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Abstract: The traditional a/2-dynamo as a model for the solar cycle has been suc­
cessful in explaining the butterfly diagram, phase relations between poloidal and toroidal 
field, and polar branch migration features. Observational and theoretical achievements in 
recent years have however shaken this picture. The current trend is towards dynamos op­
erating in the overshoot region of the convection zone. Nevertheless, there are many open 
questions and a consistent picture has not been established. In this paper we compare 
recent approaches and discuss remaining problems. 

1. Introduction 

Magnetic fields are the engine of solar and stellar activity. The most prominent 
activity phenomenon is the 11 year sunspot cycle. At the beginning of this cen­
tury Hale showed that sunspot pairs involve strong magnetic fields which reverse 
orientation from one cycle to another, and thus the original field orientation is 
recovered after two cycles, making the magnetic cycle period 22 years. There are 
variations of activity on a much smaller timescale as well, for example those re­
lated to prominences, faculae or flares, which occur in a more irregular fashion. 
Also, long-term variations are known, such as Grand Minima, which do not seem 
to occur very regularly either. Of course, the period of the solar cycle is not exactly 
11 years, but may vary between 7 and 17 years, and the cycle's amplitude also 
varies. However, there is a clear peak in the power spectrum computed from the 
time sequence of the sunspot number. Also, the migration of sunspot activity belts 
is very systematic. 

The overall geometry of the solar cycle magnetic fields has been successfully 
explained by the a/2-dynamo models of Steenbeck and Krause (1969). Twenty 
years ago it was hoped that minor disagreements between models and reality 
could be ironed out with the development of more realistic turbulence models 
(—• a-effect) and with improving observations of solar differential rotation (—> 
tf-effect). 
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2. The solar field geometry 

Before we discuss different approaches in more detail let us first consider the so­
lar observations that are of direct relevance for mean-field dynamos. Perhaps the 
most important observation is Hale's polarity law. According to Parker's (1955) 
interpretation sunspot pairs are formed when toroidal flux ropes rise and break 
through the solar surface. The two footpoints of an emerging field loop then corre­
spond to a sunspot pair. With remarkably small statistical scatter the orientation 
of sunspot pairs and bipolar magnetic regions are opposite on opposite sides of the 
equator, reversing after 11 years (Wang and Sheeley, 1989). Prom Hale's polarity 
law we learn that the Sun has a systematic azimuthal magnetic field B,/, which is 
antisymmetric about the equator. Measurements of the radial field component Br 

can be obtained from the Mt. Wilson and Kitt Peak magnetograms. Yoshimura 
(1976) and Stix (1976) have shown that Br and B4, vary approximately in an­
tiphase (BrBj, < 0 for most of the time). The radial field at the pole is of special 
interest, because there the observations of Br are not contaminated by a B^-field. 
The curve Br = 0 corresponds to the location of faculae (see Stix, 1974). For 
latitudes above 60° this curve shows a poleward migration. This feature is often 
called this polar branch. 

3. The traditional aJ?-dynamo 

The governing equation in the theory of a/2-dynamos (Steenbeck and Krause, 
1969; Roberts and Stix, 1972) is the induction equation for the mean field (B): 

^(B) = cml((u)x(B)+a(B)-r,tcnvl(B)). (1) 

Induction effects are due to the a-effect and to gradients in the angular velocity 
Q = (u^)/rs in#. In the following, by a traditional a/2-dynamo we mean that 

a c o s 0 > O , dQ/dr<0. (2) 

In the model of Steenbeck and Krause (1969), simple profiles for a and Q were 
used. If Eq.(l) is solved inside a sphere of radius R, and if a vacuum outside is 
assumed (curl(B) = 0 for r > R), then there is a marginal stable oscillatory 
solution which is antisymmetric about the equator (odd parity, in accordance with 
Hale's law) with dynamo waves migrating equatorwards. It should be stressed that 
the preference for an antisymmetric field is sensitive to boundary conditions and 
to the thickness of the convection zone (see e.g. Table 5 in Roberts, 1972). The 
magnetic cycle period is T « 0.20Tdiff, where Tdiff = R2/vt is the global diffusion 
timescale. For Tft = 1013cm2/s we have Tdiff «16 years, i.e. T = 3 years, which is too 
short for the 22 year solar period by a factor of 7. A polar branch is not present 
in model 1 of Steenbeck and Krause, but models by Kohler (1973) and Yoshimura 
(1975), which include a gradient dfi/dd, do indeed show a poleward migration at 
higher latitudes. Also a more complicated ^-dependence in a (Schmitt, 1987) or 
in dfi/dr (Makarov et af., 1988; Belvedere, 1990) can produce a polar branch. 
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4. The parity problem 

We mentioned in the previous section that the parity of the generated magnetic 
field depends on details of the dynamo model (e.g. boundary conditions and thick­
ness of the convection shell). In addition, the degree of nonlinearity also can have 
an influence on the parity. The parity of the dynamo can depend critically on the 
dynamo number D. Models show that there is a range of D, where the odd par­
ity solution loses stability to a mixed parity solution (Brandenburg et al., 1989a). 
The importance of studying the stability properties of nonlinear dynamos has been 
stressed by Krause and Meinel (1988). The most detailed investigation has been 
presented by Jennings (1991). 

