ∈ K2.

Then by equation (3.6), we have

dX(φ
U
n x1, φw1 φ

U
n x2) ≥ ε,

which contradicts equation (3.7).

Recall that via disintegration (cf. equation (3.1)), we have

ρ =
∫
Y

ρy dν(y).

Then by the ergodic theory, we have the following lemma.

LEMMA 3.7. Assume that ρ �= μ× ν. There exists a ν-conull set � ⊂ Y and n > 0 such
that, for any y ∈ �, there exist xy1 , . . . , xyn in the support of ρy with

ρy(CG(u)x
y
i ) = 1

n

for i = 1, . . . , n.

Proof. Let f : Y → R be defined by

f : y �→ sup
x∈X

ρy(CG(u)x).
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By Lemma 3.6, we know that for y ∈ KY4 := {y ∈ Y : ρy{x ∈ X : (x, y) ∈ K4} > 0},
f (y) > 0. Note also that ν(KY4 ) > 0 and f is S-invariant. By the ergodicity, f is a positive
constant, say f ≡ c, on a ν-conull set �1 ⊂ Y .

Next, consider

D := {(x, y) ∈ X × Y : y ∈ �1, ρy(CG(u)x) = c}.
Then D is (φU1 × S)-invariant and ρ(D) > 0. Thus, ρ(D) = 1. Next, define

� := {y ∈ �1 : ρy{x ∈ X : (x, y) ∈ D} = 1}.
Then � ⊂ Y is an S-invariant ν-conull set. Thus, for any y ∈ �, we have

ρy(CG(u)x) ≡ c

for any x ∈ X with (x, y) ∈ D. It forces n = 1/c to be an integer. In addition, for any
y ∈ �, there are only finitely many points xy1 , . . . , xyn with

ρy(CG(u)x
y
i ) = 1

n

for i = 1, . . . , n.

Thus, by Lemma 3.7, we see that ρy supports on
⊔n
i=1 CG(u)x

y
i whenever y ∈ �. With

a further effort, we observe that these ρy must have a compact support.

Proof of Theorem 3.5. For a Borel measurable subset A ⊂ CG(u), consider the map
fA : X × Y → R+ be defined by

fA : (x, y) �→ ρy(Ax).

Note that since ρ is (φU1 × S)-invariant, we have

(φU1 )∗ρy = ρSy .

It follows that

fA(x, y) = ρy(Ax) = ρSy(φ
U
1 Ax) = ρSy(Aφ

U
1 x) = fA(φ

U
1 x, Sy).

In other words, fA is (φU1 × S)-invariant and therefore is ρ-almost everywhere a constant,
saym(A). Thus, for anyA ∈ B(CG(u)), there exists a ρ-conull set�A ⊂ X × Y , such that

ρy(Ax) ≡ m(A) (3.10)

for (x, y) ∈ �A.
Next, we consider the fundamental domain, that is, a Borel subset F ⊂ CG(u) such

that the natural map F → CG(u)/(CG(u) ∩ �) defined by g �→ g� is bijective. Then
since B(F ) is countably generated, by Carathéodory’s extension theorem, we know that
m : B(F ) → R+ is a measure. In addition, it follows from equation (3.10) that there exists
a ρ-conull set � ⊂ X × Y , such that

ρy(Ax) ≡ m(A) (3.11)

for (x, y) ∈ �, A ∈ B(F ).
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Now assume that equation (3.11) holds for (x, y), (gx, y) ∈ � and g ∈ CG(u). Then,

m(A) = ρy(Agx) = m(Ag)

for A ∈ B(F ). In other words, m is g-(right) invariant and so is (right) Haar. Note that
CG(u) is unimodular (since its Lie algebra Cg(U) is a direct sum of a compact and a
nilpotent Lie subalgebra). We conclude that m is also a (left) Haar measure, and therefore
ρy is (left) Haar on CG(u)x for (x, y) ∈ �.

Let Cρ be the stabilizer of m. Then the above result shows that ρ is (Cρ × id)-invariant.
Thus, according to Corollary 3.2, Cρ must be compact. This finishes the proof of
Theorem 3.5.

Using Theorem 3.5, for any ergodic joining ρ of φU1 and S on X × Y , we obtain
an ergodic joining ρ := π∗ρ of φU1 and S on Cρ\X × Y under the natural projection
π : X × Y → Cρ\X × Y . Moreover, when ρ �= μ× ν is not the product measure, it is a
finite extension of ν, that is, supp ρy consists of exactly n points xy1 , . . . , xyn for ν-a.e.
y ∈ Y (without loss of generality, we shall assume that it holds for all y ∈ Y ). Note
that y �→ x

y
i need not be measurable. However, this can be resolved by using Kunugui’s

theorem (see [Kal75, Kun40]).
Therefore, let X := Cρ\X, πX : X × Y → X, πX : X × Y → X, πY : X × Y → Y be

the natural projections. By Kunugui’s theorem, we are able to find ψ̂i : Y → X × Y for
i = 1, . . . , n such that πY ◦ ψ̂i = id and ψ̂i(Y ) ∩ ψ̂j (Y ) = ∅ whenever i �= j . Let

�i := ψ̂i(Y ), ψi := πX ◦ ψ̂i . (3.12)

Then ρ(�i) = 1/n,
⋃
�i = supp ρ, and� ∩ supp ρy consists of exactly one point. Next,

we can apply Kunugui’s theorem again and obtain ψi : Y → X so that PX ◦ ψi = ψi ,
where PX : X → X.

4. Shearing property II, time changes of unipotent flows
We continue to study the shearing property of unipotent flows. More precisely, we
shall study the shearing in directions different from §3.2 and deduce the following
Proposition 4.16. In fact, in §3.2, we study the shearing between points of the form
(x, y), (gx, y) ∈ X × Y for some g ∈ GX sufficiently close to the identity. Thus, the
information basically comes from the X-factor. However, in this section, we shall study
the shearing between points of the form (ψ(y), y), (ψ(gy), gy) ∈ Cρ\X × Y , where
ψ : Y → Cρ\X is a measurable map and g ∈ GX is sufficiently close to the identity. Thus,
the time change on Y comes into play. The technique used in Proposition 4.16 generalizes
the ideas in [Rat86, Tan22], and provides us with a quantitative estimate of a unipotent
shearing on the double quotient space Cρ\GX/�X. Roughly speaking, Proposition 4.16
helps us better understand the non-shifting time under a unipotent shearing.

4.1. Preliminaries. We start with a combinatorial result. Let I be an interval in R and
let Ji , Jj be disjoint subintervals of I , Ji = [xi , yi], yi < xj if i < j . Denote

d(Ji , Jj ) := Leb[yi , xj ] = xj − yi .
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For a collection β of finitely many intervals, we define

|β| := Leb
( ⋃
J∈β

J

)
.

In addition, for a collection β of finitely many intervals, an interval I, let

β ∩ I := {I ∩ J : J ∈ β}.

PROPOSITION 4.1. (Existence of large intervals, Solovay [Rat79]) Given η ∈ (0, 1),
ζ ∈ (0, 1), there is θ = θ(ζ , η) ∈ (0, 1) such that if I is an interval of length λ � 1 and
α = {J1, . . . , Jn} = G ∪ B is a partition of I into good and bad intervals such that:
(1) for any two good intervals Ji , Jj ∈ G, we have

d(Ji , Jj ) ≥ [min{Leb(Ji), Leb(Jj )}]1+η; (4.1)

(2) Leb(J ) ≤ ζλ for any good interval J ∈ G;
(3) Leb(J ) ≥ 1 for any bad interval J ∈ B;
then the measure of bad intervals Leb(

⋃
J∈B J ) ≥ θλ. More precisely, we can take

θ = θ(ζ , η) =
∞∏
n=0

(1 + Cζnη)−1

for some constant C > 0 (independent of ζ , η).

Proof. Assume that ζ 1−k ≤ λ ≤ ζ−k for some k ≥ 1. Let

Gn := {J ∈ G : ζ n+1λ ≤ |J | ≤ ζ nλ},
G≤n :=⋃n

i=1 Gi , and B≤n be the collection of the remaining intervals forming
I \⋃J∈G≤n J . Then for n ∈ N, J ∈ B≤n, by equation (4.1), we have

|B≤n+1 ∩ J |
Leb(J )

= |B≤n+1 ∩ J |
|Gn+1 ∩ J | + |B≤n+1 ∩ J | =

(
1 + |Gn+1 ∩ J |

|B≤n+1 ∩ J |
)−1

≥
(

1 + lζ n+1λ

(l − 1)ζ (n+2)(1+η)λ1+η

)−1

= (1 + Cζ (k−n)η)−1,

where l ≥ 2 is the number of intervals in Gn+1 ∩ J , and C > 0 is some constant depending
on η and ζ . One can also show that when k = 0, 1, we have a similar relation. By summing
over J ∈ B≤n, we obtain

|B≤n+1|
|B≤n| ≥ (1 + Cζ (k−n)η)−1.

Note that by item (2), |B≤0| = λ, and by item (3), B≤n = B≤n+1 for all n ≥ k. We calculate

|B| = |
⋂
k≥0

B≤k| = lim
k→∞ |B≤k| =

∞∏
n=0

|B≤n+1|
|B≤n| · λ ≥

k∏
n=0

(1 + Cζ (k−n)η)−1 · λ.
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Now note that

θ(ζ , η) =
∞∏
n=0

(1 + Cζnη)−1 ≤
k∏
n=0

(1 + Cζ (k−n)η)−1

and the proposition follows.

In light of equation (4.1), we make the following definition.

Definition 4.1. (Effective gaps between intervals) We say that two intervals I , J ⊂ R have
an effective gap if

d(I , J ) ≥ [min{Leb(I ), Leb(J )}]1+η

for some η > 0. Later, we shall obtain some quantitative results relative to the effective
gap.

Remark 4.2. It is worth noting that if A and B are collections of intervals with effective
gaps, then the intersections A ∩ B := {I ∩ J : I ∈ A, J ∈ B} also have effective gaps.
More generally, assume that A and B are collections of intervals with effective gaps. If
J1, J2 ∈ A ∩ B have an effective gap, then there is a pair of intervals I1, I2, either in A or
in B, such that J1 ⊂ I1, J2 ⊂ I2 and I1, I2 have an effective gap.

In the following, we shall use the asymptotic notation:
• A � B or A = O(B) means there is a constant C > 0 such that A ≤ CB (we also

write A �κ B if the constant C(κ) depends on some coefficient κ);
• A = o(B) means that A/B → 0 as B → 0;
• A � B means there is a constant C > 1 such that C−1B ≤ A ≤ CB;
• A ≈ 0 means A ∈ (0, 1) close to 0, and A ≈ 1 means A ∈ (0, 1) close to 1.
Similar to [Tan22], we need to following quantitative property of polynomials.

LEMMA 4.3. Fix numbers R0 > 0, κ ∈ (0, 1], a real polynomial p(x) = v0 + v1x +
· · · + vkxk ∈ R[x]. Assume further that there exist intervals [0, l1] ∪ [l2, l2] ∪ · · · ∪
[lm, lm] such that

|p(t)| � max{R0, t1−κ} if and only if t ∈ [0, l1] ∪ [l2, l2] ∪ · · · ∪ [lm, lm]. (4.2)

Then l1 has the lower bound l depending on maxi |vi |, R0, κ , and the implicit constant
such that l ↗ ∞ as maxi |vi | ↘ 0 for fixed R0, κ . In addition, m ≤ k and we have:

(1) |vi | �k,κ R0l
1−i−κ
1 for all 1 ≤ i ≤ k;

(2) fix η ≈ 0. Assume that for certain 1 ≤ j ≤ m− 1, sufficiently large lj , the intervals
[0, lj ] and [lj+1, lj+1] do not have an effective gap:

lj+1 − lj ≤ min{lj , lj+1 − lj+1}1+η. (4.3)

Then there exists 1 ≈ ξ(η, k) ∈ (0, 1) with ξ(η, k) → 1 as η → 0 such that

|vi | �k,κ l
ξ(η,k)(1−i−κ)
j

for all 1 ≤ i ≤ k.
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Proof. The number m of intervals in equation (4.2) can be bounded by k via an elementary
argument of polynomials.

(1) Let F(x) := v1(l1x)
κ + · · · + vk(l1x)k−1+κ for x ∈ [0, 1]. Then we have⎛⎜⎜⎜⎜⎝

v1l
κ

1

v2l
1+κ
1
...

vkl
k−1+κ
1

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
(1/k)κ (1/k)1+κ · · · (1/k)k−1+κ
(2/k)κ (2/k)1+κ · · · (2/k)k−1+κ

...
...

. . .
...

1 1 · · · 1

⎤⎥⎥⎥⎦
−1 ⎛⎜⎜⎜⎝

F(1/k)
F (2/k)

...
F(1)

⎞⎟⎟⎟⎠.

By equation (4.2), we know that |F(1/k)|, |F(2/k)|, . . . , |F(1)| � R0. Thus, we obtain
|vi | �k,κ R0l

1−i−κ
1 for all 1 ≤ i ≤ k.

(2) This follows by induction. Assume that the statement holds for j − 1. For j, the only
difficult situation is when lj ≤ lj+1 − lj and lj+1 − lj+1 ≤ lj+1 − lj . If this is the case,
then

lj+1 = (lj+1 − lj+1)+ (lj+1 − lj )+ lj ≤ 3l
1+η
j .

Thus, by induction hypothesis, we get

|vi | � l
ξ(η,j)(1−i−κ)
j � l

ξ(η,j)/(1+η)(1−i−κ)
j+1

for all 1 ≤ i ≤ k.

4.2. Effective estimates of shearing phenomena. Now we begin to study the shearing
between two nearby orbits of time changes of unipotent flows. Let G = SO(n, 1). First,
since all maximal compact subgroups of CG(U) are conjugate, we can assume without
loss of generality that Cρ is in the compact group generated by k⊥C . Thus, via equations
(2.3), (2.4), and (2.8), we consider the decomposition

g = sl2 ⊕ V ⊥ρ ⊕ Lie(Cρ), V ⊥ρ =
∑
i

V
0⊥ρ
i ⊕

∑
j

V 2
j ,

k⊥C = k
⊥ρ
C ⊕ Lie(Cρ),

where Lie(Cρ) denotes the Lie algebra of Cρ and note that Lie(Cρ) consists of weight 0
spaces. Since Cρ is compact, there is a G-right invariant metric dCρ\G(·, ·) on Cρ\G. Let
P : G → Cρ\G be the natural projection

P : g �→ Cρg =: g.

Then, for gx , gy ∈ G, we have

dCρ\G(gx , gy) = dCρ\G(Cρgx , Cρgy) = dCρ\G(Cρgxg−1
y , Cρ) = dCρ\G(gxg−1

y , e).

Moreover, dP induces an isometry between sl2 + V ⊥ρ and Te(Cρ\G). See for example
[GQ19] for more details.

Assume g ∈ BCρ\G(e, ε) for sufficiently small 0 < ε. Since Cρ in fact commutes with
SO0(2, 1), we can identify

g = Cρh exp v (4.4)
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for some h ∈ BSO0(2,1)(e, ε) and v ∈ BV⊥ρ (0, ε). In addition, for h = [ a bc d ] ∈
BSO0(2,1)(e, ε), we must have |b|, |c| < ε, 1 − ε < |a|, |d| < 1 + ε.

Next, let t (s) ∈ R+ be a function of s ∈ R+. Then we want to study the difference
utgu−s of two nearby orbits of time changes of unipotent flows. By equation (2.5), we
have

utgu−s = Cρuth exp vu−s = Cρ(uthu−s)(us exp(v)u−s)

= Cρ(uthu−s) exp(Ad us .v) = Cρ(uthu−s) exp
( ς∑
n=0

n∑
i=0

bi

(
n

i

)
sn−ivn

)
.

(4.5)

Then one may conclude that utgu−s < ε if and only if

uthu−s � ε, Ad us .v =
ς∑
n=0

n∑
i=0

bi

(
n

i

)
sn−ivn � ε, (4.6)

where g � ε for g ∈ G means dCρ\G(g, e) � ε. Therefore, later on, we shall split the
elements closing to the identity into two parts, say the SO(2, 1)-part and the V ⊥ρ-part.

As shown in equation (4.6), we consider the elements of the form uthu−s ∈
BSO(2,1)(e, ε). One may calculate

uthu−s =
[

1
t 1

] [
a b

c d

] [
1

−s 1

]
=
[

a − bs b

c + (a − d)s − bs2 + (t − s)(a − bs) d + bt
]

. (4.7)

If we further impose the Hölder inequality |s − t | �κ max{R0, s1−κ } for some R0 > ε

(see §2.3 or equation (4.33)), then we have the crude estimate

| − bs2 + (a − d)s + c + (−bs + a)(t − s)| < ε
⇒ | − bs2 + (a − d)s| − |c| − |(−bs + a)(t − s)| < ε
⇒ | − bs2 + (a − d)s| < 2ε + 2|t − s|
⇒ | − bs2 + (a − d)s| �κ max{R0, s1−κ}.

By Lemma 4.3, we immediately obtain the following lemma.

