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CONSTRUCTING LOCALLY FLAT EMBEDDINGS 
OF INFINITE DIMENSIONAL MANIFOLDS 
WITHOUT TUBULAR NEIGHBORHOODS 

T. A. CHAPMAN 

1. I n t r o d u c t i o n . All spaces in this paper will be separable and metric. 
A closed embedding i: M —» TV is said to be locally flat (of codimension n) if 
for each x0 (E M there is an open set U in M containing Xo and an open embed­
ding h: U X Rn —> N for which h(x, 0) = i(x), for all x 6 U. When there is 
no confusion wre will identify M with its image and regard i as the inclusion 
M £-> N. We say tha t a closed subset M of N has a tubular neighborhood (of 
codimension n) if there is a fiber bundle E —> if, with fiber Rn and 0-section if , 
and an open embedding <p: E —> N for which <p|M = id. 

The following is known for ilf, Af finite dimensional manifolds wi thout 
boundary and M ^ A locally flat. 

1. M always has a tubular neighborhood in codimension 1 [1]. 
2. If dim M 9e 2, then M always has a tubular neighborhood in codimension 

2 [8]. 
3. If n ^ dim M — j — 1 and n ^ 5 + j , where j = 0, 1, 2, then M a lways 

has a tubular neighborhood in codimension n [15]. (This implies Milnor 's result 
on the stable existence of tubular neighborhoods, i.e. if M ^ N \s locally flat, 
then M X {0} has a tubular neighborhood in M X Rk, for some k ^ 0 [11].) 

4. There is a locally flat embedding S19 C S19 X S9 with no tubular neighbor­
hood [13]. 

Now switching categories let M, N both be Q-manifolds, i.e. manifolds 
modeled on the I l i lbert cube Q, or h-manifolds, i.e. manifolds modeled on 
separable Uilber t space /2. T h e following results are known about locally flat 
embeddings M ^> N. 

1. M always has a tubular neighborhood in codimension 1 [1]. 
2. M always has a tubular neighborhood in codimension 2 [12]. 

T h e purpose of this paper is to construct a codimension 3 counterexample. 
Specifically we construct a codimension 3 locally flat embedding Ss X Q C 
S3 X Q (or S3 X h C S* X h) which has no tubular neighborhood. Moreover 
no stabilization, S 3 X Q X {0} C S3 X Q X #* (or 5 3 X h X {0} C 5 3 X h 
X i^fc), has a tubular neighborhood. Our main result is the theorem s ta ted 
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FLAT EMBEDDINGS 1175 

below which gives a general method of constructing examples of this sort. In 
the corollary we use this result to calculate the specific example mentioned 
above. 

Let Topfl denote the group of all origin-preserving homeomorphisms of Rn. 
Topological fiber bundles over a base B with fiber Rn and O-section B are 
classified by maps of B to the classifying space B Top„ [10]. Let Gn be the 
/ / -space of all self-homotopy equivalences of Sn. Hurewicz fibrations over B 
with fiber Sn are classified by maps of B to the classifying space BGn[l£]. There 
is a natural map e: Top„ —> Gn-\ given by sending each h Ç Top„ to the composi­
tion 

e(h):Sn~1^Rn - {0} ^ Rn - {0} ^ Sn~\ 

where r is the radial retraction. This induces a map of classifying spaces, 
c: B Top„ —» BGn-\. We say tha t a map <p: X —> BGn-\ lifts to $ Top n if there is 
a map <p: B —>B Top„ for which e<p is homotopic to <p. Also for each k ^ 0 the 
natural inclusion map Sn ^ 5"+A" induces a map G„ —» GW+A-, given by suspension 
of maps, which in turn induces a map of classifying spaces, BGn —> BGn+k. 
Here is our main result. See § 4 for a proof. 

T H E O R E M , / W every Q-manifold (or U-manifold) M and map ç\ M —» BGn-i, 
there exists a codimension n locally flat embedding h: M —> il/" 5wc/̂  //?a^ if h(M) 
has a tubular neighborhood, then if can be lifted to B Topw. Moreover if any 
stabilization h(M) X {0} ^ M X Rk has a tubular neighborhood, then 

M-%BGn-i->BGn+k-i 

can be lifted to B Topn+/v . 

We now use this result to produce our example. See § 5 for details. 

