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Abstract. We prove that if f is a homeomorphism of the annulus which is homotopic
to the identity and has a compact invariant chain transitive set L, then either f has
a fixed point or every point of L moves uniformly in one direction: clockwise or
counterclockwise. If f is area-preserving, then the annulus itself is a chain transitive
set, so, in the presence of a boundary twist condition, one obtains a fixed point.
The same techniques apply to homeomorphisms of the torus T>. In this setting we
show that if f is homotopic to the identity, preserves Lebesgue measure and has
mean translation 0, then it has at least one fixed point.

0. Introduction

One of the celebrated theorems of dynamical systems in the early part of this century
was the so-called ‘last geometric theorem of Poincaré’. While Poincaré conjectured
this result and gave a partial proof, it was Birkhoff who first gave a complete proof.
Roughly this result says that an area-preserving homeomorphism of the annulus
which rotates one boundary component clockwise and the other counterclockwise
possesses at least two fixed points.

The analogue of this result for the torus T was conjectured by Arnold and proven
by Conley and Zehnder [4]. It says that if an area-preserving diffeomorphism of
T? is homotopic to the identity and has mean translation 0 (i.e. the mean rotation
in both directions is zero), then that homeomorphism has at least three fixed points.
Actually the conjecture of Arnold which Conley and Zehnder proved is more general
and applies to symplectic diffeomorphisms of T7", but our interest is in the surface
case.

In this paper we investigate a different approach to these results in which a large
role is played by recurrence. In § 2 we show (theorem 2.2) that if f is a homeomorph-
ism of the annulus with a compact invariant chain transitive set A, then either f has
a fixed point or every point of A moves uniformly in one direction: clockwise or
counterclockwise. If f is area-preserving, then A itself is a chain transitive set, so
one nearly has a generalization of the last geometric theorem of Poincaré (we obtain
only one fixed point not two). It is not difficult to construct examples showing that
one cannot conclude the existence of two fixed points with this weaker hypothesis.

This result has a number of interesting corollaries, which are 2.3, 2.4, 2.5 and 2.6
in the text. In particular we show that if f is a homeomorphism of the annulus
homotopic to the identity, then either every point has a well defined rotation number
or f has periodic points with infinitely many periods (see corollary 2.6).
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The proof of these results is based on a corollary of the Brouwer plane translation
theorem (see § 1).

It is natural to ask to what extent this result can be generalized to the torus. While
a straightforward generalization is false, the techniques do lead to interesting results.
In § 3 we show that if f: T" > T" is a Lebesgue measure-preserving homeomorphism
homotopic to the identity and has a lift f:R">R" with mean translation vector
zero, then every point of R” is chain recurrent under f (see § 1 for definitions). As
a corollary one can show that if n =2 then the above hypotheses imply the existence
of at least one fixed point for f. A final theorem (3.5) deals with an analogous result
for a homeomorphism f: T>-> T? which preserves an arbitrary ergodic Borel measure.

1. Background and definitions
We will make extensive use of the concept of chain recurrence which we now define
(see [3] for more details).

Definition 1.1. If f: X > X is a homeomorphism of a metric space, an -chain from
X to y is a sequence X, =X, X;, X,, ..., X, =y, n=1, such that d(f(x;), x;+,)<&. An
invariant set A is called chain transitive if for every £ >0 and every x, y € A there
is an &-chain from x to y. A point x€ X is chain recurrent if for every € >0 there
is an e-chain from x to x.

PROPOSITION 1.2. Suppose A is a closed connected invariant set in X and every point
of A is chain recurrent. Then A is chain transitive.

Proof. Given xe A and £>0, let A={y€A|there is an e-chain from x to y}. By
definition A is open in A. We show it is also closed. Suppose y’ is in the closure
of A. Then there is an e-chain from x to y where d(y, y') < ¢/2. Since y is chain re-
current, there is an (£/2)-chain from y to y and hence an e-chain from y to y'. Follow-
ing the chain from x to y by one from y to y’ gives the desired result. O

An important ingredient of our subsequent results, and in fact the ultimate theorem
we appeal to for the existence of fixed points, is a corollary of a result of Brouwer
on orientation-preserving homeomorphisms of the plane. While the full theory of
Brouwer is quite deep, the result we need is a corollary of an easy part of this
theory. A modern treatment quite adequate for our needs can be found in [2]. The
result we need is the following:

THEOREM 1.3. Iff: R* > R? is an orientation-preserving homeomorphism with a periodic
point p, then f posssesses a fixed point.

