ON INDEPENDENT COMPLETE SUBGRAPHS IN A GRAPH

J. W. MOON

1. Definitions. A graph $G=G(n, e)$ consists of a set of n nodes e pairs of which are joined by a single edge; we assume that no edge joins a node to itself. A graph with k modes is called a complete k-graph if each pair of its nodes is joined by an edge. The graphs belonging to some collection of graphs are independent if no two of them have a node in common. The maximum number of independent complete k-graphs contained in a given graph G will be denoted by $I_{k}(G)$.
2. Summary. Erdös and Gallai (2) have determined the maximum number of edges a graph can have in terms of the maximum number of independent edges it contains. Their proof makes use of the theory of alternating chains. In § 3 we give an elementary proof of their theorem that does not require this theory. Erdös (1) has determined the maximum number of edges a graph $G(n, e)$ can have when the maximum number of independent complete 3 graphs it contains is t, provided that $n>400 t^{2}$. His proof is by induction. In § 4 we show, by a modification of the argument used in § 3, that Erdös's theorem is valid whenever $n>9 t / 2+4$. Finally, in $\S 5$, we consider the general problem of determining an upper bound for the number of edges in a graph in terms of the maximum number of independent complete k-graphs it contains.
3. The case $k=2$.

Theorem 1. If $I_{2}(G(n, e))=h$, then

$$
e \leqslant \max \left\{\binom{2 h+1}{2},\binom{h}{2}+h(n-h)\right\},
$$

with equality holding only if $G(n, e)$ consists of a complete $(2 h+1)$-graph and $n-(2 h+1)$ isolated nodes or if $G(n, e)$ consists of a complete h-graph each node of which is also joined to each of the remaining $n-h$ nodes.

Proof. Let I denote the set of h independent edges of $G=G(n, e)$ and let N denote the set of $n-2 h$ nodes of G that are not incident with any of the edges of I. (We may assume that $n>2 h$ and that I and N are not empty

Received July 8, 1966.
sets). There are no edges joining two nodes of N to each other, nor are there edges joining two nodes of N to different ends of an edge in I, for otherwise $I_{2}(G)$ would exceed h.

The edges of I may be partitioned into two subsets as follows. Let A denote the set of edges (x, y) of I such that one of the nodes x or y, say y, is joined to at least two nodes of N; the nodes x, then, cannot be joined to any nodes of N. Let B denote the set of the remaining edges (u, v) of I; there can exist, then, at most one node of N that is joined to u or v or both. We shall denote the number of edges in A and B by a and b, where $a+b=h$.

The following assertions are consequences of the definitions of A, B, and N and the fact that $I_{2}(G)=h$.
(i) If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two edges of the set A, then x_{1} and x_{2} are not joined to each other. Hence, the number of edges joining ends of edges of A to each other or to nodes of N is at most

$$
\binom{2 a}{2}-\binom{a}{2}+a(n-2 h)
$$

(ii) If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two edges of A, then x_{1} and x_{2} cannot be joined to different ends of an edge (u, v) of B. Furthermore, if the node u is joined to the node x_{1}, say, then the node v cannot be joined to any node of N. This implies that the number of edges joining ends of edges of B to any other nodes is certainly no more than

$$
\binom{2 b}{2}+(2 b) a+b a+2 b .
$$

Since every edge of G is of one of the types considered in (i) and (ii), it follows that

$$
\begin{aligned}
e & \leqslant\binom{ 2 a}{2}-\binom{a}{2}+\binom{2 b}{2}+a(n-2 h)+3 a b+2 b \\
& =\binom{2 h+1}{2}+a\left(n-2 \frac{1}{2} h-1 \frac{1}{2}\right)-\frac{1}{2} a(h-a) \\
& \leqslant\binom{ 2 h+1}{2}+a\left(n-2 \frac{1}{2} h-1 \frac{1}{2}\right) \\
& =\binom{h}{2}+h(n-h)-(h-a)\left(n-2 \frac{1}{2} h-1 \frac{1}{2}\right) .
\end{aligned}
$$