COROLLARY. There exists a codimension 3 locally flat embedding h: S3 X Q —» 5 3 

X Q (or h: S3 X h—*Ss X 12) so that no stabilization has a tubular neighborhood. 

Finally we remark tha t the above theorem raises the following interesting 
question: Given a Q-manifold (or l2-manifold) M, can we classify all locally flat 
embeddings M ^ N by maps of M to BGn-i? Theorem 1 essentially answers the 
"real izat ion" par t of this question. 

In the sequel we will only give the details for the proof of the theorem for the 
Q-manifold case. Anyone familiar with basic /2-manifold appara tus can easily 
make the minor alterations in the argument necessary to give a proof for the 
/2-manifold case. The proof of the Corollary requires no manifold appara tus 
at all. I t follows mechanically from the theorem by recalling some well-known 
calculations involving the homotopy groups of BOn, B Top„ and BGn. 

2. An inf ini te d i m e n s i o n a l l e m m a . The purpose of this section is to 
establish a result which will be needed in the proof of the theorem. For its 
proof we have the first recall some material from [6]. 
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A m a p / : 5 X X -> B X F i s said to be fiber preserving (f.p.) if/({&} XX) 
C {b} X F, for all b £ B. A closed set /I C 5 X M is said to be afibered Z-set 
if there are f.p. maps f: B X M —» 73 X M — ̂ 4 which are arbi t rar i ly close 
to id. An f.p. embedding / : B X A —> B X M is said to be afibered Z-embedding 
if / ( B X A) is a fibered Z-set. We now s ta te two results which will be needed 
in the proof of Lemma 2.1 below. 

F I B E R E D M A P P I N G A P P R O X I M A T I O N [6]. Let M be a Q-manifold, let (B, B0) 

be a compact pair, and let A be compact. If there is an f.p. map f: B X A —> B X 
M which is a fibered Z-embedding from B0 X A to B0 X M, then f is f.p. homo-
topic to a fibered Z-embedding rel B0 X A. 

F I B E R E D Z - S E T U N K N O T T I N G [6]. Let M be a Q-manifold and let A,B be com­

pact. If there are fibered Z-embeddings f,g:B X A —* B X M which are f.p. 
homotopic, then there is an f.p. homeomorphism h: B X M —> B X M for which 

¥ = g. 

Remark. Both of these results come from § 4 of [6]. See also [5] for related 
results. 

We are now ready for our main result. For notat ion let M be a compact Q-
manifold, let II be the homeomorphism group of M X [0, 1), and let G be the 
space of self homotopy equivalences of M X [0, 1). (All function spaces wrill 
have the compact-open topology.) 

L E M M A 2.1. The inclusion H ^ G is a weak homotopy equivalence. 

Proof. Using the homotopy sequence of the pair (G, H) it suffices to prove 
tha t the relative groups Trn(G, H) all vanish. An element of Tvn(G, H) m a y be 
represented by an f.p. map / : An X M X [0, 1) -> An X M X [0 ,1) for which 
/ |dA* X M X [0, 1) is a homeomorphism and /|{*} X M X [0, 1) = id. 
(Here An is the s tandard w-simplex and * Ç dAn is a basepoint .) We want to 
prove t h a t / is f.p. homotopic to a homeomorphism rel dA X M X [0, 1). 

Consider the restriction f\A X M X {0}. By Fibered Mapping Approxima­
tion there is a fibered Z-embedding g: A X M X {0} -> A X M X [0, 1) 
which agrees w i t h / on dA X M X {0} and which is f.p. homotopic t o / rel 
dA X M X {0}. Now compare g with id: A X M X {0} -> A X M X [0, 1) 
and note t ha t g = id on {*} X MX {0}. I t easily follows t h a t g is f.p. homo-
topic to id because A is contractible. 

Using Fibered Z-Set Unknot t ing there is an f.p. homeomorphism hû A X 
M X [0, 1) -> A X M X [0, 1) for which h\A X M X {0} = g. Then h{~lf: 
dA X M X [0, 1) —> dA X M X |0, 1) is an f.p. homeomorphism which is the 
identi ty on dA X M X {0}. By a variat ion of the usual Alexander trick this 
extends to an f.p. homeomorphism h2: A X M X [0, 1) —> A X M X [0, 1) for 
which h2 = id on AX M X {0}. Then h = hxh2: A X M X [0, 1) -> A X M X 
[0, 1 ) is an f.p. homeomorphism and h2~

1hi~~1f is the ident i ty on dA X M X [0, 1 ) 
U ( A X I X {0}). T h u s h2-

1hr1fis clearly f.p. homotopic to id rel dA X MX 
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[0, 1) by again using the Alexander trick. This implies t h a t / is f.p. nomotopic 
to hrel dA X M X [0, 1). 