LEMMA 4.4. (Estimates for SO0(2, 1)-coefficients) Given κ ≈ 0, R0 > 0, ε ≈ 0, a matrix
h = [ a bc d ] ∈ BSO(2,1)(e, ε), then the solutions s ∈ [0, ∞) of the following inequality

| − bs2 + (a − d)s| �κ max{R0, s1−κ} (4.8)

consist of at most two intervals, say [0, l1(h)] ∪ [l2(h), l2(h)], where l1 has the lower
bound l(ε, R0, κ) such that l(ε, R0, κ) ↗ ∞ as ε ↘ 0 for fixed R0, κ . Moreover, we have:

(1) |b| �κ l
−1−κ
1 and |a − d| �κ l

−κ
1 ;
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(2) if we further assume that the intervals [0, l1] and [l2, l2] do not have an effective gap
as in equation (4.3), that is, l2 − l1 ≤ min{l1, l2 − l2}1+η for some η ≈ 0, then

|b| �κ l
ξ(η)(−1−κ)
2 , |a − d| �κ l

ξ(η)(−κ)
2 .

Next, we study the situation when Ad us .v � ε. Again by Lemma 4.3, we have the
following lemma.

LEMMA 4.5. (Estimates for V ⊥ρ-coefficients) Fix v = b0v0 + · · · + bςvς ∈ BVς (0, ε).
Assume that

Ad us .v � ε if and only if s ∈ [0, l1(v)] ∪ · · · ∪ [lm(v), lm(v)],

where l1 has the lower bound l(ε, R0, κ) such that l(ε, R0, κ) ↗ ∞ as ε ↘ 0 for fixed
R0, κ . Then m = m(v) is bounded by a constant depending on ς . Moreover, for 1 ≤ j ≤
ς − 1, the intervals [0, lj ] and [lj+1, lj+1] do not have an effective gap as in equation
(4.3), that is, lj+1 − lj ≤ min{lj , lj+1 − lj+1}1+η, then we have

|bi | �ς ,κ l
ξ(η,ς)(−ς+i)
j .

Next, we shall combine the results of Lemmas 4.4 and 4.5. The basic idea is to consider
the intersection of the collections of intervals obtained from the above lemmas. For sim-
plicity, we assume that the ‘V ⊥ρ-part’ consists of a single sl2-irreducible representation.
For the general case, we can repeat the argument for each sl2-irreducible representation
(cf. §2.2). First, for g = Cρh exp(v) ∈ Cρ\G, we write as in Lemmas 4.4 and 4.5

uthu−s � ε if and only if s ∈ [0, l1(h)] ∪ [l2(h), l2(h)],

Adus .v � ε if and only if s ∈ [0, l1(v)] ∪ · · · ∪ [lm(v)(v), lm(v)(v)].

Write l1(h) = l1(v) = 0 and we shall consider the family of intervals

{[lk(g), lk(g)]}k := {[li (h), li (h)] ∩ [lj (v), lj (v)]}i,j , (4.9)

where lk(g) < lk+1(g) for all k. Thus, in particular, l1(g) = 0 and [0, l1(g)] = [0, l1(h)] ∩
[0, l1(v)].

Now assume that there exists k such that [0, lk(g)] and [lk+1(g), lk+1(g)] do not have
an effective gap as in equation (4.3), that is,

lk+1(g)− lk(g) ≤ min{lk(g), lk+1(g)− lk+1(g)}1+η.

Then by Remark 4.2, the corresponding ‘SO(2, 1)-part’ and ‘V ⊥ρ-part’ should not have
effective gaps either. More precisely, for the SO(2, 1)-part, we define

i≥k := min{i ∈ {1, 2} : lk(g) ≤ li (h)}, i≤k+1 := max{i ∈ {1, 2} : lk+1(g) ≥ li (h)}.
Thus, we know

[0, lk(g)] ⊂ [0, li≥k (h)], [lk+1(g), lk+1(g)] ⊂ [li≤k+1(h), li≤k+1(h)]
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and hence [0, li≥k (h)] and [li≤k+1(h), li≤k+1(h)] do not have an effective gap as in equation
(4.3). Similarly, for the V ⊥ρ-part, we define

j≥k := min{j : lk(g) ≤ lj (v)}, j≤k+1 := max{j : lk+1(g) ≥ lj (v)}.
Then we know

[0, lk(g)] ⊂ [0, lj≥k (v)], [lk+1(g), lk+1(g)] ⊂ [lj≤k+1(v), lj≤k+1(v)]

and hence [0, lj≥k (v)] and [lj≤k+1(v), lj≤k+1(v)] do not have an effective gap as in equation
(4.3). Further, one observes

[0, lk(g)] = [0, li≥k (h)] ∩ [0, lj≥k (v)],

[lk+1(g), lk+1(g)] = [li≤k+1(h), li≤k+1(h)] ∩ [lj≤k+1(v), lj≤k+1(v)].

Now recall by the definition in equation (4.9) that the number of intervals in
{[lk(g), lk(g)]}k is bounded by a constant c(ς) > 0 because the numbers of intervals
{[li (h), li (h)]}i , {[lj (v), lj (v)]}j are. Since ς ≤ 2 when g = so(n, 1), we see that c(ς)
is uniformly bounded for all ς . Thus, we conclude that the number of intervals in
{[lk(g), lk(g)]}k is uniformly bounded for all g ∈ G. Then, combining Lemmas 4.5 and
4.4, we obtain the following lemma.

LEMMA 4.6. (Estimates for Cρ\G-coefficients) Let κ ≈ 0, R0 > 0, ε ≈ 0,
g = Cρh exp v ∈ BCρ\G(e, ε) be as above, where

h =
[
a b

c d

]
∈ SO0(2, 1), v = b0v0 + · · · + bςvς ∈ Vς .

Next, let t (s) ∈ R+ be a function of s ∈ R+ which satisfies the effectiveness

|s − t (s)| �κ max{R0, s1−κ}.
Then there exist intervals {[lk(g), lk(g)]}k such that

utgu−s < ε, implies s ∈
⋃
k

[lk(g), lk(g)], (4.10)

where l1 has the lower bound l(ε, R0, κ) such that l(ε, R0, κ) ↗ ∞ as ε ↘ 0 for fixed
R0, κ . In addition, k ≤ c for some constant c = c(g) > 0, and:
(1) |b| �κ l1(g)

−1−κ , |a − d| �κ l1(g)
−κ , |bi | �ς ,κ l1(g)

−ς+i for all 0 ≤ i ≤ ς;
(2) If we further assume that the intervals [0, lk(g)] and [lk+1(g), lk+1(g)] do not have

an effective gap as in equation (4.3), then there exists 1 ≈ ξ = ξ(η) ∈ (0, 1) with
ξ → 1 as η → 0 such that

|b| �κ lk(g)
−ξ(1+κ), |a − d| �κ lk(g)

−ξκ , |bi | �ς ,κ lk(g)
−ξ(ς−i)

for all 1 ≤ i ≤ ς .

In practical use, we consider two strictly increasing functions t (r), s(r) ∈ R+ of r ∈ R+
satisfying the effective estimates

|r − t (r)| �κ max{R0, r1−κ}, |r − s(r)| �κ max{R0, r1−κ}. (4.11)
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It follows that t is also an increasing function of s and satisfies

|t (r)− s(r)| ≤ |t (r)− r| + |r − s(r)| �κ max{R0, r1−κ} �κ max{R0, s(r)1−κ }.
Then by Lemma 4.6 and the monotonic nature, we deduce the following corollary.

COROLLARY 4.7. (Change of variables) Let κ ≈ 0, R0 > 0, ε ≈ 0, g = Cρh exp v ∈
BCρ\G(e, ε) be as above, where

h =
[
a b

c d

]
∈ SO0(2, 1), v = b0v0 + · · · + bςvς ∈ Vς .

Assume that we have equation (4.11). Then there exist intervals {[lk(g), lk(g)]}k such that

ut(r)gu−s(r) < ε implies r ∈
⋃
k

[Lk(g), Lk(g)], (4.12)

where L1 has the lower bound L(ε, R0, κ) such that L(ε, R0, κ) ↗ ∞ as ε ↘ 0 for fixed
R0, κ . Then we have k ≤ c for some constant c = c(g) > 0, and:
(1) |b| �κ L1(g)

−1−κ , |a − d| �κ L1(g)
−κ , |bi | �ς ,κ L1(g)

−ς+i for all 0 ≤ i ≤ ς;
(2) if we further assume that the intervals [0, Lk(g)] and [Lk+1(g), Lk+1(g)] do not

have an effective gap, as in equation (4.3), then there exists 1 ≈ ξ = ξ(η) ∈ (0, 1)
with ξ → 1 as η → 0 such that

|b| �κ Lk(g)
−ξ(1+κ), |a − d| �κ Lk(g)

−ξκ , |bi | �ς ,κ Lk(g)
−ξ(ς−i)

for all 1 ≤ i ≤ ς .

4.3. ε-blocks and effective gaps. Let x ∈ X, y ∈ BX(x, ε). We say that (gx , gy) ∈
Cρ\G× Cρ\G covers (x, y) if dCρ\G(gx , gy) < ε and P(gx) = x, P(gy) = y, where
P : Cρ\G → Cρ\G/� is the projection. Since Lie(Cρ\G) ∼= sl2 + V ⊥ρ , given a rep-
resentative gx of gx , we may choose gy ∈ G such that P(gy) = gy and

log(gyg−1
x ) ∈ sl2 + V ⊥ρ .

We shall always make such a choice if no further explanation.

Definition 4.2. (ε-block) Suppose that x ∈ X, y ∈ BX(x, ε), (gx , gy) covers (x, y), and
R ∈ (0, ∞] satisfies

dCρ\G(us(R)gx , ut(R)gy) < ε.

Then we define the ε-block of gx , gy of length r by

BL(gx , gy) := {(us(r)gx , ut(r)gy) ∈ Cρ\G× Cρ\G : 0 ≤ r ≤ R}.
Similarly, we define the ε-block of x, y of length r by

BL(x, y) := P(BL(gx , gy)) = {(us(r)gx , ut(r)gy) ∈ X ×X : 0 ≤ r ≤ R}.
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In either case, we call [0, R] the corresponding time interval and define the length | BL |
of BL by

| BL | := R.

We also write

BL(x, y) = {(x, y), (us(R)x, ut(R)y)} = {(x, y), (x, y)}
emphasizing that (x, y) is the first and (x, y) is the last pair of the block BL(x, y).

For a pair of ε-blocks, a shifting problem may occur.

Definition 4.3. (Shifting) Let BL′ = {(x′, y′), (x′, y′)}, BL′′ = {(x′′, y′′), (x′′, y′′)} be
two ε-blocks. Then x′′ = usgx′ , y′′ = uty′ for some s, t > 0. Further, there is a unique
γ ∈ � such that

dCρ\G(gx′′ , gy′′γ ) < ε, (4.13)

where gx′′ := usgx′ , gy′′ := utgy′ . We define:

• (Shifting) (x′, y′) �∼ (x′′, y′′) if γ �= e in equation (4.13);
• (Non-shifting) (x′, y′) e∼ (x′′, y′′) if γ = e in equation (4.13).

The key observation here is that whenever the difference of gx , gy can be estimated
by the length in an appropriate way, a shifting must lead to an effective gap between two
ε-blocks. This follows from the natural renormalization of unipotent flows via diagonal
flows.

PROPOSITION 4.8. (Shiftings imply effective gaps) There are quantities η0 ≈ 0, σ0 ≈ 0,
ε0 ≈ 0, r0 > 0 determined orderly such that, for any
• η ∈ (0, η0),
• σ ∈ (0, σ0(η)),
• ε ∈ (0, ε0(σ )),
there exists a compact set K ⊂ X with μ(K) > 1 − σ such that the following holds (see
Figure 1).

Assume that there are two ε-blocks BL′ = {(x′, y′), (x′, y′)}, BL′′ = {(x′′, y′′),
(x′′, y′′)} such that the y-endpoints lie in K (that is, y ′, y′, y′′, y′′ ∈ K) and satisfy

gy′ = h′ exp(v′)gx′ , gy′′ = h′′ exp(v′′)gx′′ , (4.14)

where h′, h′′ ∈ SO0(2, 1), v′, v′′ ∈ Vς can be estimated by

h′, h′′ =
[

1 +O(r−2η) O(r−1−2η)

O(ε) 1 +O(r−2η)

]
, v′, v′′ = O(r−ξς )v0 + · · · +O(ε)vς

(4.15)

for some r > r0(σ , ε0), where ξ = ξ(η) ≈ 1 is given by Corollary 4.7. Assume further that

x′′ = usx′, y′′ = uty′, and t � s. If BL′ �∼ BL′′, then

s, t > r1+η. (4.16)
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BL′x′ x′ BL′′x′′ x′′

s

y′ y′ y′′ y′′

t

FIGURE 1. The solid straight lines are the unipotent orbits in the BL′ and BL′′, and the dashed lines are the rest
of the unipotent orbits. The bent curves indicate the length defined by the letters.

Proof. We only consider ς = 2. Denote

gy′ = h
′

exp(v′)gx′ (4.17)

for h
′ ∈ SO0(2, 1), v′ ∈ V2. By Definition 4.2, we know that gy′ , gx′ are obtained by the

unipotent action on gy′ , gx′ , and the difference of gy′ , gx′ is controlled by ε. Combining
equation (4.15), we get that

h
′ =
[

1 +O(ε) O(r−1−2η)

O(ε) 1 +O(ε)
]

, v′ = O(r−2ξ )v0 +O(ε)v1 +O(ε)v2. (4.18)

Since BL′ �∼ BL′′ and gx′′ = usgx′ , we get that

gy′′ = cutgy′γ for some e �= γ ∈ �, c ∈ Cρ . (4.19)

Then by equations (4.14), (4.17), and (4.19), we have

gy′ = h
′

exp(v′)u−sgx′′ ,

gy′γ = c−1u−t h′′ exp(v′′)gx′′ . (4.20)

Assume that one of s, t is not greater than r1+η. Then since s � t , we know

0 < s, t ≤ O(r1+η). (4.21)

Next, we determine the quantities for the proposition.
• (Choice of η, δ (also η0)) Choose a small η ≈ 0 that satisfies

1 + 2δ < 1 + 2η < 2ξ(2η), (4.22)

where ξ(2η) was defined in Corollary 4.7, and δ := 3η/4. Here, η0 ≈ 0 can be defined
to be the maximal η so that equation (4.22) holds.

• (Choice of σ ) Then σ = σ(η) > 0 can be chosen as

σ <
3η

4 + 6η
. (4.23)

• (Choice of ε0, K1; injectivity radius) Since � is discrete, there is a compact subset
K1 ⊂ X, μ(K1) > 1 − 1

4σ and ε0 > 0 such that for any gy ∈ P−1
(K1) satisfying

dCρ\G(gy , gyγ ) < O(ε0) (4.24)
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for some γ ∈ �, then γ = e. Here the constants hidden in O(ε0) will be determined
after the estimate of equation (4.28) (see also equation (4.29)).

• (Choice of K2, K, T0, r0; ergodicity of aT ) Since the diagonal action aT is ergodic on
(X, μ), there is a compact subset K2 ⊂ X, μ(K2) > 1 − 1

4σ and T0 = T0(K2) > 0
such that the relative length measure K2 on [y, aT y] (and [a−T y, y]) is greater than
1 − σ for any y ∈ K2, |T | ≥ T0. Assume that

K := K1 ∩K2, r0 > e
(1+2δ)−1T0 . (4.25)

Note that μ(K) > 1 − σ . The quantity r0 will be even larger and determined by ε0 if
necessary (see equation (4.29)).

Now we are in the position to apply the renomalization via the diagonal action aw.
Since r > r0 = e(1+2δ)−1T0 , let eω0 := r1+2δ and we know ω0 > T0. Since y′ ∈ K ⊂ K2,
it follows from the choice ofK2 and T0 that the relative length measure of K on [y′, aω0y′]
is greater than 1 − σ . This implies that there is ω satisfying

(1 − σ)ω0 < ω ≤ ω0

such that aωy′ ∈ K and therefore

aωgy′ ∈ P−1
(K). (4.26)

By equation (4.20), we have

aωgy′ = (aωh
′
a−ω) exp(Ad aω.v′)(aωu−sa−ω)aωgx′′ ,

aωgy′γ = c−1(aωu−t a−ω)(aωh′′a−ω) exp(Ad aω.v′′)aωgx′′ . (4.27)

Then by equations (4.18), (4.15), and (4.21), we estimate

awh
′
a−w =

[
1 +O(ε) O(r2δ−2η)

O(ε) 1 +O(ε)
]

,

awh
′
a−w =

[
1 +O(r−2η) O(r2δ−2η)

O(ε) 1 +O(r−2η)

]
,

Ad aω.v′ = O(r−2ξ+1+2δ)v0 +O(ε)v1 +O(ε)v2,

Ad aω.v′′ = O(r−2ξ+1+2δ)v0 +O(ε)v1 +O(r−(1−σ)(1+2δ))v2, (4.28)

aωu−t a−ω = u−te−ω = uO(r
1+ηr−(1−σ)(1+2δ)),

aωu−sa−ω = u−se−ω = uO(r
1+ηr−(1−σ)(1+2δ)).

Notice that by the choice of σ , δ (see equations (4.22) and (4.23)), we have

1 + η − (1 − σ)(1 + 2δ) = 1 + η − (1 − σ)(1 + 3
2η
)
< − 1

4η.

Also, by equation (4.22), we have

2δ − 2η < 0, −2ξ + 1 + 2δ < 0.
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Thus, by enlarging r0 if necessary, all terms of equation (4.28) can be quantitatively
dominated by O(ε0). Then by equation (4.27), we have

dCρ\G(aωgy′γ , aωgy′) = dCρ\G(aωgy′γ (aωgx′′)−1, aωgy′(aωgx′′)−1) < O(ε0). (4.29)

Thus, by equation (4.24), we get γ = e, which contradicts our assumptions.