Proof. If p is not itself fixed, let a =sup {r|B,(p) n f(B,(p)) =D}, where B,(p) is
the ball of radius r centred at p. Let x€dB,(p) naf(B,(p)) and choose an arc y
from f~'(x)e€aB,(p) to x which, except for its endpoints, lies in the interior of
B,(p) and which passes through p.

The main result of [2] (theorem 1) shows that either f"(y)ny= for all n=2
or f has a fixed point. Since y contains the periodic point p, the first option is
clearly impossible and we must have a fixed point of f. (]
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2. Homeomorphisms of the annulus

LEMMA 2.1. Suppose f: M*>-> M? is a homeomorphism of a compact surface whose
universal covering space M is either R or RX L If f: M > M is a lift of f which has
a chain recurrent point, then f has a fixed point (and hence so does f).
Proof. Suppose to the contrary that f has no fixed point. Then since M is compact
there exists >0 such that d(f (x),x)>6 for all xe M. Hence no perturbation g
of f such that d(g(x), f(x))<8/2, for all x, can have a fixed point.

We will use the corollary of the Brouwer theorem (1.3) to show that there is a g
arbitrarily close to f which does have a fixed point and hence complete the proof
by contradiction.

Let x¢, X1, ..., X,41 = X, be a (8/4)-chain for f A result of [6] (theorem 4) says
that it is possible to find disjoint polygonal arcs v; joining f(x;) to x;,, (and f(x,)
to x, in the case of y,) with each y; having diameter < 8/3. We can then construct
a homeomorphism h of M supported on small neighbourhoods of the v; such that
h(f(x;)) = x;+, (and h(f(x,)) =x,) and with the property that

d(h(x),x)<6/2 forall xe M.

Let g(x) = h(f(x)). It follows from the remarks above that d(f(x), §(x))<8/2
for all xe M. Also §"(x,) = X,, so by theorem 1.3 there is a fixed point for g.
O

THEOREM 2.2, Suppose f: A~ A is a homeomorphism of the annulus which is homotopic
to the identity map and A < A is a chain transitive compact invariant set. Let f :RxI-
R x I be a lift of f; then one of the following is true:

(1) the lift f has a fixed point, or

(2) for all xeIl"'(A)

lim (f"(x) —x), =0,

where I1: R X I > A is the covering projection and ( ), denotes the first component, or
(3) for all xeII"'(A)

lim (f"(x)—x), = 0.

In cases (2) and (3) the limits are uniform in x.
Proof. In view of lemma 2.1, to prove (1) it suffices to show the existence of a chain
recurrent point for f. Our strategy is to show that if (2) and (3) are false then there
is a chain recurrent point and hence (1) holds.
We want first to show that given M > 0 either f has a fixed point, (2) holds, (3)
holds, or there are points y,, y,€I17'(A) such that
(7 (r)=y)>M  forsomep>0

and
(f*(n)—y)1<-M  forsome g>0.

Suppose for some M that one of these latter inequalities fails (say the second,
the other case being similar). Thenforall yeII"'(A)and all n >0, (f"(y) —y), = -M.
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If for any x € II"'(A) the set of numbers (f"(x)—x), is bounded, then {f"(x)}
has a limit point which is chain recurrent and hence f has a fixed point.

If we suppose this is not the case, then we know that for any x € [1"'(A) the set
( f "(x)—x), is unbounded but bounded below by — M. That is, for every x e [1"'(A)
powers of f can move x arbitrarily far to the right, but can move it at most a distance
M to the left. Hence lim,, (f"(x)), =00 for all xeII"'(A). The fact that this limit
is uniform in x follows easily from the fact that f commutes with the deck translation
x—x+(1,0) and the compactness of II"'(A) ([0, 1]x I). Thus we have shown
that either f has a fixed point, (2) holds, (3) holds, or for any given M >0 there
are points y,, y,€ [17'(A) such that

(fP()-mn>M  forsomep
and
(f~q(}’2)‘J’2)1<—M for some q.

