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Abstract

A general condition is provided from which an error bound can be concluded for
approximations of queueing networks which are based on modifications of the tran-
sition and state space structure. This condition relies upon Markov reward theory
and can be verified inductively in concrete situations. The results are illustrated
by estimating the accuracy of a simple throughput bound for a closed queueing
network with alternate routing and a large finite source input. An explicit error
bound for this example is derived which is of order M~', where M is the number
of sources.

1. Introduction

Ever since Erlang's and Engset's classical results in the early twenties, queue-
ing theory has been extensively involved in teletraffic and communication
theory. Particularly, motivated by Jackson's celebrated product form results
in the late fifties (cf. [11]), the theory of queueing networks has gained a wide
popularity in telecommunication and computer performance evaluation. Part
of this success can be attributed to the various product form extensions and
their robustness with respect to the underlying distributional assumptions
(insensitivity properties), (e.g. [2-6], [8-10], [13], [20], [24], [37], [41]). Most
unfortunately, typical practical features such as blocking phenomena, dy-
namic routing, overflow, breakdowns and job-priorities usually destroy the
appealing product form (e.g. [9], [25], [29], [42]).
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242 Nico M. Van Dijk [2]

Another Part of their success, however, can be explained by the fact that
simplifying assumptions (such as infinite and independent stations) which
guarantee product forms, tend to give "reasonable" approximate results in
various practical situations, especially when the system is large, (cf. [25],
[42]). These simplications can often be seen as minor though critical modi-
fications of the underlying transition structure such as by adding or deleting
particular transitions. Despite numerical support, however, analytic a priori
error bounds for the accuracy of such "product form" approximations do not
seem to be available.

Also other types of approximate modeling issues are typically concerned
with networks of queues. One of these is the issue of a closed (finite source
input) or open (Poissonian input) description (cf. [40]).with advantages (e.g.
computational, finiteness) and disadvantages (e.g. complexity, station depen-
dence) for either of them. Convergence results for closed approximations of
open systems have been established (cf. [26], [40]). But (error) bounds of this
form are limited to simple Erlang type systems (cf. [40]) or robust bounds for
state space truncations which do not secure an order of accuracy (cf. [26]).

Another approximate or modelling issue is the exactness of system input
parameters such as the mean arrival and service rates, as in practice these
are usually subject to randomness (e.g. resulting from confidence intervals
for statistical estimates or external fluctuations). To this end, perturbation
results with error bounds have recently been developed in [35], with one
dimensional queueing applications.

All of the above "approximations" come down to some kind of modifi-
cation or perturbation of the transition structure and/or a truncation or an
extension of the state space. This paper, therefore, aims to provide a general
tool for concluding error bounds for such approximations. It thereby extends
the perturbation error bound results from [35] in that it

(i) allows modifications of the state space such as a truncation for closed
or an infinite extension for open modeling and

(ii) particularizes to networks of queues rather than one-dimensional
queueing applications.

A pair of simple conditions is provided from which error bounds can
be concluded. The actual verification of these conditions, however, is the
crucial part for practical application. To this end, an inductive verification
technique as also used in [32], [34], and [36] will be illustrated and applied
to a particular non-product form system of practical interest (cf. [1], [21]).
This concerns a queueing network with alternate routing upon saturation of
a primary access station and a large finite source input. A simple throughput
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is proposed and an explicit error bound is derived of order M ', with M the
number of sources.

Though the example is to be seen as mainly generic as it is relatively simple
from a practical point of view, it includes the essential phenomenon of a
finite capacity constraint (or blocking) and a state dependent (thus dynamic)
routing. For more complex situations, such as with more capacity constraints
and blocking phenomena, similar though more complicated proofs can be
expected along essentially the same lines.

First, the general models are presented in Section 2. Next, the correspond-
ing error bound result is developed in Section 3. Finally, an illustrative net-
work with alternate routing is analyzed in Section 4. An evaluation concludes
the paper.

2. Comparative models

Consider an arbitrary open or closed single class exponential queueing
network with N service stations (hereafter called the original model), such as
illustrated in Figure 1.