Remark 1. Lemma 2.1 is not in the exact form tha t is needed in the proof of 
the theorem. If GM denotes the space of all self-homotopy equivalences of M, 
then the map a: GM —> G, defined by s e n d i n g / £ GM to 

MX [ 0 , 1 ) ^ M X [0,1) , 

is a homotopy equivalence. A homotopy inverse ft: G —» GM is easily defined by 
s e n d i n g / G G to the composition 

M*^ M X [0, 1) - ^ -> M X [0, 1) ^% M. 

Then Lemma 2.1 implies tha t the composition 

H^G-^GM 

is a weak homotopy equivalence. 

Remark 2. The /2-manifold version of Lemma 2.1 was established by Wong 
[17] by a different argument . The proof given here is modeled on the proof 
given in [2], which was designed to show tha t any homeomorphism on an /2-
manifold which is nomotopic to id is isotopic to id. 

3. T h e basic c o n s t r u c t i o n . Our main result here is Theorem 3.3, which is 
the main tool needed for the proof of the theorem. I t is based on the following 
notat ion. 

Let M be a Q-manifold and let 

E t M 

be a fiber bundle with fiber Sn~l X Q X [0, 1). Let Ë be the space formed from 
E by taking the one-point compactification of each fiber in E. Then there is a 
natural map p: E —> M so tha t each p~l{x) is the one-point compactification of 
p~l{x). Identifying M with Ë - E we have Ë = E U M and p\M = id. Also 

ËXM 

is a fiber bundle with fiber F = C(5 /z~1 X Q) (the cone over 5 n _ 1 X Q) and 
0-section M. We may write 

ces*-1 x (?) = s*-1 x Q x [o, i) u {*}, 
where * is the cone point. 

LEMMA 3.1. There is a homeomorphism <p: Q X F —> Q X Bn such that <p(q,*) = 

(q, 0) for all q G (?. 

( 5 n is the w-ball in i^w and a^ n = 5n"1.) 
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Proof. I t will suffice to construct a homeomorphism <p': Q X (F — {*})—> 
Q X (Bn — {0}) which extends to our desired <p. T o do this we first need a 
map 6: Q X Q X [0, 1] - » Q such t ha t for each /, 6t: Q X Q -> Q is a m a p which 
is projection onto the first factor for t = 1, and is a homeomorphism for 2 < 1. 
Such maps are easily obtained by using Wong 's coordinate-switching trick 
[3, p. 18]. Now replace Bn - {0} by S*"1 X [0, 1) and define 

<p': Q X S^1 X Q X [0, 1) -+Q X S*-1 X [0, 1) 

by lett ing <p'\Q X Sn~x X Q X {t} be the homeomorphism taking Q X Sn~l X 
Q X {t} to Q X S71-1 X {t} for which <p'(q1,s,q2, i) = (dt(qu g2), s, t). I t is clear 
t ha t <p' extends in our required manner . 

L E M M A 3.2. Ë is homeomorphic to M and M is locally flat in Ë. 

Proof. By stabil i ty [3, p . 22] we may write M = M' X Q, where M' is a copy 
of M. Then 

EMM'XQ^M' 
is a fiber bundle with fiber F X Q, and this is Q by Theorem 3.1. Since the 
homeomorphism group of Q is contractible [16] we conclude t ha t 

Ë Â M' X Q -> M' 

is trivial, and therefore Ë ^ M' X Q = M. 
T o see t ha t M is locally flat choose U C M' which is open and contract ible. 