The last two expressions attain their maximum value when $a=0$ or h, depending on the sign of $n-2 \frac{1}{2} h-1 \frac{1}{2}$. If equality holds when $a=0$, then the ends of the edges of $B=I$ determine a complete $2 h$-graph; a simple argument shows that all the nodes of this graph are joined to the same node of N. In this case, therefore, the graph $G(n, e)$ consists of a complete $(2 h+1)$ graph and $n-(2 h+1)$ isolated nodes. If equality holds when $a=h$, then each node y belonging to an edge (x, y) of $A=I$ is joined to every other
node of the graph. In this case the graph $G(n, e)$ consists of a complete h graph each node of which is joined to each of the remaining $n-h$ nodes. This suffices to complete the proof of the theorem.

We note a related theorem which has appeared in Fulkerson and Shapley (4) and Erdös and Posa (3); it follows almost immediately from the observations at the end of the first paragraph of the proof of Theorem 1.

Theorem 2. If each node of the graph G is joined to at least t other nodes, then $I_{2}(G) \geqslant \min \left\{t,\left[\frac{1}{2} n\right]\right\}$, where n denotes the number of nodes of G.
4. The case $k=3$. Let R and S denote two disjoint sets containing r and s nodes, respectively. If each node of R is joined to each node of S, then the resulting configuration is called a complete r by sbipartite graph. A special case of a theorem due to Turán (5) states that if $I_{3}(G(n, e))=0$, then $e \leqslant\left[\frac{1}{4} n^{2}\right]$ with equality holding if and only if $G(n, e)$ is a complete $\left[\frac{1}{2} n\right]$ by $\left[\frac{1}{2}(n+1)\right]$ bipartite graph.

Lemm. If $I_{2}(G(n, e))=h$ and $I_{3}(G(n, e))=0$, then $e \leqslant h(n-h)$, with equality holding only if $G(n, e)$ is a complete h by $(n-h)$ bipartite graph.

Proof. Let I and N have the same meaning as before. No node of N can be joined to both ends of an edge of I and no two nodes of N are joined to each other. Hence, the number of edges incident with nodes of N is at most $h(n-2 h)$. Furthermore, according to Turán's theorem, there are at most h^{2} edges joining ends of the edges of I to each other. Therefore,

$$
e \leqslant h(n-2 h)+h^{2}=h(n-h),
$$

with equality holding only if each of the $n-2 h$ nodes of N is joined to exactly h nodes of a complete h by h bipartite graph formed by the remaining $2 h$ nodes. Since $I_{3}(F)=0$ and $I_{2}(G)=h$, it follows that when equality holds, each of the nodes of N is joined to the same h nodes and that these h nodes form one of the node-sets of a complete h by h bipartite graph. Thus, if equality holds, G is a complete h by ($n-h$) bipartite graph by definition. This suffices to complete the proof of the lemma.

Theorem 3. If $I_{3}(G(n, e))=t$ and $n>9 \frac{1}{2} t+4$, then

$$
e \leqslant\binom{ t}{2}+t(n-t)+\left[\frac{1}{4}(n-t)^{2}\right]
$$

with equality holding only if $G(n, e)$ consists of a complete t-graph each node of which is also joined to each node of a complete $\left[\frac{1}{2}(n-t)\right]$ by $\left[\frac{1}{2}(n-t+1)\right]$ bipartite graph.

Proof. Let I denote a set of t independent complete 3 -graphs (or triangles, as we shall call them henceforth) of $G=G(n, e)$; let N denote the subgraph determined by the $n-3 t$ nodes that are not contained in triangles of I. (We
may assume that I and N are not empty.) We shall say that an edge (u, v) is joined to a node w, and vice versa, if w is joined to both u and v. There cannot be two independent edges of N that are joined to different nodes of a triangle in I, for otherwise $I_{3}(G)$ would exceed t.

The triangles of I may be partitioned into two subsets as follows. Let A denote the set of triangles (x, y, z) of I such that one of the nodes x, y, or z, say z, is joined to at least two independent edges of N; let B denote the set of the remaining triangles of N. We shall denote the number of triangles in A and B by a and b, where $a+b=t$.