4.4. Construction of ε-blocks. In light of Proposition 4.8, we try to construct a
collection of ε-blocks based on the unipotent flows between two nearby points so that
each pair of ε-blocks has an effective gap.

First, given η0 ≈ 0 as in Proposition 4.8, we fix a sufficiently small κ ∈ (0, 2η0), and
then choose η = η(κ) ≈ 0 such that

1 + 2η
ξ(2η)

< 1 + κ < 1 + 2η0, (4.30)

where ξ(2η) ≈ 1 is given by Corollary 4.7. Then, σ0 = σ0(η) ≈ 0 given in Proposition 4.8
has been determined. Next, assume that there exist:
• σ ∈ (0, σ0);
• R0 > 1;
• ε0 = ε0(σ ) ≈ 0, ε = ε(R0) ∈ (0, ε0) so small that

L1(g) ≥ L(ε, R0, κ) > max{r0(σ , ε0), R0} (4.31)

whenever g ∈ BG(e, ε), where L1, L are defined by Corollary 4.7,
such that, for K ⊂ X with μ(K) > 1 − σ given by Proposition 4.8, x, y ∈ X, we have
A = A(x, y) ⊂ R+ such that:
(1) if r ∈ A, then

ut(r)y ∈ K and dX(u
s(r)x, ut(r)y) < ε (4.32)

for continuous increasing functions t , s : [0, ∞) → [0, ∞);
(2) we have the Hölder inequalities:

|(t (r ′)− t (r))− (r ′ − r)| �|r ′ − r|1−κ , (4.33)

|(s(r ′)− s(r))− (r ′ − r)| �|r ′ − r|1−κ ,

for all r , r ′ ∈ A with r ′ > r , r ′ − r ≥ R0.
It is worth noting from equation (4.24) that points in K have injectivity radius at least ε0.
For simplicity, we shall assume that 0 ∈ A in what follows.

Remark 4.9. For the conditions (i) and (ii), the quantities s, t are symmetric. Thus, for
instance, one can also consider s as an increasing function of t, and obtain similar Hölder
inequalities. We have already made such a change of variables in §4.2 for notational
simplicity

However, the assumptions in equations (4.32), (4.33) coincide with equations (4.11),
(4.12). So Corollary 4.7 can apply.
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BL1x1 x1 BL2x2 x2 BL3x3 x3 xn
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y1 y1 y2 y2 y3 y3 yn

t2
t2 t3

t3

t (λ)

FIGURE 2. A collection of ε-blocks {BL1, . . . , BLn}. The solid straight lines are the unipotent orbits in the
ε-blocks and the dashed lines are the rest of the unipotent orbits. The bent curves indicate the length defined by

the letters.

4.4.1. Construction of β1. For λ ∈ A, denote Aλ := A ∩ [0, λ]. Now we construct a
collection β1(Aλ) of ε-blocks. Let x1 := x, y1 := y. We follow the assumptions in
equations (4.32) and (4.33). Suppose that (gx1 , gy1) ∈ Cρ\G× Cρ\G covers (x1, y1) and

r1 := sup{r ∈ Aλ ∩ [0, L1(gy1g
−1
x1
)] : dG(ut(r)gy1 , us(r)gx1) < ε}, s1 := s(r1),

where L1 is defined by Corollary 4.7. Let BL1 be the ε-block of x1, y1 of length r1,
BL1 = {(x1, y1), (x1, y1)}. To define BL2, we take

r2 := inf{r ∈ Aλ : r > r1}, s2 := s(r2),

and apply the above procedure to

x2 := us(r2)x1, y2 := ut(r2)y1

(note that by equation (4.12), r2 > r1). This process defines a collection β1(Aλ) =
{BL1, . . . , BLn} of ε-blocks on the orbit intervals [x1, us(λ)x1], [y1, ut(λ)y1] (see
Figure 2):

xi = usi x1, xi = usi x1, yi = uti y1, yi = uti y1,

si = s(ri), si = s(ri), ti = t (ri), t i = t (ri).

Note also that by the assumption of A, we have xi , xi ∈ K for all i, the corresponding time
interval of BLi is [ri , ri], and the length | BLi | of BLi is

| BLi | := ri − ri .
Note that any BLi = {(xi , yi), (xi , yi)} ∈ β1(Aλ) has length | BLi | ≤ L1(gyi g

−1
xi
). By

Corollary 4.7, we immediately obtain an estimate for the difference of gxi and gyi in terms
of the length of ε-blocks.

https://doi.org/10.1017/etds.2022.83 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.83


3824 S. Tang

COROLLARY 4.10. (Difference of β1(Aλ)) Assume that gyi g
−1
xi = Cρhi exp(vi), where

hi =
[
a b

c d

]
∈ SO0(2, 1), vi = b0v0 + · · · + bςvς ∈ Vς .

Then we have

hi =
[

1 +O(r−κ
i ) O(r−1−κ

i )

O(ε) 1 +O(r−κ
i )

]
, vi = O(r−ς

i )v0 + · · · +O(ε)vς

for some ri ≥ max{r0, R0, |BLi |}.

We then immediately conclude from Proposition 4.8 that for any BL′, BL′′ ∈ β1(Aλ)

with BL′ �∼ BL′′, there is an effective gap between them, that is,

d(BL′, BL′′) ≥ [min{| BL′|, | BL′′|}]1+κ/2.

However, when BL′ e∼ BL′′, they do not necessarily have an effective gap. This enlightens
us to connect these ε-blocks and generate a new collection β2(Aλ).

4.4.2. Construction of β2. Now we construct a new collection β2(Aλ) = {BL1, . . . ,
BLN } by the following procedure. The idea is to connect ε-blocks in β1(Aλ) =
{BL1, . . . , BLn} so that each pair of new blocks must have an effective gap. Let
BL1 ∈ β1(Aλ), gy1 = h exp(v)gx1 , and

h =
[
a b

c d

]
∈ SO(2, 1), v = b0v0 + · · · + bςvς ∈ Vς .

Then by Corollary 4.7, one can write ut(r)gu−s(r) ∈ BG(e, ε) for

r ∈
⋃
k

[Lk(g), Lk(g)], (4.34)

where k ≤ c is uniformly bounded for all g ∈ G. Then consider the following two cases.

(1) There is no j ∈ {2, . . . , n} such that (x1, y1)
e∼ (xj , yj ).

(2) There is j ∈ {2, . . . , n} such that (x1, y1)
e∼ (xj , yj ).

In case (i), we set BL1 = BL1. Then by Corollary 4.10, we have

|b| � L1(gy1g
−1
x1
)−1−κ , |a − d| ≤ L1(gy1g

−1
x1
)−κ . (4.35)

In case (ii), suppose that gxj = usj gx1 , gyj = utj gy1 . Clearly, by the construction,
rj > L1(gy1g

−1
x1
). However, by equation (4.34), we get

rj ∈
⋃
k

[Lk(gy1g
−1
x1
), Lk(gy1g

−1
x1
)]

and k ≤ C is uniformly bounded for all g ∈ G. Assume that jmax is the maximal j among
rj ∈ [L2(gy1g

−1
x1
), L2(gy1g

−1
x1
)]. Whether [0, L1(gy1g

−1
x1
)] and [L2(gy1g

−1
x1
), L2(gy1g

−1
x1
)]
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have an effective gap leads to a dichotomy of choices:

BL1 =
{

remains unchanged if L2(gy1g
−1
x1
)− L1(gy1g

−1
x1
) > L1(gy1g

−1
x1
)1+2η,

{(x1, y1), (xjmax , yjmax)} otherwise.

If the first case occurs, we will not change BL1 anymore. If the second case occurs, that is,
we redefine BL1 = {(x1, y1), (xjmax , yjmax)}, then we repeat the construction for the new
BL1 again.
(1) Suppose that there is rj > L2(gy1g

−1
x1
). Then assume jmax to be the maximal j among

rj ∈ [L3(gy1g
−1
x1
), L3(gy1g

−1
x1
)]. Then again, we set

BL1 =
{

remains unchanged if L3(gyg
−1
x )− L3(gy1g

−1
x1
) > L2(gy1g

−1
x1
)1+2η,

{(x1, y1), (xjmax , yjmax)} otherwise,

and so on.
The process will stop since the number of intervals is uniformly bounded for all g ∈ G.
Now BL1 ∈ β2(Aλ) has been constructed. By the choice of BL1 and Corollary 4.7, we
conclude that

|b| �κ | BL1 |−ξ(1+κ), |a − d| �κ | BL1 |−ξκ , |bi | �ς ,κ | BL1 |−ξ(ς−i) (4.36)

for ξ = ξ(2η) ≈ 1 and for all 1 ≤ i ≤ ς .
Next, we repeat the above argument to construct BLm+1. More precisely, suppose

that BLm = {(xjm−1+1, yjm−1+1), (xjm , yjm)} ∈ β2(Aλ) has been constructed. To define
BLm+1, we repeat the above argument to BLjm+1 ∈ β1(Aλ). Thus, β2(Aλ) is completely
defined. Further, one may conclude the difference of points of ε-blocks in β2(Aλ).

LEMMA 4.11. (Difference of β2(Aλ)) For any BLi = {(x′
i , y

′
i ), (x

′
i , y

′
i )} in the collection

β2(Aλ) = {BL1, . . . , BLN } of ε-blocks, we have

gy′
i
g−1
x′
i

= Cρhi exp(vi),

where

hi =
[

1 +O(r−2η
i ) O(r−1−2η

i )

O(ε) 1 +O(r−2η
i )

]
, vi = O(r−ξς

i )v0 + · · · +O(ε)vς (4.37)

for some ri ≥ max{r0, R0, |BLi |}.

Proof. Equation (4.37) follows immediately from equations (4.35), (4.36), (4.30), and
(4.31).

Then, recall that by the construction of β2(Aλ), for any BL′, BL′′ ∈ β2(Aλ) with BL′ e∼
BL′′, there is an effective gap between them, that is,

d(BL′, BL′′
) ≥ [max{r0, R0, min{|BL′|, |BL′′|}}]1+2η.
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However, when BL′ �∼ BL′′, by Proposition 4.8 and Lemma 4.11, we have

d(BL′, BL′′
) ≥ [max{r0, R0, min{|BL′|, |BL′′|}}]1+η.

Thus, we conclude from Proposition 4.1 the following proposition.

PROPOSITION 4.12. (Effective gaps of β2(Aλ)) Let the notation and assumptions be as
above. For any BL′, BL′′ ∈ β2(Aλ), we have

d(BL′, BL′′
) ≥ [max{r0, R0, min{|BL′|, |BL′′|}}]1+η.

Thus, for any ζ ∈ [0, 1], if

1
λ

Leb(Aλ) ≥ θη(ζ ) = 1 − θ(η, ζ ) = 1 −
∞∏
n=0

(1 + Cζnη)−1,

then there is an ε-block BL ∈ β2(Aλ) that has

|BL| ≥ ζλ.

4.5. Non-shifting time. Now assume that for some λ, ζ > 0, we know that

Leb(Aλ) ≥ θη(ζ )λ.

Then Proposition 4.12 provides us with an ε-block BL = {(x′, y′), (x′, y′)} ∈ β2(Aλ) with
|BL| ≥ ζλ. In other words, if we write

x′ = us(R1)x, x′ = us(R2)x, y′ = ut(R1)y, y′ = ut(R2)y, (4.38)

then we can find R1, R2 > 0 with R2 − R1 ≥ ζλ such that

dCρ\G(ut(R1).gy , us(R1).gx) < ε, dCρ\G(ut(R2).gy , us(R2).gx) < ε.

It is already quite surprising. However, it is still possible that

dCρ\G(ut(r).gy , us(r).gx) > ε

for some r ∈ [R1, R2] ∩ A. Thus, define

AR1R2 := {r ∈ [R1, R2] ∩ A : dCρ\G(ut(r).gy , us(r).gx) > ε}
and we want to show that Leb(AR1R2)/λ has a upper bound in certain situations.

Remark 4.13. By equation (4.37), we can estimate the difference between x ′, y′; more
precisely, we have

gy′g−1
x′ = Cρh exp(v),

where

h =
[

1 +O((ζλ)−2η) O((ζλ)−1−2η)

O(ε) 1 +O((ζλ)−2η)

]
, v = O((ζλ)−ξς )v0 + · · · +O(ε)vς .
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4.5.1. Construction of β̃1, β̃2. Now we consider the shifting time of the ε-block BL =
{(x′, y′), (x′, y′)} ∈ β2(Aλ). Define a collection β̃1(AR1R2) of ε-blocks on the orbit
intervals [x′, x′′], [y′, y′′] according to the following steps. Suppose that

r1 := min{r ∈ [R1, R2] : r ∈ AR1R2}, x1 := us(R1)x′, y1 := ut(R1)y′

and that (gx1 , gy1) ∈ Cρ\G× Cρ\G covers (x1, y1) and

r1 := sup{R ∈ AR1R2 : dG(ut(r)gy1 , us(r)gx1) < ε for any r ∈ AR1R2 ∩ [0, R]}.
Let BL1 ∈ β̃1(AR1R2) be the ε-block of x1, y1 of length r1, and write BL1 =
{(x1, y1), (x1, y1)}. To define BL2, we take

r2 := inf{r ∈ AR1R2 : r > r1}
and apply the above procedure to

x2 := us(r2)x1, y2 := ut(r2)y1.

This process defines a collection β̃1(AR1R2) = {BL1, . . . , BLm} of ε-blocks on the orbit
intervals [us(r1)x′, us(rm)x′], [ut(r1)y′, ut(rm)y′]. Completely similar to β1, we can connect
some of the ε-blocks in β̃1(AR1R2) and form a new collection β̃2(AR1R2) such that
each pair of ε-blocks in β̃2(AR1R2) has an effective gap. Then, we conclude again from
Proposition 4.1 the following lemma.

LEMMA 4.14. (Difference and effective gaps of β̃2(AR1R2)) For any B̃Li = {(̃x′
i , ỹ

′
i ),

(̃x
′
i , ỹ

′
i )} in the collection β̃2(AR1R2) = {B̃L1, . . . , B̃LM} of ε-blocks, we have

gỹ′
i
g−1
x̃′
i

= Cρhi exp(vi),

where

hi =
[

1 +O(r−2η
i ) O(r−1−2η

i )

O(ε) 1 +O(r−2η
i )

]
, vi = O(r−ξς

i )v0 + · · · +O(ε)vς (4.39)

for some ri ≥ max{r0, R0, |B̃Li |}.
Moreover, for any B̃L′, B̃L′′ ∈ β̃2(AR1R2), we have

d(B̃L′, B̃L′′
) ≥ [max{r0, R0, min{|B̃L′|, |B̃L′′|}}]1+η.

Thus, for any ζ̃ ∈ [0, 1], if

1
λ

Leb(AR1R2) ≥ θη(̃ζ ) = 1 −
∞∏
n=0

(1 + Cζ̃nη)−1,

then there is an ε-block B̃L ∈ β̃2(AR1R2) that has

|B̃L| ≥ ζ̃ λ.

Thus, given ζ̃ ∈ (0, ζ ), we can apply Lemma 4.14 and obtain an ε-block B̃L =
{(̃x, ỹ), (̃x, ỹ)} ∈ β̃2(AR1R2) that has length |B̃L| ≥ ζ̃ λ. Then by equation (4.39), we get
that
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gỹg
−1
x̃ = Cρh̃ exp(̃v ),

where

h̃ =
[

1 +O((̃ζλ)−2η) O((̃ζλ)−1−2η)

O(ε) 1 +O((̃ζλ)−2η)

]
, ṽ = O((̃ζλ)−ξς )v0 + · · · +O(ε)vς .

Then combining Remark 4.13 and Proposition 4.8, we conclude that

r1 > (̃ζλ)
1+η.

Since r1 ∈ [R1, R2], we obtain (̃ζ λ)1+η ≤ ζλ or

ζ̃ ≤ (ζλ−η)1/(1+η).

In other words, we obtain the following lemma.

LEMMA 4.15. (Shifting is sparse in a big ε-block) Given λ > 0, ζ ∈ (0, 1), η ≈ 0, assume
that

Leb(Aλ) ≥ θη(ζ )λ.

Then there is an ε-block BL ∈ β2(Aλ) with the corresponding time interval [R1, R2] and
|BL| = R2 − R1 ≥ ζλ. In addition, denote the shifting time of BL by

AR1R2 := {r ∈ A ∩ [R1, R2] : dCρ\G(ut(r).gy , us(r).gx) > ε}.
Then we have

Leb(AR1R2)/λ ≤ θη((ζλ
−η)1/(1+η)) = 1 −

∞∏
n=0

(1 + C(ζλ−η)nη/(1+η))−1.

In particular, Leb(AR1R2)/λ = o(λ).

In the following, we present a key proposition below that will be used in the proof of
Proposition 5.1. It basically says that non-shifting is always observable when the time scale
is large.

PROPOSITION 4.16. (Non-shifting time is not negligible) Given an integer n ≥ 2,
κ ∈ (0, 2η0), there exist λ0 > 0, σ0 ≈ 0, ϑ ≈ 0 such that, for any
• disjoint subsets A1, . . . , An ⊂ [0, ∞) that satisfy equations (4.32) and (4.33),
• λ > λ0,
• σ ∈ (0, σ0) satisfying

Leb
( n∐
i=1

Ai ∩ [0, λ]
)
> (1 − 2σ)λ,

there exists one Ai(λ) and [R′
1(λ), R

′
2(λ)] ⊂ [0, λ] such that there exists an ε-block BL ∈

β2(A
i(λ) ∩ [R′

1, R′
2]) with the corresponding time interval [R1, R2] such that

R2 − R1 > ϑλ, Leb(Ai(λ)ε ∩ [R1, R2]) > ϑλ,
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where A
i(λ)
ε := {r ∈ Ai(λ) : dCρ\G(ut(r).gy , us(r).gx) < ε} is the non-shifting time of

Ai(λ).