We now show that the existence of such y, and y, (depending on M) also implies
the existence of a fixed point for f

We are now prepared to prove the existence of a chain recurrent point for f Let
z,, z,€ II7'(A) satisfy |(z, — z,),| < 1. Given any & > 0 there is an &-chain from #(z,)
to 7(z,) whose length depends only on £ (not on z, or z,) since A is compact. If
we lift this e-chain to R x I starting at z,, we obtain an e-chain from z, to z,+(n, 0)
for some n. Since the length of the chain is bounded and f moves points a bounded
distance, there is a bound N depending only on & such that [n|< N.

We now choose our points y; and y, as above with M =4N, Starting now with
any zell '(A), we form an e-chain from z to y| =y, +(k, 0) by lifting an e-chain
on A. The remarks above show we can assume |(z—y}),|< N. We continue this
g-chain by adding f7(y}), 1=j = p. Note that

(F7(y1) = y1),>4N.

Finally, by lifting a chain on A again, we continue this chain to go from f7( )
to z’ = z+(r, 0) and once again we have |( /7(y}) — z'),| < N. Thus we have constructed
an e-chain from z to z’'=z+(r, 0) and our estimates imply r>2N.

A completely analogous argument shows the existence of an e-chain from z to
z"=1z— (s, 0) with —s <—-2N. We can, of course, translate this £-chain by (n, 0) for
any integer n and obtain another one. Hence it is possible to juxtapose s of the
originals to get an £-chain from z to z+(rs, 0). Following this with r copies of the
other going from z+(rs, 0) to z gives an e-chain from z to z Since zeII7'(A) was
arbitrary, as was £ > 0, we have shown that every point of II"'(A) is chain recurrent

for f if neither (2) nor (3) holds. Together with lemma 2.1 this proves the theorem.
O

COROLLARY 2.3. Suppose f: A~ A is a chain transitive homeomorphism homotopic to
the identity. Iff: R xI-> RxIis alift of f, then either:

(1) fhas a fixed point, or

(2) lim oo (f"(x)=x), =00 for all x, or

(3) lim oo (f"(x)~x),=—0 for all x.
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This is immediate from theorem 2.2 taking A = A. Note that this is closely related
to the so-called ‘last geometric theorem of Poincaré’. While we obtain as conclusion
only the existence of one fixed point (not two), our hypothesis of chain transitivity
is much weaker than the hypothesis of area-preserving.

It is not difficult to show one cannot improve this result to two fixed points, since
there are easy examples of chain transitive homeomorphisms of A with a single
fixed point.

COROLLARY 2.4. Suppose that f and A are as in theorem 2.2 and x, y e T1"\(A). If
S P . 1 -
lim inf — (f"(x) =x);=p/q=limsup — (f"(y) =y},

then f has a periodic point with rotation number p/ q.

Proof. Let T:RxI—-> Rx I be the covering translation T(x)=x+(1,0). If x, is a
fixed point of T77 ¢ f9, then mw(x,) is a periodic point of f with rotation number
p/q.Since g = T7? o f7 is a lift of £, we can apply theorem 2.2 to it. We first observe
that

1 . 1.
limmf;(g"(x)-x)lsosthUp;(g"(y)—y)l-

Note that if lim (g" (x) — x), = 0, uniformly in x, then for soxﬁe N>0,(g"V(x)-x),>
1 for all xeII7'(A). A telescoping sum then shows that

N

lim mf;; (g"(x)—x) Zﬁ’
50 (2) of tl:eorem 2.2 is not possible. Likewise (3) of theorem 2.2 is excluded. Hence
£=T7"of? has a fixed point. 0O

The following result has been proved independently by Handel [§] by quite

different methods.

COROLLARY 2.5. Suppose f: A-> A is a homeomorphism homotopic to the identity. If
J:RxI-> RxIis a lift of f and for some xe Rx I

liminf - (77(x) =), = p/ g < lim sup > (F*(x) =),

then f has a periodic point with rotation number p/ q.

Proof. Let A = w(II(x)), the w-limit set of [I(x). Then A is a compact invariant chain
transitive set. Once again we consider f7 and its lift § = T~7 o f9. By theorem 2.2
we know that if ¢ has no fixed point then

lim (£"(y) - y), = %o uniformly in yell"'(A).

We suppose it is +00, the other case being similar. Then there exists N > 0 such that
ENO)-y)>2 forall y e II7'(A).
Since f*(II(x)) limits on the compact set A, it follows that for n sufficiently large
(EV7 (0 —£"(x)>1
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and hence
(£ (x) =" () > k.
This clearly contradicts the assumption that

lim inf%(g'"(x)—x)lso.