The state of the network is described by n = (n\,... «#) where n, is the
number of jobs at station /, / = \,...N. By n + e, (or n - e,), we denote the
state equal to ~n except for one job more (respectively less) at station i where
we also allow / = 0 with the convention that n ± eo =~n. Consequently, by
H-ei-v ej we denote the state equal to n with one job moved from station i
into station j , where / = 0 corresponds to an external arrival at station j and
j = 0 to a departure from the system at station /. Let q(n, H — e, + ej) for
i, j = 0, 1, . . . , W be the transition rate for a change from state ~n into state

FIGURE 1
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7i — ej + ej, while transition rates for changes not of this form are assumed to
be 0. For example, for a standard Jackson network we have

q{n,n -et + ej) = fiiPij,

with Hi the service rate at station / and pij the routing probability from station
/ to j , while an additional capacity constraint Nj yielding a reflective blocking
(communication protocol) is parametrized by

q{n,n -e, + ej) = H\Pul{nj < Nj),

where \{A) or 1^} denotes an indicator of event A, i.e., 1(̂ 4) = 1^} = 1 if
event A is satisfied and l(A) = 1^} = 0 otherwise. Without restriction of
generality, the following assumptions are made:

(1) The underling Markov jump process is irreducible at some set S1 of
admissible states ~n, with a unique stationary distribution n(.).

(2) The transition rates are uniformly bounded. That is, we can choose
a finite Q such that

Q>%\xv>Y\q{n,'n-ei->rej). (2.1)
"esu

(3) For some given reward rate r(7F) the value g is finite and well-defined
by

X > n ) . (2.2)

The value g then represents some performance measure of interest, such as
the throughput of a particular station j by r(n) = fij(rij) or the steady state
probability of a particular subset B by r(n) = l(7i e B).

Comparative model. Now consider a modified version of the single class
exponential queueing network (hereafter called the modified model) with a
description as above, but with q(n,Ti - e, + ej) replaced by ~q{n,7i - e, + ej),
the assumptions 1, 2, and 3 adopted with S, n, r and g replaced by S, n, 7
and ~g, but Q kept the same, and most essentially

ScS. (2.3)

3. Comparison result

We now wish to evaluate the difference [g - g\, that is the difference of
the performance measure for the original and modified queueing network,
without having to compute the stationary probabilities n(.) and n{.).

To this end, as justified by the boundedness assumption (2.2), we first
apply the standard uniformization technique (e.g. [29], p. 110) in order to
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transform the continuous-time description into a discrete-time formulation.
More precisely, let Q be any arbitrary finite number satisfying (2.2) and define
one-step transition probabilities p(n,Ji - e, + ej) and p(n,Ji - e, + ejW) by

p{n,n-et + ej) = q(n,n -et

p(n, n-et + ej) = q(n, n-et

N

p(n,n) = 1 -

p(n,n)= 1 -
N

U=0

•ej)/Q

•ej)/Q

(3.1)

while transition probabilities p(.,.) and p(.,.) for any other type transition
are assumed to be 0. From now on, we always use an upper bar "-" symbol
to indicate an expression for the modified system and the symbol "(-)" to
indicate that the expression is to be read for both the original and modified

(-) (-)
system. Further, let operators T and {Tt\t = 0,1,2,.. .} upon arbitrary

(-)
functions / : S —* R be defined by

n) = £ P\n,n-e, + ey)

( ) ( ) ( )
Tt+if= TTJ(t>0),

-e, + <?,•),

(3.2)

() ()
And define the reward functions { V \t = 0,1,...} at S by

(-) ()
T'r-

(=0

(3.3)

Then by virtue of the uniformization technique (cf. [29], p. 110) and the

irreducibility assumptions of S, by standard Markov reward theory (cf. [16])
we conclude

g = ^lirr^ ̂  V N(I) (3.4)

for arbitrary 1 e S . This leads to the following key-theorem which guarantees
an error bound for the difference |]f-£|. Its conditions will be discussed later
on. Herein, we use the abbreviation

A(n,n - e, + ej) = [q(n,~n- e, + ej) - q(n,n - e, + ej)].
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THEOREM 3.1. (General Conditions) Suppose that for some constants ft, S,
e > 0, some state 7 e S, some nonnegative functions <!>(.) and all t>O,~h~ e SV

Then

and

N

i,J=O

T,9(l
\7{n) - r{n

n - et + ej)[V,(n,n

\(VN - VN)(1)\

\g-g\<

)<P,
)\<d<t>(n),

- et + ej) - V,(n)]

< P[5 + e]N/Q

fi[5 + e].