We shall now obtain upper bounds for the number of edges of various types in G.
(i) If the triangle (x, y, z) belongs to A, then no node of N is joined to both x and y, for otherwise $I_{3}(G)$ would exceed t. Therefore,

$$
e(A, N) \leqslant 2 a(n-3 t)
$$

where $e(A, N)$ denotes the number of edges joining nodes of the triangles of A to nodes of N.
(ii) If the triangles $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ both belong to A, then neither x_{1} nor y_{1} is joined to both x_{2} and y_{2}. For, a simple argument shows that there exist two independent triangles of the type (z_{1}, p, q) and (z_{2}, r, s), where p, q, r, and s belong to N; and if x_{1}, say, were joined to both x_{2} and y_{2}, then the triangles $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ of I could be replaced by the triangles $\left(x_{1}, x_{2}, y_{2}\right),\left(z_{1}, p, q\right)$, and $\left(z_{1}, r, s\right)$ to form a set of $t+1$ independent triangles. Therefore, if $e(I)$ denotes the number of edges both of whose ends belong to triangles in I, it must be that

$$
e(I) \leqslant\binom{ 3 t}{2}-2\binom{a}{2} .
$$

(iii) There is at most one independent edge of N that is joined to one or more nodes of any given triangle of B. Therefore, if $I_{2}(N)=\gamma$ and $e(B, N)$ denotes the number of edges joining nodes of the triangles of B to nodes of N, then $e(B, N) \leqslant b(3(n-3 t-2 \gamma)+3 \gamma+3)=3(t-a)(n-3 t-\gamma+1)$.
(iv) Since $I_{3}(N)=0$, it follows from the lemma that $e(N) \leqslant \gamma(n-3 t-\gamma)$, where $e(N)$ denotes the number of edges of N.

If we combine these inequalities, we find that

$$
\begin{array}{r}
e \leqslant 2 a(n-3 t)+\binom{3 t}{2}-2\binom{a}{2}+3(t-a)(n-3 t+1-\gamma)+\gamma(n-3 t-\gamma) \\
=\binom{3 t}{2}+3 t(n-3 t+1)-a(n+a-3 t+2) \\
+\gamma(n-6 t+3 a-\gamma) \\
\leqslant\binom{ 3 t}{2}+3 t(n-3 t+1)-a(n+a-3 t+2) \\
\\
+\left[\frac{1}{4}(n-6 t+3 a)^{2}\right] .
\end{array}
$$

It is a routine exercise to show that this last expression, considered as a function of a, attains its maximum on the interval $0 \leqslant a \leqslant t$ when $a=t$ if $n>9 t / 2+4$. Therefore,

$$
\begin{aligned}
e & \leqslant\binom{ 3 t}{2}-2\binom{t}{2}+2 t(n-3 t)+\left[\frac{1}{4}(n-3 t)^{2}\right] \\
& =\binom{t}{2}+t(n-t)+\left[\frac{1}{4}(n-t)^{2}\right]
\end{aligned}
$$

If equality holds in all these inequalities, then $A=I$ and, by the lemma, the graph N is a complete $\left[\frac{1}{2}(n-3 t+1)\right]$ by $\left[\frac{1}{2}(n-3 t]\right)$ bipartite graph. Since equality holds in inequalities (i) and (ii), it follows that the nodes z of the triangles of I determine a complete t-graph each node of which is joined to all the remaining nodes.

Since equality holds in (i), it follows that each node of N is joined to exactly one of the nodes x and y of each triangle (x, y, z) of I. If R and S denote the node-sets of the graph N, then the node x of any such triangle cannot be joined to nodes in both R and S. For if it were, then, since R and S each contain at least two nodes, there would exist two independent edges of N that were joined to different nodes of the triangle (x, y, z), and this is impossible. If x is joined to no node of S, then each node of S is joined to y. Consequently, y is joined to no nodes of R and each node of R is joined to x. Therefore, we may assume that the nodes of the triangles (x, y, z) of I are labelled in such a way that each node x is joined to each node in R and each node y is joined to each node in S.