The case that lim (g"(y) —y), = —0 is handled similarly, so we conclude that ¢ has
a fixed point. .|

The following result is then an immediate coroilary.

COROLLARY 2.6. Suppose f: A A is a homeomorphism homotopic to the identity and
that among all periodic points of f there are only finitely many periods. Then every
point of A has a rotation number. If f is chain transitive, then all these rotation numbers
are equal.

3. Homeomorphisms of T"

Definition 3.1. Let f: T" - T" be a homeomorphism homotopic to the identity which
preserves a Borel measure u, and let f:R" > R" be a lift. We define the mean
translation vector of f with respect to u to be

J (f(x)=x)n,
Q
where () is a fundamental domain.

THEOREM 3.2. Suppose f:T" > T" is a homeomorphism which preserves Lebesgue
measure and is homotopic to the identity. If f: R" - R" is a lift with mean translation
vector zero, then every point of R" is chain recurrent for f.

Proof. Let e,,e,,...,e, be the standard basis of R" and let e, =
(1/vn)(-1, —1,...,—1), so the vectors {e,, ..., e,.,} have 0 in the interior of their
convex hull. Given € >0 and x< R" we wish to find an e-chain from x to x+v;,
where v; is an integer vector very close in direction to e¢;. More precisely we require
v;/|vi| to be sufficiently close to e; that 0 is in the convex hull of {v,/|v,}.

We postpone the proof of the existence of {v;} and complete the rest of the proof.
Since 0 is in the convex hull of {v,/|v|}, we can find positive integers a; such that

n+t

Y av;=0.
i=1

The e-chains from x to x+ »; can be translated by any integer vector and will still
remain £-chains. Hence we can juxtapose a, of the e-chains from x to x + »,, placing
them one after the other, and then follow this by a, of the £-chains parallel to v,
and then a; of those parallel to v,, etc. Since ) a;»; =0, the result will be an £-chain
from x to x as desired.

Hence we need only show the existence of the integer vectors »; and their
corresponding e-chains. We consider the homeomorphism h:R">R" given by
hi(x) =f(x)+(s/2)e,~. Obviously it has mean translation vector (¢/2)e; and is the
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lift of a homeomorphism h; on T" which preserves Lebesgue measure. By the
Oxtoby-Ulam theorem [7] there is a homeomorphism g;: T" > T" which preserves
Lebesgue measure and is ergodic and which is as close as we wish to h; in the C°
topology. We choose the g; sufficiently close that their lifts g;: R" > R" have mean
translation vectors «; close enough to (£/2)e; that 0 is in the interior of their convex
hull, and so that |g;(x) — h;(x)| < £/4 for all x.

Now for all xe R" except a set of measure zero, II(x)e T" will be recurrent for

every g. ‘
Let ¢,(x) = g:(x)—x; then

. 1 X ~n
«; =J‘ ¢i(x) dx=lim ﬁ Y ¢i(g7(x))
a n—>oo n=0
for almost all x, by the ergodic theorem. But

2 BE 60 = (@ (x0) = x0)),

SO
N
ll_fg ; (&7 (x0) — x0) = ;.

Since we can choose x, so II(x,) is recurrent for g;, we can then choose n so that
£7(x0) = xo+ v, + p;, where v, is an integer vector, | p;| < /4 and n is sufficiently large
that v;/n is very close to a;. We of course have a different n, say n;, for each i. But
if the v;/n; are sufficiently close to the «;, then 0 will still be in the interior of the
convex hull of {v,/|v]}.

It remains only to show there is an £-chain for f from x, to x,+ v;, but since g;
is an (£/2)-approximation to f. its orbit x,, g(xo), £X(Xo), . . - , £"(Xo) is an (£/2)-chain
for f Making the last little (¢/4)-jump from g"(x,) to xo+ »; gives an e-chain for
f. Since the point x, was any point in a set of full measure in R”, we conclude that
for any x€ R" and any £ >0 there is an e-chain from x to x. O

COROLLARY 3.3. If f: T?>> T? is a homeomorphism homotopic to the identity which
preserves Lebesgue measure and has a lift with mean translation vector 0, then f has
a fixed point.

This is immediate from theorem 3.2 and lemma 2.1. We note that this result also
follows from the much stronger results of Conley and Zehnder [4], who show that
if f is a diffeomorphism it has three fixed points. The question of whether a
homeomorphism must have three fixed points is apparently open.