(3.5)
(3.6)

< eO>(«). (3.7)

(3.8)

(3.9)

PROOF. Clearly, (3.9) immediately follows from (3.4) and (3.8). To prove
(3.8) first conclude from (3.2) and (3.3) that for any t > 0:

( ) (-) ( ) ( )
Vt+i= r/Q+ T,Vt. (3.10)

i=o

As the transition probabilities p(.,.) remain restricted to 5 while also

S C S, we can thus write for arbitrary ~n € S:

(VN - VN){n) = {r-r){n)IQ+{TVN_{ - TVN_x){n)
= (r-r)(n)/Q+(T- T)VN_,(«) + T(VN_, - VN.x){n)

N-\

T,([r - r]/Q + [(T - T)Fn_r_,])(») + TN(V0 - V0)(n),
(3.11)

where the latter equality follows by iteration. Now note that the last term
in the last right hand side is equal to 0 as Fo(.) = VQ{.) = 0 by definition.
Further, from (3.1) and (3.2) we find for any s and n e 5 :

N

(T - T)Vs{n) = 53 q{n,n - et + ej)[Vs(n,n - e( + ej) - Vs(n)]/Q
i,j=O

- £ q(n, n - et + ej)[Vs(n,n - et + ej) - Vs(n)]/Q
iJ=0

N

= 53 A(«, n - et + ej){Vs{n - e, + ej) - Vs(n)]/Q. (3.12)

Further, note that Ttf\ < Ttfi for any f\ < fi in component-wise sense as
T[ is an expectation operation. As a result, by substituting (3.12) in (3.11),
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substituting n = 7, taking absolute values and applying (3.5) (3.7), we obtain:

\(VN - VN)(l)\ <[S + e]Q~x £ T,O(7) < fi[8 + e]N/Q. (3.13)
1=0

REMARK 3.2. (Discussion of the theorem). In the above theorem one must
typically think of fl and/or [S+e] to be small. The following physical insights
and steps of verification are underlying to the conditions.

1) Physical interpretations and related literature. The essential conditions
(3.5) and (3.7) are based upon the following two physical insights, which
are related to numerical analysis:

(i) Consistency: Comparison of local behaviour (condition 3.7).
(ii) Stability: Boundedness of marginal expectations (condition 3.5).

(i) (Consistency) The left hand side of condition (3.7) can be seen as
| | ( y l - ^ ) ^ | | where A and A denote the infinitesimal generators of the under-
lying stochastic processes. Intuitively, the difference in (infinitesimal) local
behaviour is equivalent to the difference per unit of time and thus grows
linearly in time, say linearly in N after N time units as in (3.8). This is
a well-established fact in numerical analysis (cf. [18], [19]) and semigroup
theory (cf. [31], [15], [16], [17]) provided one deals with uniformly bounded
functions Vt. For cumulative values Vu however, a quadratic growth of local
differences comes out naturally (cf. [7], [38]) as the functions V, themselves
grow linearly in t. They key-step to overcome this problem by noting that dif-
ferences V,(j) - Vt(i) are uniformly bounded in time is applied earlier in [35]
as related to results in Markov decision theory. In this reference, however,
only small differences in local behaviour were considered, as due to small
perturbations. This basically comes down to Theorem 3.1 without function
<D(.).

(ii) (Stability) By including a scaling function O(.), however, also signifi-
cant differences of local behaviour such as due to a totally modified transition
or truncation can be taken into account provided:

• Either the difference remains small up to a scaling function 0 which
has a uniformly bounded expected value over time (as guaranteed by
(3.5) with $ < oo) (stability).

• Or the occurrence of significant local differences has only a small
probability (as guaranteed by (3.5) with small fi and <J>(.) an indicator
function).
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2) Verification of conditions. In view of the above insights the conditions can
be verified along the following lines:

Step 1 (Bounded bias-terms) As first and most essential step one has to
estimate (bound) the so-called bias terms V,(n — e, + £/) — Vt{n) as:

\Vt(n-ei + ej) - Vt{n)\ < B,j, (3.14)

uniformly in t. From Markov reward theory it is standardly known that such
terms are bounded uniformly in t for any given / and j as based upon mean
first passage time results (cf. [22], [35]) and assuming r(.) to be bounded.
For finite networks a bound B uniformly in t and i, j can be concluded. The
actual computation of such bounds by means of mean first passage times,
however, becomes practically impossible for multi-dimensional applications
such as considered in this paper (see [12] or [35] for simple one-dimensional
cases). In the next section, therefore, we will illustrate how estimates for
these bias-terms can be derived analytically.