Then there exists a homeomorphism h: p~1(U X Q) —» U X Q X F such t h a t 
h(u, q) = (it, q} * ) , for all (u, q) in the 0-section M' X Q, and such t ha t the 
following commutes : 

p-\UXQ)—}L-+UXQX F 

\ h 
U XQ 

Using Lemma 3.1 let £: U X Q X F —» U X Q X Bn be a homeomorphism 
such t ha t tp(u, q, *) = (u, q, 0) , for all (it, q) G U X Q. Then 

h' = çh: p~l(U X Q)->U X Q X Bn 

is a homeomorphism such t h a t h'(u, q) = (u, q, 0 ) . T h e inverse, 

(A')"1: U XQXBn-*Ë 

is an open embedding such t h a t ( T ^ ) - 1 ^ , g, 0) = (u, q). 
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T H E O R E M 3.3. If M has a tubular neighborhood in E X Rk, then there is a 
fiber bundle 

with fiber Rn+k and O-section M, and a fiber homotopy equivalence f: S — M —•» 
Ë X Rk - M. (Here we identify M with M X {0} in Ë X Rk.) 

Proof. Assuming tha t M has a tubular neighborhood in Ë X Rk means tha t 
there is a fiber bundle 

<f -£> M, 

with fiber Rn+k and 0-section M, and an open embedding i: S —» Ë X Rk for 
which i|ilf = id. We will construct a homotopy equivalence f/: <§ — M —> 
ËX Rk - M for which £ i / ' c^ g, where pi = p o proj : Ë X Rk-> M. Theorem 
2.2 of [4] then implies tha t f must be nomotopic to a fiber homotopy equi­
v a l e n c e / as desired. 

Our map / ' : cf - M -> Ë X i?* - M is easily defined to be / ' = i\ <f - ill. 
Define g: Ë X JR* - M -» «f - M by 

g: ËXRk - M - ^ i{£ - M) —-> <? - M, 

where <i is jus t the end result of an f.p. deformation of Ë X Rk down to a neigh­
borhood of the 0-section. We need homotopies f'g ^ id and gff ~ id. 

The composition f'g is just 

7 - " I 

f'g: Ë X Rk - M—> i((f - M) - Î - * S - M-Ui((? - M) 
^EXRk - M. 

This is homotopic to id because d ^ id. The composition gf is just 

gf: cf - M-UËXR* - M^—>i(£' - M) ^—* <f - M. 

Let<9,: SJ - M-> S - M be an f.p. homotopy so tha t 60 = id a n d 0 i ( ( f - M) 
lies in a small neighborhood around M. Clearly 

gf ~ gfOi ~ 0i ~ id, 

where the first homotopy uses 6t and the second uses d ^ id. Thus f is a 
homotopy equivalence. 

Finally we need to check tha t p\f c^ q. This arises from 

Plf = pxi\g - M ~p1iq\é) - M = q\cf - AT, 

where we have used the fiber homotopy id c^ q. 

Remark. To make effective use of Theorem 3.3 in § 4 below the reader should 
notice t h a t Ë X Rk — M is fiber homotopy equivalent to the i terated sus-
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pension bundle, J^k ( £ ) ~> M. This means t h a t if E —> M ( thought of as a 
Hurewicz fibration) is classified by a map cp: E —» BGn-i, then E X Rk — M —* 
M is classified by 

£ —> BGn-i —> BGn+h-i-

4. Proof of t h e t h e o r e m . Let <p: M-+BGn-\ be a map . Since BGn-i is a 
classifying space for Hurewicz fibrations with fibers 5W_1 , this determines a 
Hurewicz fibration 

EAM 

whose fibers are homotopy equivalent to Sn~1. This implies t ha t if there is a 
fiber bundle SJ —> M with fiber Rn+k and 0-section M, and a fiber homotopy 
equivalence of <f — ilf to the i terated suspension fibration Ylk (Ei) ~~> - ^ then 

ilf —̂  BGn-l —* BGn+k-1 

can be lifted to 73 Topw+/fc. 
Let if^-i be the group of all homeomorphisms of 5 n _ 1 X Q X [0, 1). There is 

a map j3: i f n - i —> Gn-\ defined by sending h in ffn_i to 

/3(A): 5 " - 1 — Sn~l X Q X [0, 1) - A > S*"1 X Ç X [0, 1) Œ s » - \ 

I t follows from Lemma 2.1 t ha t /3 is a wTeak homotopy equivalence. T h u s /3 
induces a map of classifying spaces, /?: BHn_i —> BGn-i, which is a homotopy 
equivalence. This means t ha t <p: M —•» BGn-\ can be lifted to BHn-\, and thus 
there is a fiber bundle £ - » i l l with fiber S*"1 X Q X [0, 1) which is fiber 
homotopy equivalent to E\ —> ilf. 