Proof. First, fix η satisfying equation (4.30), ζ1 ∈ (0, 1) so that θη(ζ1) = 1/(n+ 1) and
choose ζ2 ≈ 0 such that

θη(ζ2) <
ζ−1

1 − 1

2(ζ−n
1 − 1)

(4.40)

and then λ0 > 0 such that

θη(ζ2)ζ1 − θη((ζ2λ
−η)1/(1+η)) > 1

2θη(ζ2)ζ1 (4.41)

for λ > λ0. Then choose

σ0 = min
{

1
4
ζ n1 ,

1
2(n+ 1)

}
, (4.42)

ϑ = 1
2
θη(ζ2)ζ

n
1 . (4.43)

Given σ ∈ (0, σ0), λ > λ0, we write [R(0)1 , R(0)2 ] = [0, λ], b0 = 2σ , and then apply the
following algorithm on k = 0, 1, . . . , n− 1 orderly.

First, assume that:
• i1, . . . , ik ∈ {1, . . . , n} have been chosen without repetition;
• b0, . . . , bk > 0 have been chosen;
and they satisfy

Leb
( ∐
i �∈{i1,...,ik}

Ai ∩ [R(k)1 , R(k)2 ]
)
/ Leb([R(k)1 , R(k)2 ]) > 1 − bk . (4.44)

(Note that by the choice of ζ1 and σ0, equation (4.44) is possible for k = 0.) Then there is
one Aik+1 for some ik+1 �∈ {i1, . . . , ik} with

Leb(Aik+1 ∩ [R(k)1 , R(k)2 ]) > θ(ζ1) · Leb([R(k)1 , R(k)2 ]).

Applying Lemma 4.15 to Aik+1 , we obtain an ε-block BLk+1 with the corresponding time
interval [R(k+1)

1 , R(k+1)
2 ] ⊂ [R(k)1 , R(k)2 ] and

|BLk+1| = R
(k+1)
2 − R(k+1)

1 ≥ ζ1 · Leb([R(k)1 , R(k)2 ]) ≥ ζ k+1
1 λ > ϑλ. (4.45)

It follows from equation (4.44) that

Leb
( ∐
i �∈{i1,...,ik}

Ai ∩ [R(k+1)
1 , R(k+1)

2 ]
)

= Leb([R(k+1)
1 , R(k+1)

2 ])− Leb
(( ∐

i �∈{i1,...,ik}
Ai
)c

∩ [R(k+1)
1 , R(k+1)

2 ]
)

≥ Leb([R(k+1)
1 , R(k+1)

2 ])− Leb
(( ∐

i �∈{i1,...,ik}
Ai
)c

∩ [R(k)1 , R(k)2 ]
)

> Leb([R(k+1)
1 , R(k+1)

2 ])− bk · Leb([R(k)1 , R(k)2 ])
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and so by equation (4.45), we obtain

Leb
( ∐
i �∈{i1,...,ik}

Ai ∩ [R(k+1)
1 , R(k+1)

2 ]
)
/ Leb([R(k+1)

1 , R(k+1)
2 ]) > 1 − bkζ−1

1 . (4.46)

Then we face a dichotomy:
(1) Leb(Aik+1 ∩ [R(k+1)

1 , R(k+1)
2 ])/ Leb([R(k+1)

1 , R(k+1)
2 ]) ≥ θη(ζ2);

(2) Leb(Aik+1 ∩ [R(k+1)
1 , R(k+1)

2 ])/ Leb([R(k+1)
1 , R(k+1)

2 ]) < θη(ζ2).

In case (1), we take i(λ) = ik+1, [R′
1(λ), R

′
2(λ)] = [R(k)1 , R(k)2 ], BL = BLk+1. By

equations (4.41), (4.43), and (4.45), we have

Leb(Ai(λ)ε ∩ [R(k+1)
1 , R(k+1)

2 ])

= Leb(Ai(λ) ∩ [R(k+1)
1 , R(k+1)

2 ])− Leb((Ai(λ)ε )c ∩ Ai(λ) ∩ [R(k+1)
1 , R(k+1)

2 ])

≥ θη(ζ2) · Leb([R(k+1)
1 , R(k+1)

2 ])− θη((ζ2λ
−η)1/(1+η)) · Leb([R(k)1 , R(k)2 ])

≥ (θη(ζ2)ζ1 − θη((ζ2λ
−η)1/(1+η))) · Leb([R(k)1 , R(k)2 ])

>
1
2
θη(ζ2)ζ1 · ζ k1 λ ≥ ϑλ (4.47)

and the consequence of Proposition 4.16 follows. In case (2), by equation (4.46), we have

Leb
( ∐
i �∈{i1,...,ik+1}

Ai ∩ [R(k+1)
1 , R(k+1)

2 ]
)/

Leb([R(k+1)
1 , R(k+1)

2 ]) > 1 − bkζ−1
1 − θη(ζ2).

(4.48)

Now note that:
• ik+1 �∈ {i1, . . . , ik} has been chosen;
• choose bk+1 = bkζ

−1
1 + θη(ζ2);

and then equation (4.48) coincides with equation (4.44) by replacing k by k + 1. Thus, we
can apply the algorithm again by replacing k by k + 1.

After applying the algorithm, we either stop in the middle and finish the proof, or we
determine:
• i1, . . . , in−1 ∈ {1, . . . , n} without repetition;
• a sequence {bk}n−1

k=0 of positive numbers with b0 = 2σ and

bk+1 = bkζ
−1
1 + θη(ζ2). (4.49)

Let i(λ) be the only element in {1, . . . , n} \ {i1, . . . , in−1}. Let [R′
1(λ), R

′
2(λ)] =

[R(n−1)
1 , R(n−1)

2 ]. In addition, by equation (4.49), we calculate

bn−1 = 2σζ−(n−1)
1 + θη(ζ2)

ζ
−(n−1)
1 − 1

ζ−1
1 − 1

.

Now we try to do the algorithm one more time. Thus, we apply again Lemma 4.15 to
Ai(λ), and then we obtain an ε-block BL = BLn with the corresponding time interval
[R(n)1 , R(n)2 ] ⊂ [R(n−1)

1 , R(n−1)
2 ] satisfying equations (4.45) and (4.46), that is,
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|BLn| = Leb([R(n)1 , R(n)2 ]) ≥ ζ1 · Leb([R(n−1)
1 , R(n−1)

2 ]) ≥ ζ n1 λ > ϑλ, (4.50)

Leb(Ai(λ) ∩ [R(n)1 , R(n)2 ])/ Leb([R(n)1 , R(n)2 ])

> 1 − bn−1ζ
−1
1 = 1 − 2σζ−n

1 − θη(ζ2)
ζ−n

1 − ζ−1
1

ζ−1
1 − 1

≥ θη(ζ2), (4.51)

where the last inequality of equation (4.51) follows from equations (4.40) and (4.42). Then,
as in equation (4.47), we calculate

Leb(Ai(λ)ε ∩ [R(n)1 , R(n)2 ])

≥ (θη(ζ2)ζ1 − θη((ζ2λ
−η)1/(1+η))) · Leb([R(n−1)

1 , R(n−1)
2 ]) > ϑλ,

where the last inequality follows from equations (4.41), (4.43), and (4.50).

5. Invariance
Let GX = SO(nX, 1) and �X ⊂ GX be a lattice. Let (X, μ) be the homogeneous space
X = GX/�X equipped with the Lebesgue measure μ, and let φUXt = utX be a unipotent
flow on X as before. In addition, let GY be a Lie group and �Y ⊂ GY be a lattice. Let
(Y , mY ) be the homogeneous space Y = GY/�Y equipped with the Lebesgue measure
mY and let φUYt = utY be a unipotent flow on Y. Next, choose τY ∈ Kκ(Y ) a positive
integrable function τY on Y such that τY , τ−1

Y are bounded and satisfies equation (2.10).
Then define the measure dν := τY dmY and so the time-change flow φUY ,τY

t = ũ tY preserves
the measure ν by Remark 2.2. Also recall from equation (2.9) that

utY y = φ
UY ,τY
z(y,t) (y) = ũ

z(y,t)
Y (y).

We shall to study the joinings of (X, μ, utX) and (Y , ν, ũ tY ). Let ρ be an ergodic joining
of utX and ũ tY , that is, ρ is a probability measure on X × Y , whose marginals on X and
Y are μ and ν, respectively, and which is (utX × ũ tY )-ergodic. As indicated at the end of
§3, when ρ is not the product measure μ× ν, we apply Theorem 3.5 and then obtain a
compact subgroup Cρ ⊂ CGX(UX) such that ρ := π∗ρ is an ergodic joining utX and ũ tY
on Cρ\X × Y under the natural projection π : X × Y → Cρ\X × Y . In addition, it is
a finite extension of ν, that is, supp ρy consists of exactly n points ψ1(y), . . . , ψn(y)
for ν-a.e. y ∈ Y (without loss of generality, we shall assume that it holds for all
y ∈ Y ). By Kunugui’s theorem, we obtain ψi : Y → X so that PX ◦ ψi = ψi , where
PX : X → Cρ\X.

5.1. Central direction. We want to study the behavior of ψp along the central direction
CGY (UY ) of UY . In the following, assume that ρ is a (utX × ũ tY )-joining. Then by equation
(3.12), we get that

ψp(u
t
Y y) = ψp(̃u

z(y,t)
Y (y)) = u

z(y,t)
X ψip (y),

where the index ip = ip(y, t) ∈ {1, . . . , n} is determined by

(u
−z(y,t)
X × ũ −z(y,t)

Y )(ψp(̃u
z(y,t)
Y (y)), ũ z(y,t)

Y (y)) ∈ ψ̂ip (Y ).
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Now we orderly fix the following data so that the propositions in §4 can be used:
• fix κ ∈ (0, 2η0) satisfying equation (2.10), where η0 > 0 comes from Proposition 4.8;
• fix σ ∈ (0, σ0), where σ0 ≈ 0 comes from both Propositions 4.8 and 4.16;
• fix ε ∈ (0, ε0) as in equation (4.31);
such that the following holds.
• (Effective ergodicity) By equation (2.11), there is K1 ⊂ Y with ν(K1) > 1 − σ/6 and

tK1 > 0 such that

|t − z(y, t)| = O(t1−κ) (5.1)

for all t ≥ tK1 and y ∈ K1. Note that using ergodic theorem, we have

|t − z(y, t)| = o(t) (5.2)

for ν-almost all y ∈ Y .
• (Distinguishing ψp, ψq ) There is K2 ⊂ Y with ν(K2) > 1 − σ/6 such that

d(ψp(y), ψq(y)) > 100ε (5.3)

for y ∈ K2, 1 ≤ p < q ≤ n.
• (Lusin’s theorem) There is K3 ⊂ Y such that ν(K3) > 1 − σ/6 and ψp|K3 is uni-

formly continuous for all p ∈ {1, . . . , n}. Thus, there is δ > 0 such that

dX(ψp(y1), ψp(y2)) < ε (5.4)

for p ∈ {1, . . . , n}, dY (y1, y2) < δ, and y1, y2 ∈ K3.
Given K ⊂ X by Proposition 4.8, let

K0 := K1 ∩K2 ∩K3 ∩
n⋂
p=1

ψ
−1
p (K). (5.5)

Here we choose μ(K) being so large that mY (K0) > 1 − σ/2.
Fix c ∈ CGY (UY ) ∩ BGY (e, δ). We choose arbitrarily a representative gψp(y) ∈ GX of

ψp(y). Then there is a representative gψp(cy) ∈ GX so that:

• gψp(y)
and gψp(cy) lie in the same fundamental domain;

• the difference g(y) = gψp(cy)
g−1
ψp(y)

= h(p)(y) exp(v(p)(y)), where

h(p)(y) =
[
a(p)(y) b(p)(y)

c(p)(y) d(p)(y)

]
∈ SO0(2, 1),

v(p) = b
(p)

0 (y)v0 + · · · + b(p)ς (y)vς ∈ Vς . (5.6)

Further, applying the effectiveness of the unipotent flow, we shall show that the difference
g(y) has to lie in the centralizer CGX(UX).

PROPOSITION 5.1. Let the notation and assumptions be as above. For the quantities in
equation (5.6), there is a measurable set S(c) ⊂ Y with ν(S(c)) > 0 such that

b(p)(y) = 0, a(p)(y) = d(p)(y) = 1, b
(p)

0 (y) = · · · = b
(p)

ς−1(y) = 0

for y ∈ S(c), p ∈ {1, . . . , n}.
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Proof. Consider the measure of the set

Yl(c) := {y ∈ Y : |b(p)(y)|, |a(p)(y)− 1|, |d(p)(y)− 1|,
|b(p)0 (y)|, . . . , |b(p)ς−1(y)| < 1/l, for any p ∈ {1, . . . , n}}

for l ∈ Z+. We shall show that S(c) :=⋂l Yl(c) satisfies the requirement. By ergodic
theorem, we have

mY (Yl(c)) = lim
λ→∞

1
λ

∫ λ

0
1Yl(c)(u

r
Y y) dr (5.7)

for mY -a.e. y ∈ Y , where mY denotes the Lebesgue measure on Y.
However, by ergodic theorem, for mY -a.e. y ∈ Y , there is Ac,y ⊂ R+ and λ0(y) > 0

such that:
• for r ∈ Ac,y , we have

urY y, urY cy ∈ K0;

• Leb(Ac,y ∩ [0, λ]) ≥ (1 − 2σ)λ whenever λ ≥ λ0(y).
Then, by the assumptions, we have

Ac,y ⊂ {r ∈ [0, ∞) : dX(ψp(u
r
Y y), ψp(u

r
Y cy)) < ε, p ∈ {1, . . . , n}}. (5.8)

It follows that for r ∈ Ac,y , we have

dX(u
z(y,r)
X ψip(y,r)(y), u

z(cy,r)
X ψip(cy,r)(cy)) < ε (5.9)

for any p ∈ {1, . . . , n}. Now we restrict our attention on Ac,y ∩ [0, λ] with λ ≥ λ0(y).
For simplicity, we assume that 0 ∈ Ac,y . Let I = ((p1, p2), . . . , (p2n−1, p2n)) ∈
{1, . . . , n}2n be a sequence of indexes and

AIc,y := {r ∈ Ac,y : p2k−1 = ik(y, r), p2k = ik(cy, r) for all k ∈ {1, . . . , n}}. (5.10)

Then A = AIc,y , R0 = tK1 , t (r) = z(cy, r), s(r) = z(y, r) satisfy equations (4.32) and
(4.33) for points

ψp2k−1
(y), ψp2k

(cy) ∈ K
for all k ∈ {1, . . . , n}.

Since Ac,y =∐I∈{1,...,n}2n AIc,y (is a disjoint union because of equation (5.3)), by

Proposition 4.16, for any λ ≥ λ0, there exists one AI(λ)c,y and [R′
1, R′

2] ⊂ [0, λ] such
that there exists an ε-block BL = {(x′, y′), (x′′, y′′)} ∈ β2(A

I (λ)
c,y ∩ [R′

1, R′
2]) with the

corresponding time interval [R1, R2] such that

R2 − R1 > ϑλ, Leb(AI (λ)ε ∩ [R1, R2]) > ϑλ,

where AI(λ)ε is the non-shifting time of AI(λ)c,y . Then by the definition of AI(λ)ε , we know
that

dCρ\G(uz(cy,r)
X .gψip(cy,r)(cy)

, uz(y,r)
X .gψip(y,r)(y)

) < ε
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for r ∈ AI(λ)ε , p ∈ {1, . . . , n}. Recall from equation (4.24) that points in K have injectivity
radius at least ε0. Thus, for r ∈ AI(λ)ε ,

u
z(y,r)
X .gψip(y,r)(y)

and u
z(cy,r)
X .gψip(cy,r)(cy)

lie in the same fundamental domain. Thus, if r ∈ AI(λ)ε and

gψp(u
r
Y y)

= u
z(y,r)
X .gψip(y,r)(y)

,

then we get

gψp(u
r
Y cy)

= u
z(cy,r)
X .gψip(cy,r)(cy)

.

Recall that the difference of uz(y,r)
X .gψip(y,r)(y)

, uz(cy,r)
X .gψip(cy,r)(cy)

for r ∈ Ai(λ)ε ∩
[R1, R2] was estimated by equation (4.37) (see also equations (4.5), (4.6), and (4.7)). In
particular, for r ∈ Ai(λ)ε ∩ [R1, R2], the quantities of

g(urY y) = gψp(cu
r
Y y)
g−1
ψp(u

r
Y y)

= u
z(cy,r)
X gψip(cy,r)(cy)

(u
z(y,r)
X gψip(y,r)(y)

)−1

that need to be estimated in Yl(c) are all decreasing as λ → ∞. Then given l ∈ Z+, there
is a sufficiently large λ such that∫ λ

0
1Yl(c)(u

r
Y y) dr ≥ Leb(Ai(λ)ε ∩ [R1, R2]) > ϑλ.

Thus, by equation (5.7), we have mY (Yl(c)) > ϑ . Now letting λ → ∞ and then l → ∞,
we see that mY (

⋂
l Yl(c)) > ϑ . Finally, by Remark 2.2 and τY ∈ Kκ(Y ), we obtain

ν(
⋂
l Yl(c)) > 0.