Step 2 (Transition differences) Secondly, one has to find out whether the
differences in the transition structure A(.,.) are small or just bounded up to a
state dependent scaling function <!>(.). For illustration, think of <&(.) = 1 and
consider the following examples.

Example 1 Consider a standard single-server queue with arrival rate X and
service rate fi as original model and the same model with arrival rate A+T
(perturbation), resulting from a statistical confidence interval, as modified
model, where T is small. Then |A(., .)| < T.

Example 2 Consider the same original model as in the example above
but now with rejection of arrivals (state space truncation) if upon arrival the
number n of jobs present is equal to some limit L. Then |A(., .)| < k\(n = L).

Step 3 (Bounding functions O) By Comparing the transition structures,
candidates for an appropriate bounding function O(.) come up naturally.
Here one may typically think of polynomial type functions, for example,
<J>(7z) = n with n the total number of jobs present. One may thus have
various options. As illustration, in example 2 above, condition (3.7) will be
satisfied with some constant B resulting from (3.14) and

f e =e = XB/L if *(.) = n

if<D(.)= l(

Step 4 (Stability) Which option of O(.) is appropriate will eventually de-
pend on whether we can easily verify (3.5), requiring that its expected value
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over time remains bounded (stability) by either a small or just a finite num-
ber. As illustration, again for example 2 from above, we have

= P> = E t c k(klv)kl T.Lk=0{Xln)k if *(.) = n.
3) Summary. Roughly speaking. Theorem 3.1 can thus be applicable in a
twofold manner given that the bias-terms can be sufficiently estimated:

(i) By showing that the impact of the difference A in the transition struc-
tures upon the state-dependent estimates for the bias terms is suffi-
ciently small, such as for example 1 with e = xB and fi = 1 by using
<X>(.) = 1, or example 2 with e = xB/L and P = fa by using <J>(.) — n.

(ii) By showing that the expected value of the scaling function or the
probability of being in states where this difference is significant, is
sufficiently small, such as for example 2 with e = rB and p = Pi by
using O(.) = 1(« = L).

REMARK 3.3. (Unbounded rewards) Note that no assumption has been made
as to any boundedness of the reward rate. For example, we can have r(n) — rij
so as to calculate the mean queue length at a particular infinite station j .

REMARK 3.4. (Unbounded intensities) The boundedness assumption (2.1)
is made in order to apply the uniformatization technique (3.1) yielding a
recursive formulation. This, however, can be avoided in a technical manner
similarly to [33] so as to allow unbounded intensities, such as from infinite
server stations.

4. Application: A simple throughput and explicit error bound for a closed
queueing network with alternate routing

4.1 Model
This section investigates an application of the preceding results which con-

tains both a perturbation of the transition structure and a state space trunca-
tion. Moreover, the performance measure of interest, the system throughput,
involves an unbounded reward structure. The application concerns a generic
example of a practical phenomenon in teletraffic analysis: blocking with al-
ternate routing.

Consider a queueing network with N service stations, as illustrated below
(see Figure 2), of which the first station is a primary entrance station which
allows no more than some finite number L of jobs and where upon saturation
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of this station jobs have to take an alternate route according to routing prob-
abilities Pij, i,j = 0, 2,...,N, starting at station j with probability p0J = aj.
Upon service completion at station i a job leaves the system with probability
Pio = 1 - Y^!j=2Pij f ° r ' ^ * a n d Pio = 1> where the transition matrix (/?,;) for
i, j = 0, 2,...,N is assumed to be irreducible.

The service rate at station i is u>(n>) when «, jobs are present, where Uifn,)
is assumed to be nondecreasing in n, and /x,(0) = 0. Jobs arrive at the system
according to a finite source exponential input with M sources and exponential
idle times with parameter y. That is, if n jobs are present in the system the
arrival rate is (M - n)y.