Since equality holds in (ii), it follows that, if (x_{1}, y_{1}, z_{1}) and (x_{2}, x_{2}, z_{2}) are any two triangles of I, the node x_{1} is joined to exactly one of the nodes x_{2} and y_{2}. If x_{1} and x_{2} were joined to each other, then the two triangles $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ of I could be replaced by the triangles $\left(x_{1}, x_{2}, r_{1}\right)$, (z_{1}, y_{1}, s_{1}), and (z_{2}, y_{2}, s_{2}), where r_{1} is any node of R and s_{1} and s_{2} are any two nodes of S, to form a set of $t+1$ independent triangles of G. As this is impossible, it follows that x_{1} is joined to y_{2} and x_{2} is joined to y_{1} for every such pair of triangles of I.

Therefore, if X and Y denote the sets consisting of the nodes x and y, respectively, of the triangles (x, y, z) of I, then the nodes of $X \cup S$ and $Y \cup R$ determine a complete $\left[\frac{1}{2}(n-t)\right]$ by $\left[\frac{1}{2}(n-t+1)\right]$ bipartite graph. In view of the earlier remarks this suffices to complete the proof of the theorem.

It is almost certain that Theorem 3 remains valid for somewhat smaller values of n also. However, it is not valid for all admissible values of n. For, consider a graph G with n nodes that consists of a complete $3 t$-graph each node of which is also joined to two additional nodes p and q, where p and q belong to different node sets of a complete $\left[\frac{1}{2}(n-3 t)\right]$ by $\left[\frac{1}{2}(n-3 t+1)\right]$
bipartite graph. It is not difficult to see that $I_{3}(G)=t$ and that G contains

$$
e(G)=\binom{3 t}{2}+6 t+\left[\frac{1}{4}(n-3 t)^{2}\right]
$$

edges. But if $3 t \leqslant n<3 \frac{1}{2} t+2 \frac{1}{2}$, then

$$
e(G)>\binom{t}{2}+t(n-t)+\left[\frac{1}{4}(n-t)^{2}\right]
$$

5. The case $k>3$. The argument used to prove Theorem 3 can also be used to determine an upper bound for the number of edges in a graph G if it is known that $I_{k}(G)=t$, where $k>3$. The details become rather involved, however, so we shall only outline the proof of the general inequality.

A complete l-partite graph consists of l disjoint sets of nodes $R_{1}, R_{2}, \ldots, R_{l}$ such that two nodes are joined if and only if they do not belong to the same set of nodes. The symbol $D(n, l)$ will denote the complete l-partite graph with n nodes in which the numbers of nodes in the different node-sets are all as nearly equal as possible. If $n=t l+r$, where $t \geqslant 0$ and $1 \leqslant r \leqslant l$, then r of the node-sets of $D(n, l)$ contain $t+1$ nodes and the remaining $l-r$ node-sets contain t nodes. The number of edges in the graph $D(n, l)$ is given by the formula

$$
e(n, l)=\frac{l-1}{2 l}\left(n^{2}-r^{2}\right)+\binom{r}{2} .
$$

(Later we shall use the fact that

$$
e(n, l) \leqslant \frac{(l-1)}{2 l} n^{2}
$$

with equality holding only if n is a multiple of l.) Turán's theorem (5) states that if $I_{k}(G(n, e))=0$, where $k \geqslant 3$, then $e \leqslant e(n, k-1)$, with equality holding if and only if $G(n, e)=D(n, k-1)$.

The following lemma may be proved in essentially the same way as was the earlier lemma.

Lemma. If $I_{k-1}(G(n, e))=h$ and $I_{k}(G(n, e))=0$, where $k \geqslant 3$, then

$$
e \leqslant h(n-h)+e(n-h, k-2)
$$

with equality holding only if $G(n, e)$ consists of h nodes each of which is joined to each node of a graph $D(n-h, k-2)$.

Theorem 4. If $I_{k}(G(n, e))=t$, where $k \geqslant 3$ and

$$
n>\frac{1}{2} t\left(k^{3}-k^{2}+1\right)+\frac{1}{2}(3 k-5)(k-1)
$$

then

$$
e \leqslant\binom{ t}{2}+t(n-t)+\frac{k-2}{2(k-1)}(n-t)^{2}
$$

Equality holds if and only if $n-t$ is a multiple of $k-1$ and $G(n, e)$ consists of a complete t-graph each node of which is joined to each node of a graph $D(n-t, k-1)$.