The following example was shown to me by Michel Herman.

Example 3.4. Let f: T>~> T? be given by f(x, y, z) = (x+cos z, y +sin z, z), where
each coordinate is taken mod 1. Then there is a lift to R>, f, which is defined by
the same formula. It is easy to check that f preserves Lebesgue measure and has
mean translation vector zero. On the other hand each point pe R® possesses a
neighbourhood U, such that f "(U,) tends to © as n-oc0. In particular f has an
empty non-wandering set. In light of this, our result (3.2) which says every point
of R* is chain recurrent under f seems unlikely to be amenable to strengthening.
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It is interesting to ask to what extent the above results depend on having Lebesgue
measure invariant. One can easily construct examples which are chain transitive
homeomorphisms of T? and have no fixed points.

One can however obtain a result for an arbitrary invariant Borel measure provided
it is ergodic.

THEOREM 3.5. Suppose f: T> > T is a homeomorphism homotopic to the identity which
preserves a Borel measure y and is ergodic. If f has a lift whose mean translation
vector with respect to u is zero, then f has a fixed point.

Proof. By lemma 2.1 it is sufficient to find a chain recurrent point for the lift f: R?> R?
with mean translation vector 0. As in the proof of theorem 3.2, we need only find
£-chains from a point x € R? to points {x+ »;}, where {v;} are integer vectors with
0 in their convex hull, because by piecing these e-chains together we can find an
e-chain from x to x.

Let A =supp (1) and choose x,€ IT"'(A) such that II(x,) is recurrent. Given £ >0
let V={ve Z*|there exists an e-chain from x, to x,+ »}. We note that there are
e-chains for f on T? from II(x,) to II(x,), and lifting them to R? shows that V is
not empty.

We need only show that 0 is in the convex hull of V (and hence in fact in V).
If this were not the case then V would be contained in some half-space of R?, and
we will show this to be impossible.

Suppose without loss of generality that V< H ={(x, y)|y =0} and let ( ), and
( ), denote the first and second components of points in R’ Let ¢(z) = f (z)—z so
¢ is a periodic function on R? and can be thought of as a function on T2. Since f
has mean translation 0, we have

J' ,¢(2)p=0.

T

Thus since f is ergodic,
N "
lim— ¥ ¢(f"(z))=0
n->oo n n=0

for almost all z.
A result of [1] says that if we use a real-valued function g: T>> R with u mean
0 (instead of the vector-valued ¢), we will have

L g(/"(2)

<e ™

for almost all z and infinitely many N > 0.

We will apply (*) in the case when g(z) =(¢(z)), and when g(z) = (¢(z)),. We
choose z, which is recurrent for f and for which (*) is valid for both choices of g.
Then let xoeI17'(z,).

Now there exists an increasing sequence {K (i)} such that

Kz“ (@ (2

<eg forall i.
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Hence
|(fl<(i)+l(x0)_x0)]|<£ for all i.

Let w; = f¥*1(x,). Then the sequence {w;} must be unbounded in R?since otherwise
it would have a limit point which would be recurrent. It follows that {(w;),} is

unbounded and positive.
Now applying (*) to (¢#(z));, we conclude that there is an increasing sequence

{N(j)} such that
NU)
§O (d(f"(20))):| <&  forallj

and hence
l(f.NmH(xo) - xo)zl <E&.
Let u;=fND*(x,); then {|(u;),]} is unbounded but |(;),| < & for all j.

Now for each i choose a j(i) such that N(j(i))> K (i). We then have f*(w,) =
u;, where M(i)= N(j(i))— K (i} and u]= u;,. Clearly {(u]— w;),} are unbounded
and negative and there is an e-chain (in fact an orbit segment) from w; to uj.

As in the proof of theorem 3.2, we can lift e-chains on T? to R? and obtain an
e-chain from x,(i) to w;, where x,(i) is an integer translate of x, and |x(i) — w;| < C,
where C is a constant > 0 depending on ¢ but not i. Likewise we can find an £-chain
from u} to x)(i), where x{(i) is an integer translate of x, and |x}(i) — u!|< C.

Choosing i so that (w; —u}),>3C and piecing together the e-chains we have
constructed, we get an e-chain from x,(i) to xg(i) with (xo(i) — x4(i)),> C. This
implies that there is a »'e V with (v'), <—C, contradicting the assumption that V
was contained in a half-plane. O
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