Using Proposition 5.1, we immediately obtain the following corollary.

COROLLARY 5.2. There is a measurable map � : CGY (UY )×X × Y → CGX(UX) that
induces a map S̃c : supp(ρ) → supp(ρ) by

S̃c : (x, y) �→ (�(c, x, y)x, cy) (5.11)

for all c ∈ CGY (UY ), ρ-a.e. (x, y) ∈ X × Y . Moreover, we have

�(c, x, y) = u
−z(cy,t)
X �(c, (uz(y,t)

X × ũ z(y,t)
Y ).(x, y))uz(y,t)

X , (5.12)

�(c1c2, x, y) =�(c1, �(c2, x, y)x, c2y)�(c2, x, y) (5.13)

for c, c1, c2 ∈ CGY (UY ), ρ-a.e. (x, y) ∈ X × Y , t ∈ R.

Remark 5.3. Note that when c ∈ exp(RUY ), � reduces to an element in exp(RUX); in
fact, we have

�(utY , x, y) = u
z(y,r)
X = exp(z(y, t)UX)

for all t ∈ R.
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However, for distinct q1, q2 ∈ {1, . . . , n}, any c ∈ CGY (UY ), we have

w(c, ψq1(y), y)ψq1(y) ∈ Cρψp1(y), w(c, ψq2(y), y)ψq2(y) ∈ Cρψp2(y) (5.14)

for distinct p1, p2 ∈ {1, . . . , n}; for otherwise it would lead toψq2(y) ∈ CGX(UX)ψq1(y),
which contradicts the definition of ψ (cf. §3.2).

Proof of Corollary 5.2. Fix c ∈ CGY (UY ) ∩ B(e, δ). Proposition 5.1 provides us a subset
S(c) ⊂ Y with ν(S(c)) > 0 such that

ψp(cy) = wp(c, y)ψp(y) (5.15)

for y ∈ S(c), wp(c, y) ∈ CGX(UX). In addition, for y, urY y ∈ S(c), we know that

wp(c, urY y)u
z(y,r)
X ψip(y,r)(y) = ψp(u

r
Y cy) = u

z(cy,r)
X wip(cy,r)(c, y)ψip(cy,r)(y).

Thus, ψip(y,r)(y) ∈ CGX(UX)ψip(cy,r)(y) and so ip(y, r) = ip(cy, r). It follows that

wp(c, urY y)u
z(y,r)
X = u

z(cy,r)
X wip(cy,r)(c, y) = u

z(cy,r)
X wip(y,r)(c, y) (5.16)

for y, urY y ∈ S(c).
Thus, for y ∈ S(c), we define

�(c, ψp(y), y) := wp(c, y).

Let πY : supp(ρ) → Y be the natural projection. Then for (x, y) ∈ π−1
Y (S(c)), we know

that Cρx = Cρψpx (y) for some px ∈ {1, . . . , n}. Thus, given ψpx (y) = k
ρ
x x for some

k
ρ
x ∈ Cρ , we define

�(c, x, y) := (kρx )
−1wpx (c, y)k

ρ
x . (5.17)

Thus, we successfully define �(c, ·, ·) for π−1
Y (S(c)). Then the (utX × ũtY )-flow helps us

to define �(c, ·, ·) for all ρ-a.e. (x, y) ∈ X × Y . More precisely, for (x, y) ∈ X × Y (in a
ρ-conull set), we can choose t = t (x, y) ∈ R such that (uz(y,t)

X x, utY y) ∈ π−1
Y (S(c)). Then

define

�(c, x, y) := u
−z(cy,t)
X �(c, uz(y,t)

X x, utY y)u
z(y,t)
X

= u
−z(cy,t)
X �(c, (uz(y,t)

X × ũ z(y,t)
Y ).(x, y))uz(y,t)

X . (5.18)

(Note that equation (5.16) tells us that equation (5.18) holds true for y, utY y ∈ S(c) and
thus� is well defined.) Finally, for general c ∈ CGY (UY ), choose k ∈ CGY (UY ) ∩ B(e, δ)
such that km = c, and then define iteratively

�(ki+1, x, y) := �(ki , �(k, x, y)x, ky)�(k, x, y)

and finally reach c = km. Then the map of equation (5.11) is well defined on supp(ρ).

In light of Corollary 5.2, we consider the decomposition in equation (2.7) and write

�(c, x, y) = u
α(c,x,y)
X β(c, x, y), (5.19)
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where α(c, x, y) ∈ R and β(c, x, y) ∈ exp V ⊥
CX

. Then by equation (5.12), we have

z(cy, t)+ α(c, x, y) = α(c, (uz(y,t) × ũz(y,t)).(x, y))+ z(y, t), (5.20)

β(c, x, y) = β(c, (uz(y,t) × ũz(y,t)).(x, y)) (5.21)

for all t ∈ R.
First consider α. Recall that for fixed y ∈ Y , supp(ρy) =⊔n

p=1 C
ρψp(y). Then by

equation (5.20), for ν-a.e. y ∈ Y , x ∈ supp(ρy), we have

α(c, x, y)− α(c, (uz(y,t) × ũz(y,t)).(x, y)) = z(y, t)− z(cy, t) (5.22)

for all r ∈ R. In addition, by equation (5.17), we have

α(c, x, y) = α(c, kx, y) (5.23)

for all x ∈ supp(ρy), k ∈ Cρ . By equation (5.20), for any (x1, y), (x2, y) ∈ supp(ρ), we
have

α(c, x1, y)− α(c, x2, y) = α(c, (ut × ũt ).(x1, y))− α(c, (ut × ũt ).(x2, y)). (5.24)

Define αmax : CGY (UY )×X × Y → R by

αmax : (c, x, y) �→ max{r ∈ R : ρy{x′ ∈ X : α(c, x′, y)− α(c, x, y) = r} > 0}.
Then by equation (5.24), we have

αmax(c, (x, y)) = αmax(c, (utX × ũ tY ).(x, y))

for any t ∈ R, ρ-a.e. (x, y) ∈ X × Y . Thus, αmax(c, x, y) ≡ αmax(c). Now if αmax(c) > 0,
then for ρ-a.e. (x, y), there is x′ ∈ X such that α(c, x′, y) = α(c, x, y)+ αmax(c), which
contradicts the fact that αmax(c, x, y) take at most finitely many different values for fixed
y (by equation (5.23)). Thus, we conclude that αmax(c) ≡ 0 and so

α(c, x, y) ≡ α(c, y)

for all c ∈ CGY (UY ), ρ-a.e. (x, y) ∈ X × Y .
However, via the ergodicity of the flow utX × ũ tY , we conclude from equation (5.21) that

β(c, x, y) ≡ β(c)

for all c ∈ CGY (UY ). In particular, we have

�(c, x, y) = �(c, y) = u
α(c,y)
X β(y)

for all c ∈ CGY (UY ), ρ-a.e. (x, y) ∈ X × Y . In addition, we know from equation (5.13)
that β(c1c2) = β(c1)β(c2) via the definition of β. Further, we always have dβ(UY ) ≡ 0.
Therefore, we can restrict our attention to V ⊥

C and conclude that dβ|V⊥
C

: V ⊥
CY

→ V ⊥
CX

is a
Lie algebra homomorphism.

In sum, we obtain Theorem 1.2 for the centralizer CGY (UY ).
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THEOREM 5.4. (Extra central invariance of ρ) For any c ∈ CGY (UY ), the map Sc : X ×
Y → X × Y defined by

Sc : (x, y) �→ (β(c)x, ũ−α(c,y)
Y (cy))

commutes with utX × ũ tY , and is ρ-invariant. In addition, Sc1c2 = Sc1 ◦ Sc2 for any c1, c2 ∈
CGY (UY ), and SutY = id for t ∈ R.

Proof. Clearly, Sc is well defined:

Sc(x, y) = (u
−α(c,y)
X × ũ −α(c,y)

Y ).S̃c(x, y) ∈ supp(ρ) (5.25)

whenever (x, y) ∈ supp(ρ). Also, one may check that Sc1c2 = Sc1Sc2 for any c1, c2 ∈
CGY (UY ), and SutY = id for t ∈ R. Next, by equation (5.20), one verifies

(u
z(y,r)
X × ũ z(y,r)

Y ).Sc(x, y) = Sc(u
z(y,r)
X × ũ z(y,r)

Y ).(x, y)

for any r ∈ R, (x, y) ∈ supp(ρ). That is, (utX × ũ tY ) ◦ Sc = Sc ◦ (utX × ũ tY ).
Finally, let � be the set of (utX × ũ tY )-generic points, and we want to show that there is

a point (x0, y0) ∈ � ∩ S−1
c �. By equation (5.25), it suffices to show that there is a point

(x0, y0) ∈ � ∩ S̃−1
c �. Fix c ∈ CGY (UY ) ∩ B(e, δ). Recall that

1 = ρ(�) =
∫
Y

∫
Cρ

1
n

n∑
p=1

1�(kψp(y), y) dm(k) dν(y).

Thus, there is �Y ⊂ Y with ν(�Y ) = 1 such that∫
Cρ

1
n

n∑
p=1

1�(kψp(y), y) dm(k) = 1 (5.26)

for y ∈ �Y . Since ν and mY are equivalent, and �Y ∩ k−1�Y is mY -conull, we get
that �Y ∩ c−1�Y is ν-conull. Choose y0 ∈ �Y ∩ c−1�Y ∩ S(c), where S(c) is given by
Proposition 5.1 (cf. equation (5.15)). Then equation (5.26) leads to∫

Cρ
1�(kψ1(y0), y0) dm(k) = 1,

∫
Cρ

1�(kψ1(cy0), cy0) dm(k) = 1.

Then we can choose k0 ∈ Cρ such that (k0ψ1(y0), y0), (k0ψ1(cy0), cy0) ∈ �. Let
x0 := k0ψ1(y0). Then by equations (5.15) and (5.17), we have

S̃c(x0, y0) = (�(c, y0)x0, cy0) = (k0wp(c, y0)k
−1
0 k0ψ1(y0), cy0) = (k0ψ1(cy0), cy0).

Thus, (x0, y0) ∈ � ∩ S̃−1
c �.

Hence, since utX × ũ tY is ρ-ergodic, by ergodic theorem, for any bounded continuous
function f, we have∫

f dρ = lim
T→∞

1
T

∫ T

0
f ((utX × ũtY ).Sc(x0, y0)) dt

= lim
T→∞

1
T

∫ T

0
f (Sc(u

t
Xx0, ũtY y0)) dt =

∫
f ◦ Scdρ

and so ρ = (Sc)∗ρ.

In particular, we obtain the following corollary.
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COROLLARY 5.5. (Extra central invariance of ν) For any c ∈ CGY (UY ), the map SYc :
Y → Y defined by

SYc : y �→ ũ
−α(c,y)
Y (cy)

commutes with ũt , and is ν-invariant. In addition, SYc1c2
= SYc1

SYc2
for any c1, c2 ∈

CGY (UY ), and SY
utY

= id for t ∈ R.

It is worth noting that equation (5.11) can be interpreted through the language of
cohomology. More precisely, equation (5.11) implies the time change τY and τY ◦ c are
measurably cohomologous.

THEOREM 5.6. Let τY ∈ Kκ(Y ). Suppose that there is a non-trivial ergodic joining
ρ ∈ J (utX, φUY ,τY

t ). Then τY (y) and τY (cy) are (measurably) cohomologous along utY for
all c ∈ CGY (UY ). More precisely, the transfer function can be taken to be

Fc(y) = α(c, y).

Proof. By equation (5.20), for mY -a.e. y ∈ Y , x ∈ supp(ρy), we have∫ t

0
τY (u

s
Y y)− τY (usY cy) ds

=
∫ t

0
τY (u

s
Y y) ds −

∫ t

0
τY (u

s
Y cy) ds

= z(y, t)− z(cy, t)

= α(c, y)− α(c, utY y).
Thus, we can take the transfer function as

Fc(y) := α(c, y).

Then τY (y) and τY (cy) are (measurably) cohomologous for all c ∈ CGY (UY ).
If τY (y) and τY (cy) are cohomologous with an L1 transfer function, then we are able to

do more via the ergodic theorem.

LEMMA 5.7. Given c ∈ CGY (UY ), if:
• c is mY -ergodic (as a left action on Y);
• τY (y) and τY (cy) are cohomologous with a L1 transfer function Fc(y);
then for mY -a.e. y ∈ Y , we have

lim
t→∞

1
t
α(ct , y) =

∫
α(c, y) dmY (y).

Proof. By equations (5.13) and (5.14), for c1, c2 ∈ CGY (UY ), mY -a.e. y ∈ Y , we have the
cocycle identity

α(c1c2, y) = α(c1, c2y)+ α(c2, y).
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Thus, if Fc(·) ∈ L1(Y ), then by the ergodicity, we get

lim
k→∞

1
k
α(ck , y) = lim

k→∞
1
k

k∑
i=0

α(ci , y) =
∫
α(c, y) dmY (y). (5.27)

Remark 5.8. The results obtained in §5.1 also hold true for ρ being a finite
extension of ν, when (X, φUX ,τX

t ) is a time change of the unipotent flow on
X = SO(nX, 1)/�X. For example, we consider the case when nX = 2, τX ∈ C1(X),
τY ≡ 1 (in other words, φUY ,τY

t = φ
UY
t = utY is the usual unipotent flow, and ν = mY ).

First, [Rat87] shows that (X, φUX ,τX
t ) has H-property. In particular, suppose that

ρ ∈ J (φUX ,τX
t , φUYt ) is not the product measure μ× ν. Then H-property of ũtX := φ

UX ,τX
t

deduces that ρ is a finite extension of ν (see Theorem 3, [Rat83]):∫
f (x, y)dρ(x, y) =

∫
1
n

n∑
p=1

f (ψp(y), y) dν(y).

However, since V ⊥
CX

= 0, by Corollary 5.2 (and equation (5.19)), we again have a map
S̃c : supp(ρ) → supp(ρ) given by

S̃c : (x, y) �→ (u
α(c,y)
X x, cy). (5.28)

In contrast to Theorem 5.4, S̃c is ρ-invariant in this situation. We can further specify
α(c, x, y) in certain situation as follows.

First, under the current setting, equation (5.20) changes to

ξ(ψp(cy), t)+ α(c, y) = α(c, utY y)+ ξ(ψp(y), t)
for t ∈ R. It follows that

0 =
∫ ξ(ψp(y),t)

0
τ(usXψp(y))− τ(usXψp(y)) ds

=
∫ ξ(ψp(cy),t)

0
τ(usXψp(cy)) ds −

∫ ξ(ψp(y),t)

0
τ(usXψp(y)) ds

=
∫ ξ(ψp(cy),t)

0
τ(u

α(c,y)+s
X ψp(y)) ds −

∫ ξ(ψp(y),t)

0
τ(usXψp(y)) ds

=
∫ α(c,y)+ξ(ψp(cy),t)

0
τ(usXψp(y)) ds −

∫ α(c,y)

0
τ(usXψp(y)) ds

−
∫ ξ(ψp(y),t)

0
τ(usXψp(y)) ds

=
∫ α(c,utY y)+ξ(ψp(y),t)

0
τ(usXψp(y)) ds −

∫ ξ(ψp(y),t)

0
τ(usXψp(y)) ds

−
∫ α(c,y)

0
τ(usXψp(y)) ds

=
∫ α(c,utY y)

0
τ(usXũ

t
X(ψp(y))) ds −

∫ α(c,y)

0
τ(usXψp(y)) ds.
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In other words, we have∫ α(c,utY y)

0
τ(usXũ

t
X(x)) ds =

∫ α(c,y)

0
τ(usXx) ds

for ρ-a.e. (x, y) ∈ X × Y and therefore∫ α(c,y)

0
τ(usXx) ds ≡ rc

for some rc ∈ R. It follows that

α(c, y) = ξ(x, rc) (5.29)

for ρ-a.e. (x, y) ∈ X × Y . Moreover, we apply ũ−rc
X × u−rc

Y to equation (5.28), and get that

(x, y) �→ (u
α(c,y)
X x, cy) �→ (x, u−rc

Y cy) (5.30)

is ρ-invariant. In particular, suppose that GY is a semisimple Lie group with finite
center and no compact factors and �Y ⊂ GY is a irreducible lattice. Suppose the
sl2-weight decomposition gY = sl2 + V ⊥ of gY (see equation (2.3)) contains at least one
sl2-irreducible representation Vς ⊂ V ⊥ with a positive highest weight ς > 0. Choosing
c = exp(vς ), by Moore’s ergodicity theorem, we must have ρ = μ× ν (cf. Lemma 3.1).
Note that this coincides with the result obtained in [DKW22]. In addition, even if the
highest weight of Vς is ς = 0 for any Vς ⊂ V ⊥, the only possible situation for ρ �= μ× ν
is that α(exp v, y) ≡ 0 for all v ∈ V ⊥. Thus, by equation (5.30), we conclude that ρ is
(id × exp(v))-invariant for any v ∈ V ⊥. In §6.2, we shall see that 〈exp(v)〉 ⊂ GY is a
normal subgroup, which leads to a contradiction. Thus, we conclude that V ⊥ = 0 and so
gY = sl2.

5.2. Normal direction. Applying a similar argument in §5.1, we can study the behavior
ofψp along the normal directionNGY (UY ) ofUY as well. Here we only study the diagonal
action provided by the sl2-triple. Thus, let

Span{UY , AY , UY } ⊂ gY , Span{UX, Yn, UX} ⊂ gX

be sl2-triples in gY , gX, respectively, where Yn is given in §2.1. Denote

atY := exp(tAY ), atX := exp(tYn).