Associated with the bundle E —> ilf there is a codimension n locally flat 
embedding h: ilf —> ilf. This is jus t the construction of § 3. Now suppose t ha t 
h (AI) E= A (ilf) X {0} has a tubular neighborhood in M X Rk. Then Theorem 
3.3 implies t ha t there is a fiber bundle S —> ilf, with fiber Rn+k and 0-section ilf, 
and a fiber homotopy equivalence (^ — ilf ~ X7 (£) • Since £ is fiber homo­
topy equivalent to E\ we conclude t h a t 

ilf —» BGn-i —> BGn+ic-i 

can be lifted to f> Top^+A;, thus giving our desired result. 

5. Proof of t h e corol lary. By the theorem it suffices to find a map cp: S* —> 
f>C72 such t h a t 

5 —> f>C72 —> BG2+1C 

does not lift to B Top3 +£, for any k ^ 0. Since 7r3 (BGn) tt 7r2 (GW) and 7r3 (J5 T o p J 
œ 7r2(Topw), wTe are looking for a map \p\ S2 —> G2 which does not s tably lift. 
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Let F2 be the subset of G2 consisting of those maps which fix the north pole. 
Evaluat ion a t the north pole clearly gives us a fibration sequence, F2 —> G2 —» 
S2. Now F2 is just 1}2(S2), and therefore ir2(F2) ^ 7r4(S

2) ^ Z2 . (Compare with 
[7, p. 211].) To see tha t 7r2(G2) ^ 0 we just consider the commuting diagram, 

. . . —> 7r3( ,S ) —» 7 r 2 ( 0 2 ) —> T T 2 ( G 3 ) —» 7 r 2 ( 5 ) — > . . . 

id J e*j e*j, jid 
. . . —> 7 T 3 ( 5 ) —» T2(F2) —> 7T2(G2) —» 7T2(iS ) — • . . . . 

(Here the top row arises from the fibration sequence 0 2 —> 0 3 —» .S2, where On 

is the orthogonal group, and the map e: Top„ —> G^-i comes from § 1.) Since 
7r2(02) = 0 wTe must have ir2(F2) —-> ir2(G2) injective. Our desired map ^ : 5 2 —* 
G2 comes from the non-trivial element of ir2(F2) injected into 7r2(G2). We have 
an inclusion and /o r suspension-induced commuting diagram, 

ir2(F2) —> ^ 2 ( ^ 3 ) - > 7 r 2 ( F 4 ) 

7T 2(G 2) —•> 7T2(G3) —•> 7T2(G4) 

The computat ion T2(F2) tt Z2 given above indicates tha t we are already in the 
stable range, so the arrows in the top row are isomorphisms. Moreover it easily 
follows from the fibration sequence F± —» G4 —> S4 t ha t the vertical arrow, 
T2(FA) —> 7T2(G4), is an isomorphism. Thus 

7 T 2 ( F 2 ) —> T2(G2) —> 7T 2 (G 2 + A ) 

is injective, for any & ^ 0. 
T o see tha t 

£ —> G2 —> G2+£ 

cannot be stably lifted it suffices to show tha t the image of ir2(F2) in 7r2(G2+A-) 
does not lie in the image of 7r2(Top3+A:) in ir2(G2+k), for all k ^ 0. Let T o p 3 / 0 3 

be the homotopy fiber of the inclusion, BOz ^ B Top 3 , where BOz is the 
classifying space of 0 3 . I t follows from [9, 253] tha t 7ri(Top3 /03) = 0, i ^ 4. 
Thus 7r2(Top3) tt 7T2(03) = 0, and it follows tha t 7r2(Top3) —-> ir2(G2) is the 
0-map. Since T o p / O has homotopy groups 71-*i£(Z2, 3), i ^ 6 [9, p. 251], we 
conclude tha t 7r2(Top) = 0. This means tha t the sequence 

7r2(Top3) —> 7r2(Top4) —» . . . (inclusion-induced) 

stabilizes to 0. So on considering the commutat ive diagram, 

TT2(Topz) —> Tr2(Topi) —> . . . 

TT2(G2) —> 7 r 2 ( G 3 ) — > . . . , 

we conclude tha t Image (ir2(F2) —» 7T2(G2+A:)) does not lie in Image (7r2(Top3+*) 
-» 7T2(G2+*)), for any fe è 0. 
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