The system under consideration is not of product-form due to the dynamic
routing feature upon saturation. This feature naturally arises in teletraffic
applications for which various alternate routing schemes are of actual interest
(cf. [1], [21]). Here a large finite source input is most realistic, so that often a
Poissonian input approximation is used to simplify analysis or avoid complex
computations of a performance a measure such as the throughput. Below we
will investigate the accuracy of such an approximation, or more precisely, of
the throughout bound (it can be shown to be indeed an upper bound):

(4.1)

FIGURE 2
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4.2. Parametrization

As we require S c S, we consider the open Poisson input case as the
original model and the closed finite source case as the modified model. Then
with

Q>X + ̂ Hi{M), (4.2)

and choosing

for nt> M, as well as

= \M|Wi < L,) o = |W|Wi < L,, tl\ + • • • + Hfj = M } , (4.3j

the assumption 1, 2 and 3 of section 2 are guaranteed for both the closed
and open version with respective transition rates q~(.,.) and q(.,.) given by

(-),__ , , , . . . .„

q (n,n- e,) = /*,•(«,-)p,-o, (i = 1 , . . . , AT)

^ ( « , « - ^ , + e ; ) = Hi("i)Pij> (i,j = 2,...,N)

but
f ^ (n , / i + e , ) = A l ( n i < L )

and
n v M, ( ^

The uniformization (3.1) is thus justified and with

N

1=1

the values ~g and ĝ , as per (2.2) or equivalently (3.4), represent the throughput
of the closed and open system. Since, however, g = X = yM with g~ cannot be
computed easily, it is of interest to investigate Theorem 3.1 so as to estimate
the difference |f - X\.

4.3. Comparison result

We adopt all notation from section 3. As per the discussion in remark 3.2,
the following lemma is the most crucial step. Herein, for arbitrary functions
f:S-*R and j = 1, 2 , . . . , N we use the notation:
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LEMMA 4.1. For all t>0 and j and n such that n + ej e S:

0<AjV,(n)<l. (4.7)

PROOF. This will be given by induction to t. For t = 0, (4.7) trivially holds
•AM r ^ \ * y v » M M y p w a v vx*Mk y . ' f XA\yAVAO * W 1 (- _^ f < ( C411VX 1 U 1 V U U ¥ V11XWHV/V VT1 1 I V

h = Q~K
The equation that will be presented below will at first glance be difficult to

understand. It can be checked by explicitly writing out all terms, by adding
and subtracting extra terms at appropriate places and collecting correspond-
ing terms. As these steps will be cumbersome without providing insight they
are omitted. The relation can also be understood rather directly along with
following line of thinking.

Heuristic explanation of (4.8). "When comparing the transition mecha-
nism in two adjacent states H + e, and ~n most of the possible transitions and
corresponding transition probabilities are the same in both states, such as a
job-movement from a station j ^ i to station k with probability hfij(nj)pjk.
The effect of these transitions in the two states can thus be compared pair-
wise for each transition separately. Certain transitions, however, will have a
larger probability in one state than in the other, which includes transitions
that are possible in one but not the other state. Say, a certain transition has
probability y more in state 1 than in state 2. Then, with probability y one
can compare the effect of that transition in state 1 with that of a "dummy
transition" in state 2. The remaining probability for "no transition" then be-
comes equal for both states and the effect of transitions can be investigated
per transition which is possible in either of the two states".

Keeping this arguing in mind and noting that this lemma concerns the
open case with arrival parameter A and q{.,.) defined by (4.4), from (3.10),
(4.4), (4.5) and (4.6) we conclude for t = m + 1 and / = l,...,N:

}A,-

N

j=2
(continues)
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N N

+ J2vM^h Y^Pjk^iVmin - ej + ek)
j=\ k=0

N

k=2
N

+ [l-Xh- [m(n, + 1) - fi,(m)]h -J2^j(nj)h]AiVm(n). (4.8)
; = i

The lower estimate A, Vm+i (n) > 0 now directly follows from substituting the
induction hypothesis AjVm(.) > 0 for all j , is equal to 0, recalling that the
service rate /*,(.) is nondecreasing by assumption and observing that the last
term is nonnegative by virtue of h = Q~l satisfying (4.3).

The upper estimate A,Fm+i(7T) < 1 is concluded similarly by substituting
the induction hypothesis A,Km(7i) < 1 for all j , and observing that all coeffi-
cients together then sum up to 1.

We are now able to verify condition (3.8). To this end, recall that the
transition structures q{.,.) and #(.,.) as according to (4.4) differ only in their
arrival rates. With (4.7) and y - XM~X as per (4.1), we then find

N

J2 A(«, n - e, + ej)[Vt(n - e, + ej) - Vt(n)]
i,j=0

N

+ ej)-V,(n)]} <nk/M. (4.9)

The following choice thus seems appropriate:

<S>(n) = n . (4.10)

Lemma 4.2 below investigates whether (3.5) can then be verified.