We adopt the same notation and orderly fix the data as in §5.1; thus, σ , ε, tK1 , δ, K , K0

are chosen so that equations (5.1), (5.3), and (5.4) hold. (Here we further assume δ < ε.)
Fix |t0| < δ, aY = a

t0
Y , and aX = a

t0
X . By ergodic theorem, there isAaY ,y ⊂ R+ and λ0 > 0

such that:
• for r ∈ AaY ,y , we have

urY y, aY urY y ∈ K0;

• Leb(AaY ,y ∩ [λ′, λ′′]) ≥ (1 − 2σ)(λ′′ − λ′) whenever λ′′ − λ′ ≥ λ0 and λ′ ∈ AaY ,y .
Then by the assumptions, we have

AaY ,y ⊂ {r ∈ [0, ∞) : dX(aXψp(u
r
Y y), ψp(aY u

r
Y y)) < 2ε, p ∈ {1, . . . , n}}. (5.31)
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It follows that for r ∈ AaY ,y , we have

2ε > dX(aXψp(u
r
Y y), ψp(aY u

r
Y y))

= dX(aXψp(u
r
Y y), ψp(u

e−t0 r
Y aY y))

= dX(aXu
z(y,r)
X ψip(y,r)(y), u

z(aY y,e−t0 r)
X ψip(aY y,e−t0 r)(aY y))

= dX(u
e−t0z(y,r)
X aXψip(y,r)(y), u

z(aY y,e−t0 r)
X ψip(aY y,e−t0 r)(aY y))

for any p ∈ {1, . . . , n} (cf. equation (5.9)).
Assume that 0 ∈ AaY ,y . Let I = ((p1, p2), . . . , (p2n−1, p2n)) ∈ {1, . . . , n}2n be a

sequence of indexes and

AIaY ,y := {r ∈ AaY ,y : p2k−1 = ik(y, r), p2k = ik(aY y, e−t0r) for all k ∈ {1, . . . , n}}.
Then, A = AIaY ,y , R0 = tK1 , s(r) = e−t0z(y, r), t (r) = z(aY y, e−t0r) satisfy equations
(4.32) and (4.33) for points

aXψp2k−1
(y) ∈ X, ψp2k

(aY y) ∈ K
for all k ∈ {1, . . . , n}. We can then apply Proposition 4.16 to AaY ,y =∐I∈{1,...,n}2n AIaY ,y
for any λ ≥ λ0. Then we follow the same argument as in Proposition 5.1 (see also Corollary
5.2), and obtain the following proposition.

PROPOSITION 5.9. There is a measurable map � : exp(RAY )×X × Y → CGX(UX)

that induces a map S̃arY : supp(ρ) → supp(ρ) by

S̃arY : (x, y) �→ (�(arY , x, y)arXx, arY y) (5.32)

for all r ∈ R, ρ-a.e. (x, y) ∈ X × Y . Moreover, we have

�(arY , x, y) = u
−z(aY y,t)
X �(arY , (uz(y,er t)

X × ũ z(y,er t)
Y ).(x, y))ue

−r z(y,er t)
X , (5.33)

�(a
r1+r2
Y , x, y) =�(a

r1
Y , �(ar2Y , x, y)ar2X x, ar2Y y)a

r1
X�(a

r2
Y , x, y)a−r1

X (5.34)

for r , r1, r2 ∈ R, ρ-a.e. (x, y) ∈ X × Y , t ∈ R.

Similar to the discussion after Corollary 5.2, we consider the decomposition in equation
(2.7) and write

�(arY , x, y) = u
α(arY ,x,y)
X β(arY , x, y), (5.35)

where α(arY , x, y) ∈ R and β(arY , x, y) ∈ exp V ⊥
CX

. Then by equation (5.33), we have

z(arY y, t)+ α(arY , x, y) = α(arY , (uz(y,er t)
X × ũ z(y,er t)

Y ).(x, y))+ e−rz(y, er t), (5.36)

β(arY , x, y) ≡ β(arY , (uz(y,er t)
X × ũ z(y,er t)

Y ).(x, y)) (5.37)

for all r , t ∈ R. The same argument then shows that

α(arY , x, y) ≡ α(arY , y), β(arY , x, y) ≡ β(arY )
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for all r ∈ R, ρ-a.e. (x, y) ∈ X × Y . In addition, following the same lines as in
Theorem 5.4, we obtain Theorem 1.2.

THEOREM 5.10. (Extra normal invariance of ρ) For any aY ∈ exp(RAY ), the map SaY :
X × Y → X × Y defined by

SaY : (x, y) �→ (β(aY )aXx, ũ−α(aY ,y)
Y (aY y))

satisfies

SarY ◦ (utX × ũ tY ) = (ue
−r t
X × ũ e−r tY ) ◦ SarY

and is ρ-invariant. In addition, S
a
r1+r2
Y

= S
a
r1
Y
S
a
r2
Y

for any r1, r2 ∈ R. Also, we have

SaY ◦ Sc ◦ S
a−1
Y

= S
aY ca

−1
Y

for any aY ∈ exp(RAY ), c ∈ CGY (UY ).
COROLLARY 5.11. (Extra normal invariance of ν) For any aY ∈ exp(RAY ), the map
SYaY : Y → Y defined by

SYaY : y �→ ũ
−α(aY ,y)
Y (aY y)

satisfies

SYarY
◦ ũ tY = ũ e

−r t
Y ◦ SYarY

and is ν-invariant. In addition, SY
a
r1+r2
Y

= SY
a
r1
Y

SY
a
r2
Y

for any r1, r2 ∈ R. Also, we have

SYaY ◦ SYc ◦ SY
a−1
Y

= SY
aY ca

−1
Y

for any aY ∈ exp(RAY ), c ∈ CGY (UY ).
THEOREM 5.12. Let τY ∈ Kκ(Y ). Suppose that there is an ergodic joining
ρ ∈ J (utX, φUY ,τY

t ). Then τY (y) and τY (aY y) are (measurably) cohomologous along
utY for all arY ∈ exp(RAY ). More precisely, the transfer function can be taken to be

FarY (y) = erα(arY , y).

Proof. By equation (5.20), for mY -a.e. y ∈ Y , x ∈ supp(ρy), we have

e−r
∫ er t

0
τ(usY y)− τ(arY usY y) ds

= e−r
∫ er t

0
τ(usY y) ds −

∫ t

0
τ(usY aY y) ds

= e−rz(y, er t)− z(arY y, t)

= α(arY , y)− α(arY , ũz(y,er t)(y))

= α(arY , y)− α(arY , ue
r t
Y y).
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Thus, we can take the transfer function as

FarY
(y) := erα(arY , y).

Then τ(y) and τ(aY y) are (measurably) cohomologous for all aY ∈ exp(RAY ).

5.3. Opposite unipotent direction. Now we shall study the opposite unipotent direction
urY = exp(rUY ), urX = exp(rUX). Unlike previous sections, we cannot directly obtain ρ is
invariant under the opposite unipotent direction. However, we compensate for it by making
the ‘a-adjustment.’ More precisely, by choosing appropriate coefficients λk > 0, set

�k,p(y) := a
λk
X ψp(a

−λk
Y y)

for a.e. y ∈ Y . Then we shall show that (see Theorem 5.15)

lim
n→∞ dX(�k,p(u

r
Y y), u

r
X�k,p(y)) = 0.

Here we adopt the argument given by Ratner [Rat87] and make a slight generalization. It
is again convenient to consider u, a, u ∈ SL(2, R) as (2 × 2)-matrices. We first introduce
a basic lemma by Ratner that estimates the time difference of the φUY ,τ

t -flow under the
urY -direction.

First of all, one directly calculates

utY u
r
Y =

[
1 0
t 1

] [
1 r

0 1

]
=
[

1 r

t 1 + rt
]

=
[

1
r

1 + rt
0 1

]⎡⎣ 1
1 + rt

1 + rt

⎤⎦⎡⎣ 1 0
t

1 + rt 1

⎤⎦ = u
r/(1+rt)
Y a

−2 log(1+rt)
Y u

t/(1+rt)
Y .

(5.38)

We are interested in the fastest relative motion of utY -shearing

�r(t) := t − t

1 + rt and �τYr (y, t) :=
∫ t

0
τY (u

s
Y u

r
Y y) ds −

∫ t/(1+rt)

0
τY (u

s
Y y) ds.

(5.39)

LEMMA 5.13. [Rat87, Lemma 1.2] Assume τY ∈ C1(Y ). Then given sufficiently small
ε > 0, there are:
• δ = δ(ε) ≈ 0;
• l = l(ε) > 0;
• E = E(ε) ⊂ Y with μ(E) > 1 − ε
such that if y, urY y ∈ E for some |r| ≤ δ/ l, then

|�τYr (y, t)−�r(t)| ≤ O(ε)|�r(t)| (5.40)

for all t ∈ [l, δ|r|−1].

Proof. Denote

τa(y) = lim
t→0

τY (a
t
Y y)− τY (y)
t

, τu(y) = lim
t→0

τY (u
t
Y y)− τY (y)
t

.
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The functions τg , τk are continuous on Y and

|τY (y)|, |τa(y)|, |τu(y)| ≤ ‖τY ‖C1(Y ) (5.41)

for all y ∈ Y . In addition, we have∫
Y

τa(y) dmY (y) =
∫
Y

τu(y) dmY (y) = 0.

Given ε > 0, we fix the data as follows.
• Let K ⊂ Y be an open subset of Y such that K is compact and

mY (K) > 1 − ε, mY (∂K) = 0,

where ∂K denotes the boundary of K.
• Fix a sufficiently small δ′ = δ′(ε) ≈ 0 such that:

(1) μ(B(∂K , δ′)) ≤ ε, where B(∂K , δ′) denotes the δ′-neighborhood of ∂K (it
follows that μ(K \ B(∂K , δ′)) ≥ 1 − 2ε);

(2) if y1, y2 ∈ K , dY (y1, y2) ≤ δ′, then

|τa(y1)− τa(y2)| ≤ ε. (5.42)

• Fix δ ∈ (0, (1/100)δ′) such that if |rt | ≤ δ, then for all s ∈ [0, t],

|ε1,t (s)| ≤ ε where ε1,t (s) := 1/(1 + rs)2 − 1
1/t�r(t)

− 2s
t

. (5.43)

• Fix t1 = t1(ε) > 0 and a subset E = E(ε) ⊂ Y with mY (E) > 1 − ε such that if
y ∈ E, t ∈ [t1, ∞), then the relative length measure of K \ B(∂K , δ′) on the orbit
interval [y, utY y] is at least 1 − 3ε and |ε2(t)| ≤ ε, |ε3(t)| ≤ ε, where

ε2(t) := 1
t

∫ t

0
τY (u

s
Y y) ds − 1, ε3(t) := 1

t

∫ t

0
τa(u

s
Y y) ds. (5.44)

• Fix l = l(ε) > t1 such that

t1/l ≤ ε. (5.45)

We shall show that if y, urY y ∈ E for some |r| ≤ δ/ l, and t ∈ [l, δ|r|−1], then equation
(5.40) holds if ε is sufficiently small.

Now let us estimate �τYr (y, t). Recall that

�τYr (y, t) =
∫ t

0
τY (u

s
Y u

r
Y y) ds −

∫ t/(1+rt)

0
τY (u

s
Y y) ds.

Then by equation (5.38) and the mean value theorem, we have∫ t/(1+rt)

0
τY (u

s
Y y) ds =

∫ t

0
τY (u

s/(1+rs)
Y y) · ds

(1 + rs)2

=
∫ t

0
τY (a

2 log(1+rs)
Y u

−r/(1+rs)
Y usY u

r
Y y) ·

ds

(1 + rs)2

=
∫ t

0
τY (u

s
Y u

r
Y y) ·

ds

(1 + rs)2
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−
∫ t

0

r

1 + rs τu(u
ks
Y u

s
Y u

r
Y y) ·

ds

(1 + rs)2

+
∫ t

0
2 log(1 + rs)τa(agsY u−r/(1+rs)

Y usY u
r
Y y) ·

ds

(1 + rs)2 ,

where ks ∈ [−r/(1 + rs), 0] and gs ∈ [0, 2 log(1 + rs)]. This implies

�τYr (y, t) =
∫ t

0
τY (u

s
Y u

r
Y y)

(
1 − 1

(1 + rs)2
)
ds

+
∫ t

0

r

1 + rs τu(u
ks
Y u

s
Y u

r
Y y) ·

ds

(1 + rs)2

−
∫ t

0
2 log(1 + rs)τa(agsY u−r/(1+rs)

Y usY u
r
Y y) ·

ds

(1 + rs)2
= J1 + J2 + J3.

We estimate the integrals J1, J2, J3 separately.
(1) Using equations (5.43) and (5.44), we have

J1 = 2�r(t)
1
t2

∫ t

0
sτY (u

s
Y u

r
Y y) ds +�r(t)1

t

∫ t

0
ε1,t (s)τY (u

s
Y u

r
Y y) ds

= 2�r(t)
1
t2

∫ t

0
sτY (u

s
Y u

r
Y y) ds +�r(t)O(ε),

since urY y ∈ E. Now by the integration by parts and equations (5.44), (5.41), and (5.45),
we have

1
t2

∫ t

0
sτY (u

s
Y u

r
Y y) ds

= 1
t

∫ t

0
τY (u

s
Y u

r
Y y) ds − 1

t2

∫ t

0

( ∫ s

0
τY (u

p
Y u

r
Y y) dp

)
ds

= 1 + ε2(t)− 1
t2

[ ∫ t

t1

+
∫ t1

0

]( ∫ s

0
τY (u

p
Y u

r
Y y) dp

)
ds

= 1 + ε2(t)− 1
t2

∫ t

t1

s(1 + ε2(s)) ds +O(ε) = 1
2

+O(ε).

It follows that ∣∣∣∣ J1

�r(t)
− 1
∣∣∣∣ ≤ O(ε).

(2) For J2, by equation (5.45), we have

|J2| =
∣∣∣∣ ∫ t

0

r

1 + rs τu(u
ks
Y u

s
Y u

r
Y y) ·

ds

(1 + rs)2
∣∣∣∣ ≤ O

( |�r(t)|
t

)
≤ O(ε)|�r(t)|.

(3) Note that since dY (a
gs
Y u

−r/(1+rs)
Y usY u

r
Y y, usY u

r
Y y) < δ

′, we know a
gs
Y u

−r/(1+rs)
Y usY u

r
Y

y ∈ K if usY u
r
Y y ∈ K \ B(∂K , δ′). Now set

Iy := {s ∈ [0, t] : usY u
r
Y y ∈ K \ B(∂K , δ′)}.
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Then by equation (5.44), one has Leb(I cy ) < 3εt . Then for J3, using equations (5.41) and
(5.42), we have∣∣∣∣J3 −

(
−
∫ t

0
2 log(1 + rs)τa(usY urY y) ·

ds

(1 + rs)2
)∣∣∣∣

� | log(1 + rt)|
[ ∫

Iy

∣∣∣∣τa(agsY u−r/(1+rs)
Y usY u

r
Y y)− τa(usY urY y)

∣∣∣∣ ds + εt‖τY ‖C1(Y )

]
≤ t | log(1 + rt)|(ε + ε‖τY ‖C1(Y )) � O(ε)|�r(t)|.

We also have∣∣∣∣ ∫ t

0
2 log(1 + rs)τa(usY urY y) ·

ds

(1 + rs)2 −
∫ t

0
2 log(1 + rs)τa(usY urY y) ds

∣∣∣∣
=
∣∣∣∣ ∫ t

0
2 log(1 + rs)τa(usY urY y) ·

(
1

(1 + rs)2 − 1
)
ds

∣∣∣∣
� |�r(t)|‖τY ‖C1(Y )δ � O(ε)|�r(t)|.

Finally, by using the integration by parts, we get∣∣∣∣ ∫ t

0
log(1 + rs)τa(usY urY y) ds

∣∣∣∣
=
∣∣∣∣ log(1 + rt)

∫ t

0
τa(u

s
Y u

r
Y y) ds −

∫ t

0

( ∫ s

0
τa(u

p
Y u

r
Y y) dp

)
r

1 + rs ds
∣∣∣∣

� |�r(t)|
t

∣∣∣∣ ∫ t

0
τa(u

s
Y u

r
Y y) ds

∣∣∣∣+ |�r(t)|
t2

∣∣∣∣ ∫ t

0

( ∫ s

0
τa(u

p
Y u

r
Y y) dp

)
ds

∣∣∣∣
= ε3(t)|�r(t)| + |�r(t)|

t2

∣∣∣∣[ ∫ t1

0
+
∫ t

t1

]( ∫ s

0
τa(u

p
Y u

r
Y y) dp

)
ds

∣∣∣∣
� ε3(t)|�r(t)| + |�r(t)|

t2

∣∣∣∣t21 ‖τY ‖C1(Y ) +
∫ t

t1

sε3(s) ds

∣∣∣∣� O(ε)|�r(t)|.

Thus, we conclude that |J3| ≤ O(ε)|�r(t)|.
Therefore, combining the above estimates, we have

|�τYr (y, t)−�r(t)| ≤ O(ε)�r(t).

This completes the proof of the lemma.

The following lemma tells us that we only need to know the fastest relative motion at
finitely many different time points to determine the difference of two nearby points.