Outline of proof. Let I denote a set of t independent complete k-graphs of $G=G(n, e)$; let N denote the subgraph determined by the $n-t k$ nodes not contained in members of I. (We may assume that I and N are not empty). We shall say that a complete $(k-1)$-graph H is joined to a node w, and vice versa, if every node of H is joined to w. Let A denote the set of those complete k-graphs K of I such that some node of K is joined to at least $k-1$ independent complete ($k-1$)-graphs of N.

If there are a complete k-graphs in A and if $I_{k-1}(N)=\gamma$, then it can be shown, by the same type of argument as was used before, that

$$
\begin{aligned}
& e \leqslant(k-1) a(n-k t)+\binom{k t}{2}-(k-1)\binom{a}{2} \\
& +k(t-a)(n-k t-\gamma+2)-3(t-a)+\gamma(n-k t-\gamma) \\
& \quad+e(n-k t-\gamma, k-2) \\
& \leqslant\binom{ k t}{2}+k t(n-k t+2)-3 t-a\left(n+\frac{1}{2} a(k-1)-k t+\frac{1}{2}(3 k-5)\right) \\
& \\
& \\
& \quad+\gamma(n-k t-k(t-a)-\gamma)+\frac{(k-3)}{2(k-2)}(n-k t-\gamma)^{2} .
\end{aligned}
$$

For fixed values of the parameters n, k, t, and a this last expression assumes its maximum value when

$$
\gamma=\frac{n-k t}{k-1}-\frac{k(k-2)(t-a)}{k-1}
$$

It follows, after some rearranging, that

$$
\begin{aligned}
& e \leqslant\binom{ k t}{2}+k t(n-k t+2)-3 t+\frac{k-2}{2(k-1)}(n-k t)^{2} \\
&-a\left(n+\frac{1}{2} a(k-1)-k t+\frac{1}{2}(3 k-5)\right) \\
&+\frac{(k-2)}{2(k-1)} k^{2}(t-a)^{2}-\frac{k}{k-1}(n-k t)(t-a)
\end{aligned}
$$

This last expression, considered as a function of a, attains its maximum on the interval $0 \leqslant a \leqslant t$ when $a=t$ if

$$
n>\frac{1}{2} t\left(k^{3}-k^{2}+1\right)+\frac{1}{2}(3 k-5)(k-1) .
$$

Therefore,

$$
\begin{aligned}
& e \leqslant\binom{ k t}{2}+k t(n-k t+2)-3 k+\frac{k-2}{2(k-1)}(n-k t)^{2} \\
&-k\left(n+\frac{1}{2} k(k-1)-k t+\frac{1}{2}(3 k-5)\right) \\
&=\binom{t}{2}+t(n-t)+\frac{k-2}{2(k-1)}(n-t)^{2}
\end{aligned}
$$

The graphs for which equality holds may be characterized by the same type of argument as was used before.

The main inequality in Theorem 4 could undoubtedly be replaced by the inequality

$$
e \leqslant\binom{ t}{2}+t(n-t)+e(n-t, k-1)
$$

The difficulty in proving this by the present method arises in trying to determine the maximum of

$$
\gamma(n-k t-k(t-a)-\gamma)+e(n-k t-\gamma, k-2)
$$

as a function of γ. The restriction on n in Theorem 5 is probably far stronger than necessary, but it cannot be removed entirely, as simple examples will show.

We remark in closing that the argument used to prove Theorems 3 and 4 breaks down when $k=2$.

References

1. P. Erdös, Über ein Extremalproblem in der Graphentheorie, Arch. Math., 13 (1962), 222-227.
2. P. Erdös and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 10 (1959), 337-356.
3. P. Erdös and L. Pósa, On the maximal number of disjoint circuits in a graph, Publ. Math. Debrecen, 9 (1962), 3-12.
4. D. R. Fulkerson and L. S. Shapley, Minimal k-arc-connected graphs, The RAND Corp., P-2371 (1961), 1-11.
5. P. Turán, On the theory of graphs, Colloq. Math., 3 (1954), 19-30.

University of Alberta, Edmonton, Alberta