LEMMA 4.2. Let W be the sojourn time of a job, in the open version, and
0 = (0, . . . , 0) the empty state. Then for all t > 0:

7,<D(0) < r,O(0) < k W. (4.11)

PROOF. First we will prove that for all t > 0:

TJ(6) - T,f(0) < 0 (4.12)

https://doi.org/10.1017/S0334270000006639 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006639


254 Nico M. Van Dijk

for any / such that for all H, n + ej € S:

f(n + ej)-An)>0, (j

[14]

(4.13)

To this end, from (3.10) and the fact that S c S, we obtain similarly to (3.11)
or by direct telescoping:

t-\

s=0
(4.14)

As per (3.12) and (4.9) however we also have for any n GS and function V

(T-T)V(n) = - [nl/M]{l{n><L}[V(n + c,) - V(n)]

(4-15)
N

Since the operators Ts remain restricted to S while Ts y/ > 0 whenever y/ > 0
componentwise, from (4.14) and (4.15) inequality (4.12) is concluded, pro-
vided (4.13) holds with / replaced by Tsf for any s, where / itself also
satisfies (4.13).

This will be proven by induction to s. For 5 = 0 it is satisfied by definition.
Suppose that Ts satisfies (4.13) for s < m. Then similarly to (4.8) with

Ai(Tm+1f)(n) =

M

N

7=2

N N

J2 Mj(nj)h ^
j=\ k=0

ei) - T{Tmf){n)

ex) + M{i=Uni+l<L}Aj(Tmf)(n + et)

n - ej + ek)
(4.16)

N

k=2

N

1 - Xh - [mim + 1) - /ii(nj)]h - Ai(Tmf)(n).
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The induction hypothesis Aj(Tmf) > 0 for all j , now yields as in the proof
of Lemma 4.1: A,(rm + 1/) > 0.

Inequality (4.12) is hereby proven and particularly, since O(7J) = n satisfies
(4.13), also the first inequality of (4.11). To prove the second, we will now
inductively prove that, again for / satisfying (4.13), for all t > 0:

TJ(0) < 7*,+1/(0). (4.17)

For t = 0, we have:

Tf(0) = A 0 - 7 ( O + e,) + [l -XQ~l]f(0) > / ( 0 ) . (4.18)

Assume that (4.17) holds for t < m for any / satisfying (4.13). Then from
this induction hypothesis and, as proven above, the fact that (4.13) also holds
/ replaced by Tf = Txf when / satisfies (4.13), inequality (4.17) is proven
for t = m + 1 by:

(Tm+if- Tm+2f)(0) = (Tm - Tm+l)(Tf)(0) < 0. (4.19)

With L the mean number of jobs in the open systems, finally, we conclude
from (4.12) and (4.17) with / («) = 4>(n) = n and Little's result:

7,(<D(0) < T,<D(0) lim T,<D(0) = L - XW. (4.20)
i—•oo

From r(.) = r(.) as per (4.5). Lemma 4.1, inequality (4.9) and Lemma 4.2,
we now directly obtain by applying Theorem 3.1:

THEOREM 4.2. (Throughput error bound) With k the throughout of the (y, M)-
finite source system, W the sojourn time of a job in the open version and
X = yM:

\X-X\ <XW/M. (4.21)

Example 4.3 (Deterministic alternate routing) Let all stations be infinite
server stations with service parameters Hi at station /, and assume that ai = 1,
pi,i+\ = 1 for i = 2 , . . . , iV - 1 and ^ o = 1. Then

REMARK 4.4. (A < A) By using the lower estimates A;-Vm > 0 from Lemma 4.1
in (3.11) and (4.9), rather than upper estimates after taking absolute values,
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as in (3.13) and noting that (r-r)(.) = 0, from (3.11), (3.12), (4.9) and (3.4)
we can also conclude: A < A. Intuitively, this may seem trivial. Counter-
intuitively, however, as per counterexamples of related situations in [32] and
[36], such monotonicity results will not generally hold.

Evaluation. Approximations for queueing networks are often based on
modifications of the original transition structure and/or the set of admissible
states. An analytical tool is provided in order to estimate the accuracy of
such approximations. Particularly, as scaling functions such as polynomials
are allowed, the results do not require the modifications themselves to be
small. The necessary conditions are generally verifiable by inductive Markov
reward arguments. A typical application is an open approximation of a large
closed system. Extensions to multi-class and nonexponential networks seem
possible.
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