LEMMA 5.14. (Shearing comparison) Given ε > 0, let x, y, z ∈ X be three ε-nearby
points such that the fastest relative motions between the pairs (x, z) and (y, z) at time t > 0
are q1(t) and q2(t), respectively. Assume that there are s1, s2 > 0 with s1 ∈ [ 1

3 s2, 2
3 s2] such

that

dX(u
si
Xx, usiXq1(si)z) < ε, dX(u

si
Xy, usiXq2(si)z) < ε, dGX(q1(si), q2(si)) < ε
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for i ∈ {1, 2}. Then we have

dX(u
t
Xx, utXy) < O(ε) (5.46)

for t ∈ [0, s2].

Proof. This is a direct consequence of Lemma 4.3. Assume that x = gy, x = h1z,
y = h2z for some g, h1, h2 ∈ GX. Then by the definition in equation (3.4), there are δ1(t),
δ2(t) ∈ GX with dGX(δ1(t), e) < ε, dGX(δ2(t), e) < ε such that

utXh1u
−t
X = δ1(t)q1(t), utXh2u

−t
X = δ2(t)q2(t)

for t ∈ [0, s]. By the assumption, we have

utXgu
−t
X = utXh1h

−1
2 u−t

X = δ1(t)q1(t)q2(t)
−1δ2(t)

−1 (5.47)

and

q1(s1)q2(s1)
−1 < ε, q1(s2)q2(s2)

−1 < ε. (5.48)

Note that q1(t)q2(t)
−1 ∈ CGX(UX) and so their corresponding vectors in the Lie algebra

are polynomials of t with the degree at most 2 (see equations (2.5) and (3.4)). Thus, we
can write

h1h
−1
2 = exp

(∑
j

ς(j)∑
i=0

bij v
i
j

)
, q1(t)q2(t)

−1 = exp
(∑

j

pj (t)v
ς(j)
j

)
,

where pj (t) =∑ς(j)

i=0 b
ς(j)−i
j

(
ς(j)
i

)
t i is a polynomial having the degree at most 2, |bi | < ε,

and vij ∈ Vj is the ith weight vector of the sl2-irreducible representation Vj . Then equation
(5.48) and the proof of Lemma 4.3(1) with κ = 1 imply that

|bς(j)−ij | < O(ε)s−i2 . (5.49)

It follows that for t ∈ [0, s2],

|pj (t)| < O(ε) and so q1(t)q2(t)
−1 < O(ε).

Then by equation (5.47), we obtain equation (5.46).

Next, we shall prove Theorem 5.15. The idea is to consider the fastest relative motion
of the pairs (�k,p(u

r
Y y), �k,p(y)) and (urX�k,p(y), �k,p(y)) at finitely many time points,

and then apply Lemma 5.14. First, we orderly fix the following data.
• (Injectivity radius) Since �X is discrete, there is a compact K1 ⊂ X with

ν(ψ
−1
p (K1)) > 999/1000 and D1 = D1(K1) > 0 such that if g ∈ P−1

(K1), then
D1 is an isometry on the ball BCρ\GX(g, D1) of radius D1 centered at g. Here,
P : Cρ\GX → Cρ\GX/�X = X is the projection

P : Cρg �→ Cρg�X.

• (Distinguishing ψp, ψq ) There is K2 ⊂ Y with ν(K2) > 999/1000 such that

dX(ψp(y), ψq(y)) > D2 (5.50)

for y ∈ K2, 1 ≤ p < q ≤ n.
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• Define D = min{D1, D2, 1}.
• (Lemma 5.13) Let δk = min{δ((1/10)2−kD), (1/10)2−kD}, lk = l((1/10)2−kD) and

Ek = E((1/10)2−kD) ⊂ Y be as in Lemma 5.13 for τY .
• (Lusin’s theorem) There is K ′

k ⊂ Y such that ν(K ′
k) > 1 − (1/10)2−k and ψp|K ′

k
is

uniformly continuous for all p ∈ {1, . . . , n}. Thus, for any ε > 0, there is δ′(ε) > 0
such that, for p ∈ {1, . . . , n}, dY (y1, y2) < δ

′(ε) and y1, y2 ∈ K ′
k , we have

dX(ψp(y1), ψp(y2)) < ε. (5.51)

Let δ′k = min{δ′((1/10)2−kD), (1/10)2−kD}.
• (Ergodicity) Fix τY ∈ C1(Y ). By the ergodicity of unipotent flows, there are Tk ≥

max{lk , 20δ−1
k , 20δ′−1

k } and subsets K ′′
k ⊂ Y with ν(K ′′

k ) > 1 − (1/10)2−k such that
if y ∈ K ′′

k , t ≥ Tk , then:

(1) the relative length measure of K ′
k ∩ Ek ∩K2 ∩⋂p ψ

−1
p (K1) on the orbit

interval [y, utY y] is at least 998/1000;
(2) we have, by the ergodic theorem,∣∣∣∣1t z(y, t)− 1

∣∣∣∣ = ∣∣∣∣1t
∫ t

0
τY (u

s
Y y) ds − 1

∣∣∣∣ ≤ 1
10

2−kD. (5.52)

• (Fastest relative motion)
(1) For r ∈ R, let Li1(r) denote the first t > 0 with �r(t) = i2D/10 for i ∈ {1, 2},

where �r(t) is defined in equation (5.39). Note that for sufficiently small r, one
may calculate that

L1
1(r) ∈

[
9
20
L2

1(r),
11
20
L2

1(r)

]
. (5.53)

(2) As in equation (4.4), for x1, x2 ∈ X close enough, we can write x1 = gx2, where
g = exp(v) for v ∈ sl2 + V ρ⊥. Then the H-property (Remark 3.4) tells us that
at time t ∈ R, the fastest relative motion is given by

q(x1, x2, t) = πCg
X
(UX) Ad(utX).v.

Then let Li2(x1, x2) denote the first t > 0 with ‖q(x1, x2, t)‖ = i2D/10.
For y ∈ Y , i ∈ {1, 2}, let

Li(y, r) := min{Li1(r), Li2(ψ1(u
ry), ψ1(y)), . . . , Li2(ψn(u

ry), ψn(y))}. (5.54)

By applying Theorem 3.3 to Q = BCGY (UY )
(e, i2D/10) and ε = (1/10)2−k , we can

choose small 0 < ωk ≤ min{δk , δ′k} such that if |r| ≤ ωk , y, ury ∈ K ′
k , i ∈ {1, 2}, then

we have

Li = Li(y, r) ≥ max
{

10Tk ,
10i2D
δ′k

}
(5.55)

and for all p ∈ {1, . . . , p},

‖qip‖ ≤ i2D

10
, dX(u

L
Xψp(u

ry), uLXqip(L)ψp(y)) ≤ 1
10

2−kD, (5.56)

where qip = q(ψp(u
ry), ψp(y), Li).
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Now let

K0
k := K ′

k ∩K ′′
k ∩ Ek . (5.57)

It follows that ν(K0
k ) > 1 − 2−k . Let

λk := 2 · max
{

log
10
ωk

, log Tk

}
, � :=

⋃
l≥1

⋂
k≥l
a
λk
Y (K

0
k ), �k,p(y) := a

λk
X ψp(a

−λk
Y y).

(5.58)

It follows that ν(�) > 1.

THEOREM 5.15. Let the notation and assumption be as above. Then for r ∈ R, y ∈ �, we
have

lim
n→∞ dX(�k,p(u

r
Y y), u

r
X�k,p(y)) = 0.

Proof. Suppose that y, urY y ∈⋃l≥1
⋂
k≥l a

λk
Y (K

0
k ). Then y, urY y ∈ aλkY (K0

k ) for suffi-
ciently large k. For r ∈ R, let rk = e−λk r . Then for sufficiently large k,

a
−λk
Y urY y = u

rk
Y a

−λk
Y y and |rk| ≤ |r|ω2

k ≤ ωk .

Thus, equation (5.55) holds true for Li(y, rk) for any sufficiently large k, i ∈ {1, 2}. In the
following, we fix i = 1 (for the case i = 2 is similar).

Next, since by equation (5.55) L1(y, rk) > 10Tk , there exists tk ∈ [(98/100)L1(y, rk),
(99/100)L1(y, rk)] such that

u
tk
Y a

−λk
Y urY y, u

t ′k
Y a

−λk
Y y ∈ K ′

k ∩K2 ∩
⋂
p

ψ
−1
p (K1), (5.59)

where t ′k := tk/(1 + rktk). Then by equation (5.38), we get

dY (u
tk
Y a

−λk
Y urY y, u

t ′k
Y a

−λk
Y y) = dY (u

tk
Y u

rk
Y a

−λk
Y y, u

t ′k
Y a

−λk
Y y)

= dY

⎛⎝⎡⎣ 1
1 + rktk rk

0 1 + rktk

⎤⎦ ut ′kY a−λk
Y y, u

t ′k
Y a

−λk
Y y

⎞⎠ ≤ min{δk , δ′k}, (5.60)

where the last inequality follows from equation (5.39):

|rktk| ≤ 2
�rk (tk)

tk
≤ 4

�rk (L
1(y, rk))
Tk

≤ 4
D

10
· min{δk , δ′k}

20
≤ min{δk , δ′k}. (5.61)

This implies via Lemma 5.13 that

|�τYrk (a−λk
Y y, tk)−�rk (tk)| ≤ 1

10
2−kD (5.62)

since a−λk
Y y, urkY a

−λk
Y y ∈ Ek and tk ∈ [Tk , δk|rk|−1] ⊂ [lk , δk|rk|−1].

Next, consider

u
sk
Xψp(a

−λk
Y urY y) = ψi(p,k)(u

tk
Y a

−λk
Y urY y), u

h′
k

X ψp(a
−λk
Y y) = ψj(p,k)(u

t ′k
Y a

−λk
Y y),
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where sk and h′
k are defined by

z(a−1
Y ,ku

ry, tk) = sk , z(a−1
Y ,ky, t ′k) = h′

k . (5.63)

Then �τYrk (a
−1
Y ,ky, tk) = sk − h′

k and by equation (5.52), we have sk ∈ [(97/100)L1(y, rk),
(995/1000)L1(y, rk)].

CLAIM 5.16. For p ∈ {1, . . . , n},

dG(qp(sk), u
h′
k−sk
X ) ≤ 2

10
2−kD,

where qp(sk) = q(ψp(u
rka

−λk
Y y), ψp(a

−λk
Y y), sk).

Proof. Since |rk| ≤ ωk and a−λk
Y y, urkY a

−λk
Y y ∈ K0

k , by equation (5.54) and Lemma 5.13,
we know that

|�τYrk (a−1
Y ,ky, tk)| ≤ 11

10
|�rk (tk)| ≤ 11

100
D. (5.64)

It follows that

dX(u
sk
Xψp(a

−λk
Y y), u

h′
k

X ψp(a
−λk
Y y)) < 1

3D. (5.65)

However, by equation (5.56), we have

‖qp(sk)‖ ≤ D

10
, dX(u

sk
Xψp(u

rka
−λk
Y y), uskXqp(sk)ψp(a

−λk
Y y)) ≤ 1

10
2−kD. (5.66)

It follows that

dX(u
sk
Xψp(u

rka
−λk
Y y), uskXψp(a

−λk
Y y)) < 1

3D (5.67)

for p ∈ {1, . . . , p}. Therefore, equations (5.65) and (5.67) tell us that

dX(ψi(p,k)(u
tk
Y a

−λk
Y urY y), ψj(p,k)(u

t ′k
Y a

−λk
Y y))

= dX(u
sk
Xψp(u

rk
Y a

−λk
Y y), u

h′
k

X ψp(a
−λk
Y y)) < D.

Then by equation (5.50), we must have i(p, k) = j (p, k). Then by Lusin theorem
equations (5.51) and (5.60), we further obtain

dX(u
sk
Xψp(u

rk
Y a

−λk
Y y), u

h′
k

X ψp(a
−λk
Y y)) (5.68)

= dX(ψi(p,k)(u
tk
Y a

−λk
Y urY y), ψi(p,k)(u

t ′k
Y a

−λk
Y y)) ≤ 1

10
2−kD.

Combining equation (5.66), we get

dX(qp(sk) · uskXψp(a−λk
Y y), u

h′
k−sk
X · uskXψp(a−λk

Y y))

= dX(u
sk
Xqp(sk)ψp(a

−λk
Y y), u

h′
k

X ψp(a
−λk
Y y)) ≤ 2

10
2−kD.
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Since by equation (5.59), u
h′
k

X ψp(a
−λk
Y y) ∈ K1, ‖qp(sk)‖ ≤ (1/10)D, |sk − h′

k| =
|�τYrk (a−1

Y ,ky, tk)| ≤ (11/100)D, we conclude that

dG(qp(sk), u
h′
k−sk
X ) ≤ 2

10
2−kD

for any p ∈ {1, . . . , n}.
It then follows from the definition of L1(y, rk) in equation (5.54) that

‖q1
p(sk)‖ ≥ 9

100
D, |h′

k − sk| ≥ 9
100

D (5.69)

for any p ∈ {1, . . . , n}.
However, denote hk = h′

k/(1 − rkh′
k).

CLAIM 5.17. We have

|hk − sk| < 21−kD.

Proof. One can calculate via equation (5.62)

|hk − sk| = |hk − h′
k − (sk − h′

k)|
= |�rk (hk)−�τYrk (a−λk

Y y, tk)|
≤ |�rk (hk)−�rk (tk)| + |�rk (tk)−�τYrk (a−λk

Y y, tk)|
≤ |�rk (hk)−�rk (tk)| + 1

10
2−kD. (5.70)

However, by the ergodicity equations (5.63) and (5.52), we have

|h′
k − t ′k| ≤ 1

10
2−kD · t ′k ≤ 2

10
2−kD · tk .

Then by equation (5.61) and |�rk (tk)| ≤ D/10, we have

|hk − tk| =
∣∣∣∣ h′

k

1 − rkh′
k

− t ′k
1 − rkt ′k

∣∣∣∣ = ∣∣∣∣ h′
k − t ′k

(1 − rkh′
k)(1 − rkt ′k)

∣∣∣∣ ≤ 4
10

2−kD · tk .

It follows that

|�rk (hk)−�rk (tk)| = |rkhkh′
k − rktkt ′k|

≤ |rkhk(h′
k − t ′k)| + |rkt ′k(hk − tk)|

≤ 2
10

2−kD · |rkhktk| + 4
10

2−kD · |rkt ′ktk|

≤ 4
10

2−kD · |�(tk)| + 8
10

2−kD · |�(tk)| ≤ 12
10

2−kD.

Then equation (5.70) is clearly not greater than 21−kD.
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Now Claims 5.16 and 5.17 imply that hk ∈ [(96/100)L1(y, rk), (999/1000)L1(y, rk)],
|h′
k − hk| ∈ [(9/100)D, (11/100)D], and

dX(u
hk
X ψp(u

rk
Y a

−λk
Y y), u

h′
k

X ψp(a
−λk
Y y)) ≤ 2

10
21−kD,

dX(u
hk
X u

rk
Xψp(a

−λk
Y y), u

h′
k

X ψp(a
−λk
Y y)) ≤ 2

10
21−kD,

dGX(qp(hk), u
h′
k−hk
X ) ≤ 2

10
21−kD,

for p ∈ {1, . . . , n}.
Similarly, for i = 2, there exists hk,2 ∈ [(96/100)L2(y, rk), (999/1000)L2(y, rk)] and

h′
k,2 ∈ R with |h′

k,2 − hk,2| ∈ [(9/100)22D, (11/100)22D] such that

dX(u
hk,2
X ψp(u

rk
Y a

−λk
Y y), u

h′
k,2
X ψp(a

−λk
Y y)) ≤ 2

10
21−kD,

dX(u
hk,2
X u

rk
Xψp(a

−λk
Y y), u

h′
k,2
X ψp(a

−λk
Y y)) ≤ 2

10
21−kD,

dGX(q
2
p(hk,2), u

h′
k,2−hk,2

X ) ≤ 2
10

21−kD,

for p ∈ {1, . . . , n}. Note that by equation (5.53), we have hk ∈ [ 1
3hk,2, 2

3hk,2]. Thus, we
have met the requirement of Lemma 5.14 with pairs

(ψp(u
rk
Y a

−λk
Y y), ψp(a

−λk
Y y)) and (u

rk
Xψp(a

−λk
Y y), ψp(a

−λk
Y y))

at time t = hk , hk,2. Then Lemma 5.14 implies that

dX(u
t
Xψp(u

rka
−λk
Y y), utXu

rk
Xψp(a

−λk
Y y)) ≤ O

(
2
10

21−kD
)

= O(2−k)

for t ∈ [0, hk,2]. Moreover, if we write ψp(u
rk
Y a

−λk
Y y) = gp,ku

rk
Xψp(a

−λk
Y y) and

gp,k = exp
(∑

j

ς(j)∑
i=0

bij v
i
j

)
,

where vij are the weight vectors of the sl2-irreducible representation Vj , then by equation
(5.49), we deduce

|bς(j)−ij | < O(2−k)h−i
k,2.

Finally, one calculates via equations (2.6), (5.55), and (5.58)

a
λk
X gp,ka

−λk
X ≤ exp

(∑
j

ς(j)∑
i=0

O(2−k)hς(j)−2i
k,2 · hi−ς(j)k,2 vij

)

= exp
(∑

j

ς(j)∑
i=0

O(2−k)h−i
k,2v

i
j

)
≤ O(2−k).
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Therefore, we conclude that

dX(�k,p(u
r
Y y), u

r
X�k,p(y)) ≤ O(2−k)

for p ∈ {1, . . . , n}. The theorem follows.

Remark 5.18. Similar to Remark 5.8, Theorem 5.15 also holds true for ρ being a
finite extension of ν when (X, φUX ,τX

t ) is a time change of the unipotent flow on X =
SO(nX, 1)/�X: if for f ∈ C(X × Y ),∫

f (x, y)dρ(x, y) =
∫

1
n

n∑
p=1

f (ψp(y), y) dν(y),

then we still have

lim
n→∞ dX(�k,p(u

r
Y y), u

r
X�k,p(y)) = 0

for p ∈ {1, . . . , n} and a.e. y ∈ Y .

6. Applications
In the previous sections, we considered the measure of the form∫

f dρ =
∫

1
n

n∑
p=1

f (ψp(y), y) dν(y)

for some measurable functions ψp. In addition, we studied the equivariant properties of
ψp. In this section, we use these results to develop the rigidity of ρ.

6.1. Unipotent flows of SO(n, 1) versus time changes of unipotent flows. In this section,
we shall prove Theorems 1.3 and 1.6. LetGX = SO(nX, 1),GY be a semisimple Lie group
with finite center and no compact factors, and �X ⊂ GX, �Y ⊂ GY be irreducible lattices.
Let (X, μ) be the homogeneous space X = GX/�X equipped with the Lebesgue measure
μ, and let φUXt = utX be a unipotent flow on X. Suppose that:
• Y is the homogeneous space Y = GY/�Y ;
• mY is the Lebesgue measure on Y;
• uY ∈ GY is a unipotent element that CgY (uY ) only contains vectors of weight at

most 2;
• τY ∈ Kκ(Y ) ∩ C1(Y ) is a positive integrable and C1 function on Y such that τY , τ−1

Y

are bounded and satisfy equation (2.10);
• ũtY = φ

UY ,τY
t of the unipotent flow uY ;

• ν is a ũtY -invariant measure on Y;
• ρ ∈ J (utX, φUY ,τY

t ) is a non-trivial (that is, not the product μ× ν) ergodic joining.

PROPOSITION 6.1. τY (y) and τY (cy) are (measurably) cohomologous along utY for all
c ∈ CGY (UY ). Further, if τY (y) and τY (cy) are L1-cohomologous, then after passing a
subsequence if necessary,

�∗(y) := lim
n→∞ �∗

k (y)
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exists for ν-a.e. y ∈ Y , where �∗
k (y) := {�k,p(y) : p ∈ {1, . . . , n}} and �k,p(y) is given

by equation (5.58).

Proof. The first consequence follows from Theorem 5.6. For the second one, we first apply
Lemma 5.7 and obtain

lim
t→∞

1
t
α(ct , y) =

∫
α(c, y) dmY (y)

for m-a.e. y ∈ Y whenever c is mY -ergodic. Note that dβ : CgY (UY ) → V ⊥
CX

sends
nilpotent elements to nilpotent elements. Thus, for weight vector v ∈ CgY (UY ) of weight
ς ≤ 2, ν-almost all y ∈ Y , we have

�∗
k (exp(v)y) =

⎧⎨⎩u
e−λk α(exp(eςλk/2v),y)
X β(exp(eςλk/2v))e

−λk
�∗
k (y) for ς ≥ 1,

u
e−λk α(exp(v),y)
X a

λk
X β(exp(v))a−λk

X �∗
k (y) for ς = 0.

Thus, after passing to a subsequence if necessary, we have

lim
k→∞ �∗

k (exp(v)y) =

⎧⎪⎪⎨⎪⎪⎩
u

∫
α(exp(v),·)

X β(exp(v)) limk→∞ �∗
k (y) for ς = 2,

limk→∞ �∗
k (y), for ς = 1

exp(v0) limk→∞ �∗
k (y) for ς = 0,

(6.1)

where β(exp(v)) = exp(v0 + v2) for v0, v2 ∈ V ⊥
CX

of weight 0 and 2, respectively. In
particular, limk→∞ �∗

k (exp(v)y) exists whenever limk→∞ �∗
k (y) exists. In addition, by

Theorem 5.15, we have

lim
n→∞ dX(�

∗
k (u

r
Y y), u

r
X�

∗
k (y)) = 0

for r ∈ R, ν-a.e. y ∈ Y .
It remains to show that for ν-almost all y ∈ Y , there exists a subsequence {k(y, l)}l∈N ⊂

N and �p(y) ∈ X such that

lim
l→∞ �k(y,l),p(y) = �p(y). (6.2)

To do this, write X =⋃i=1 Ki , where Ki are compact and μ(Ki) ↗ 1 as i → ∞. Let

� :=
⋃
i≥1

⋂
k≥1

⋃
j≥k

n⋂
p=1

�−1
j ,p(Ki).

CLAIM 6.2. ν(�) = 1.

Proof. From a direct calculation (recall that dν := τdmY ), we know

mY

(⋃
i≥1

⋂
k≥1

⋃
j≥k

n⋂
p=1

�−1
j ,p(Ki)

)
≥ mY

( ⋂
k≥1

⋃
j≥k

n⋂
p=1

�−1
j ,p(Ki)

)

= lim
k→∞ mY

( ⋃
j≥k

n⋂
p=1

�−1
j ,p(Ki)

)
≥ mY (ψ

−1
p a−λjKi)

for any p, j, and i. As μ(Ki) ↗ 1 as i → ∞, the claim follows.
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Then by Claim 6.2 for y ∈ �, there exists i ≥ 1 such that �j ,p(y) ∈ Ki for infinitely
many j. Thus, we proved equation (6.2). Therefore, since the opposite unipotent and central
directions generate the whole group 〈urY , CGY (UY )〉 = GY , we conclude that after passing
a subsequence if necessary,

lim
n→∞ �k,p(y)

exists for ν-a.e. y ∈ Y .

Then, define a measure ρ̃ on X × Y by∫
f dρ̃ :=

∫
Y

1
n

n∑
p=1

f (�p(y), y) dmY (y)

for f ∈ C(X × Y ), where �∗(y) = {�1(y), . . . , �n(y)}. Then ρ̃ is a non-trivial (utX ×
utY )-invariant measure onX × Y such that (πX)∗ρ̃ = μ and (πY )∗ρ̃ = mY . Then, Ratner’s
theorem [Rat90] asserts that Cρ = {e} and

ρ̃(stab(ρ̃ ).(x0, y0)) = 1

for some (x0, y0) ∈ X × Y , where stab(ρ̃ ) := {(g1, g2) ∈ GX ×GY : (g1, g2)∗ρ̃ = ρ̃ }.
Then let:
• stabY (ρ̃ ) := {(e, g2) ∈ GX ×GY : (e, g2)∗ρ̃ = ρ̃ } (note that stabY (ρ̃ )�GY is a

normal subgroup of GY );
• �

g
X

:= {γ : g−1γg ∈ �X} for g ∈ GX.
Then Ratner’s theorem [Rat90] further asserts that there is g0 ∈ GY and a continuous
surjective homomorphism � : GY → GX with kernel stabY (ρ̃ ), �(g) = g for g ∈ SL2

such that

{�1(h�Y ), . . . , �n(h�Y )} = {�(h)γ1g0�X, . . . , �(h)γng0�X} (6.3)

for all h ∈ GY , where the intersection �0 := �(�Y ) ∩ �g0
X is of finite index in �(�Y ) and

in �g0
X , n = |α(�Y )/�0| and �(�Y ) = {γp�0 : p ∈ {1, . . . , n}}.

Next, by using Proposition 6.1 and equation (6.3), for any σ > 0ε > 0, there exists a
subset K ⊂ Y with ν(K) > 1 − σ and k0 > 0 such that

max
p

min
q
dX(�k,p(h�Y ), �(h)γqg0�X) < ε

for h�Y ∈ K , k ≥ k0. In particular, by the ergodic theorem, we know that for ν-a.e. y ∈ Y ,
there is Ay ⊂ R+ and λ0(y) > 0 such that:
• for r ∈ Ay , we have urY y ∈ K;
• Leb(Ay ∩ [0, λ]) ≥ (1 − 2σ)λ whenever λ ≥ λ0(y).
Therefore, one can repeat the same argument as in §5.1, and then conclude that there exists
c′(h�Y ) ∈ CGY (UY ), q ′(p, h�Y ) ∈ {1, . . . , n} such that

�k,p(h�Y ) = c′(h�Y )�(h)γq ′(p,h�Y )g0�X

for ν-a.e. h�Y ∈ Y . We can then write

ψp(h�Y ) = c(h�Y )�(h)γq(p,h�Y )g0�X

https://doi.org/10.1017/etds.2022.83 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.83


3856 S. Tang

for some c(h�Y ) ∈ CGY (UY ), q(p, h�Y ) ∈ {1, . . . , n}, ν-a.e. h�Y ∈ Y . Thus, let
I = (q1, q2, . . . , qn) be a permutation of {1, . . . , n},

SI := {y ∈ Y : q(1, y) = q1, . . . , q(n, y) = qn}
and let

ψ̃p(y) := ψqp(y) when y ∈ S(q1,...,qn).

Then ψ̃p(y) plays the same role as ψp(y) and satisfies

ψ̃p(h�Y ) = c(h�Y )�(h)γpg0�X (6.4)

for ν-a.e. h�Y ∈ Y . Thus, without loss of generality, we assume that ψp satisfies equation
(6.4). It follows that the map ϒ : supp(ρ) → X × Y defined by

ϒ : (ψp(h�Y ), h�Y ) �→ (�(h)γpg0�X, h�Y ) for p ∈ {1, . . . , n}
is bijective and satisfies

ϒ(utXx, ũtY (y)) = (u
ξ(y,t)
X × uξ(y,t)

Y ).ϒ(x, y) (6.5)

for ρ-a.e. (x, y) and t ∈ R. Equivalently, we obtain the following proposition.

PROPOSITION 6.3. Assume that τY (y) and τY (cy) are L1-cohomologous for all
c ∈ CGY (UY ). Then, τX ≡ 1 and τY are joint cohomologous.

Proof. By equation (6.5), we can write down the decomposition in equation (2.7) for c(y)
as

c(y) = u
a(y)
X b

and

a(y)+ t = ξ(y, t)+ a(uξ(y,t)
Y y).

It follows that ∫ ξ(y,t)

0
τY (u

s
Y y)− 1ds = t − ξ(y, t) = a(u

ξ(y,t)
Y y)− a(y).

Thus, 1 and τY are joint cohomologous via (ρ̃, a).

Recall from equation (6.1) that when a weight vector v ∈ CgY (UY ) of weight ς ≥ 1, we
know that ρ̃ is invariant under⎧⎪⎪⎨⎪⎪⎩

u

∫
α(exp(v),·)

X β(exp(v))× exp(v) for ς = 2,

id × exp(v) for ς = 1,

exp(v0)× exp(v) for ς = 0,

(6.6)

where β(exp(v)) = exp(v0 + v2). Since ρ̃ is also (utX × utY )-invariant, if β(exp(v)) = e,
then Moore’s ergodicity theorem and Lemma 3.1 imply that 〈exp(v)〉 ⊂ ker � is a compact
normal subgroup of GY . It is a contradiction. Thus, we make the following conclusion.
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PROPOSITION 6.4. The map dβ|V⊥
C

: V ⊥
CY

→ V ⊥
CX

is an injective Lie algebra homomorphism.

6.2. Time changes of unipotent flows of SO(n, 1) vs. unipotent flows. In this section, we
shall prove Theorem 1.8. Let GX = SO(nX, 1), GY be a semisimple Lie group with finite
center and no compact factors and �X ⊂ GX, �Y ⊂ GY be irreducible lattices. Let (Y , ν)
be the homogeneous space Y = GY/�Y equipped with the Lebesgue measure ν, and let
φ
UY
t = utY be a unipotent flow on Y. Suppose that:

• X is the homogeneous space X = GX/�X;
• uX ∈ GX is a unipotent element;
• τX ∈ Kκ(X) is a positive integrable and C1 function on Y such that τX, τ−1

X are
bounded and satisfies equation (2.10);

• ũtX = φ
UX ,τ
t of the unipotent flow uX;

• μ is a ũtX-invariant measure on X;
• ρ ∈ J (ũtX, utY ) is an ergodic joining that is a compact extension of ν, that is, has the

form

ρ(f ) =
∫
Y

∫
Cρ

1
n

n∑
p=1

f (kψp(y), y) dm(k) dν(y)

for f ∈ C(X × Y ) and compact Cρ ∈ CGX(UX).
Recall that in Remark 5.8, for c ∈ CGY (UY ), we know that ρ is invariant under the map

S̃c : (x, y) �→ (u
α(c,y)
X β(c)x, cy)

(cf. equation (5.28)). In addition, α, β satisfy

ξ(ψp(cy), t)+ α(c, y) = α(c, utY y)+ ξ(ψp(y), t),

α(c1c2, y) = α(c1, c2y)+ α(c2, y), β(c1c2) = β(c1)β(c2), (6.7)

where

t =
∫ ξ(x,t)

0
τX(u

s
Xx) ds.

Moreover, if β(c) = e for some c ∈ CGY (UY ), then we have equation (5.29):

α(c, y) = ξ(x, rc) (6.8)

for some rc ∈ R. Note that equation (6.8) implies that

(x, y) �→ (u
α(c,y)
X x, cy) �→ (x, u−rc

Y cy)

is ρ-invariant. Thus, Moore’s ergodicity theorem and Lemma 3.1 force

α(exp(v), y) ≡ 0 and 〈exp(v)〉 ⊂ GY (6.9)

is compact. In particular, we obtain equation (1.2):

dβ|V⊥
C
(v) �= 0
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for any weight vector v ∈ V ⊥
CY

of positive weight. Inspired by this, we deduce the following
lemma.

LEMMA 6.5. For weight vectors v ∈ CgY (UY ) of weight ς �= 0, 2, we must have

dβ(v) = 0.

Proof. Similar to Theorem 5.10, one can deduce that for r ∈ R,

S̃arY
: (x, y) �→ (u

α(arY ,y)
X β(arY )a

r
Xx, arY y)

is ρ-invariant. Also, we have

S̃aY ◦ S̃c ◦ S̃
a−1
Y

= S̃
aY ca

−1
Y

for any aY ∈ exp(RAY ), c ∈ CGY (UY ). In particular, one deduces

β(arY )a
r
Xβ(a

−r
Y )a

−r
X = e, β(arY )a

r
Xβ(c)β(a

−r
Y )a

−r
X = β(arY ca

−r
Y ).

Thus, suppose that v ∈ CgY (UY ) is a weight vector of weight ς �= 0, 2. Then,

β(exp(v))e
rς/2 = β(exp(erς/2v)) = β(arY exp(v)a−r

Y )

= β(arY )a
r
Xβ(exp(v))β(a−r

Y )a
−r
X = β(arY )a

r
Xβ(exp(v))a−r

X β(a
r
Y )

−1.
(6.10)

Assume that β(exp(v)) = exp(w) for some w ∈ CgX(UX). By the assumption, w has to be
nilpotent and so

arXβ(exp(v))a−r
X = arX exp(w)a−r

X = exp(erw). (6.11)

Combining equations (6.10) and (6.11), we get

erς/2‖w‖ = ‖erς/2w‖ = ‖ Ad β(arY ).e
rw‖ = ‖erw‖ = er‖w‖,

which leads to a contradiction.

Then by Moore’s ergodicity theorem and Lemma 3.1 (cf. Remark 5.8), we make the
following conclusion.

COROLLARY 6.6. If CgY (UY ) contains a weight vector of weight ς �= 0, 2, then

ρ = μ× ν.

Now we focus on the case nX = 2 and τX ∈ K(X) ∩ C1(X). Note that in this case,
Ratner [Rat87] showed that ũtX also has H-property. Thus, we can repeat the same idea
as in §6.1 to discuss the case when CgY (UY ) consists only of weight vectors of weight
ς = 0, 2. Note that since β ≡ 0, by equation (6.8), we must have α(c, ·) ∈ L∞(Y ) for any
c ∈ CGY (UY ). Then, similar to Proposition 6.1, we have the following proposition.

PROPOSITION 6.7. Assume that CgY (UY ) consists only of weight vectors of weight
ς = 0, 2. Then after passing a subsequence if necessary,

�∗(y) := lim
n→∞ �∗

k (y) (6.12)
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exists for ν-a.e. y ∈ Y , where �∗
k (y) := {�k,p(y) : p ∈ {1, . . . , n}} and �k,p(y) is given

by equation (5.58).

Remark 6.8. One non-trivial step of Proposition 6.7 is to obtain a similar version of
Theorem 5.15. This requires that the time change ũtX also has H-property. See [Rat87]
Lemma 3.1 for further details.

Then by Ratner’s theorem (cf. equation (6.4)), there exists c(h�Y ) ∈ CGX(UX) =
exp(RUX), a homomorphism �(h), γp, g0 ∈ GX such that ψp can be written as

ψp(h�Y ) = c(h�Y )�(h)γpg0�X (6.13)

for h�Y ∈ Y . Then as in Proposition 6.3, we get the following proposition.

PROPOSITION 6.9. τX and τY ≡ 1 are joint cohomologous.

Finally, consider ρ is non-trivial v ∈ CGY (UY ). Since β(exp(v)) = e, equation (6.9)
asserts that

α(exp(v), y) ≡ 0 and 〈exp(v)〉 ⊂ GY

is compact. However, Ratner’s theorem implies that 〈exp(v)〉 ⊂ ker � is a normal sub-
group of GY . It is a contradiction. Thus, we conclude

V ⊥
CY

= 0.

Therefore, we have proved Theorem 1.10.
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