The parity problem is relevant to understanding details of the solar dynamo. 
Deviations of the solar field from the pure dipole-type symmetry can be deduced 
from the observed North-South asymmetry of sunspot numbers. This has been 
investigated in detail by Vizoso and Ballester (1990). The degree of asymmetry 
of the toroidal field is an observable quantity which can in principle be predicted 
from dynamo models (cf. Brandenburg et al., 1989b). 

The phenomenon of active longitudes is surprisingly regular (Tuominen, 1962) 
and may be due to non-axisymmetric contributions to the dynamo generated field 
(Stix, 1974). It is known that in the presence of strong differential rotation non­
axisymmetric fields are much harder to excite than axisymmetric ones (Radler, 
1986). However, in the highly nonlinear regime secondary bifurcations to mixed 
parity solutions with nonaxisymmetric contributions can occur. In a simplified 
two-dimensional model Jennings et al. (1990) found an example, where the A0-
type solution can lose stability to a mixed mode with A0 and SI contributions. 
Certainly, more realistic three-dimensional models are required to make conclusive 
statements concerning active solar longitudes. 

5. Transport coefficients 

A severe uncertainty in the theory of solar mean-field dynamos concerns trans­
port coefficients such as a and T]t. These coefficients have often been determined 
analytically using a simple model for isotropic turbulence and considering rota­
tion and stratification as small perturbations. A closure is achieved by taking only 
second order correlations into account (first order smoothing). In their original 
paper Steenbeck et al. (1966) also obtained the turbulent diamagnetic effect, and 
anisotropics in a. 

In a similar manner coefficients for the eddy viscosity and the turbulent heat 
conductivity can be obtained. Latitudinal dependences and anisotropics of these 
coefficients are important here, because they can drive differential rotation. An­
other, perhaps more important, driver of differential rotation is Riidiger's (1977) 
yl-effect - a hydrodynamic analogue to the a-effect. Similar ideas have been devel­
oped by Prisch et al. (1987), who called this the AKA-effect (anisotropic kinetic 
alpha-effect). 

A useful complement to analytical theories are numerical simulations. An early 
example of this type is the two-dimensional model by Moss (1971, unpubl. report), 
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who found Tft « Q.2ut£, where ut is the turbulent rms-velocity and t is a corre­
lation length. Kraichnan (1977) found examples where T)t can even be negative. 
Pulkkinen et al. (these Proceedings) determined the latitude dependence of the 
yl-effect and found agreement between observations and theory (see Tuominen, 
1990). A numerical determination of the eddy heat conductivity and other stellar 
mixing length parameters has been carried out by Chan and Sofia (1989). Re­
cent simulations of magneto convection in the presence of rotation have indicated 
that the a-effect in the vertical direction can be of opposite sign to the horizontal 
components of the a-tensor (Brandenburg et al., 1990a). 

As discussed by Krause (these Proceedings), simulations even at a resolution 
of 633 gridpoints can hardly be expected to represent the circumstances under 
which mean-field theory is valid. The correlation length in these models is compa­
rable with the size of the simulated domain. Simulations of stellar convection by 
Stein and Nordlund (1989) do indicate that the correlation length in the vertical 
direction is much longer than in the horizontal directions (for a review see Spruit 
et al., 1990). On the other hand, mean-field theory applies only if the correlation 
length is short compared with global dimensions. In addition, first order smooth­
ing is applicable only if the correlation time is short compared with the turnover 
time and rotation period. For the Sun this is not the case. It seems therefore that 
simulations and analytical theories may approach the solar case from opposite 
directions. 

6. Nonlinear feedbacks 

An important property of stellar dynamos is nonlinearity. Although the induc­
tion equation (1) is at first glance linear, there can be nonlinear feedbacks if the 
average velocity (u) or the a-coefficient depend on (B). One may refer to these 
nonlinearities as micro- and macro-feedback. In both cases the feedback originates 
from the Lorentz force in the momentum equation and it is the length scale asso­
ciated with the Lorentz force which leads to this distinction. These aspects have 
been examined by Gilbert and Sulem (1990), and in the context of a-A-dynamos 
by Brandenburg et al. (1990b). Properties of macro-feedback and the relevance of 
the Elsasser number have been stressed by Roberts (these Proceedings). 

Another important feedback is that from magnetic buoyancy (Noyes et al. 1984; 
see also Radler, 1990; Moss et al., 1990a). Here the magnetic pressure term, as part 
of the Lorentz force, provides the feedback. The length scale associated with the 
buoyancy force is usually short compared with the thickness of the convection 
zone and we may classify this as a micro-feedback. However, convective dynamo 
simulations indicate that the main feedback is from the magnetic curvature force, 
rather than from the magnetic pressure gradient (Brandenburg et al., 1990c). 

The dynamo has various properties which arise from the presence of nonlineari­
ties. We mentioned already the stability problem (Sect. 4), which makes sense only 
if nonlinearity is involved. Feedbacks on the mean motions caused by the mean 
magnetic fields are observed in the form of torsional waves and cyclic variations 
of the meridional circulation (Tuominen and Virtanen, 1987; 1988). Quite another 
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aspect is chaos and irregularity, which is usually studied using ordinary differential 
equations derived from the three-dimensional dynamo equations (for reviews see 
Weiss, 1989, 1990). 

7. The solar angular velocity 

Contours of constant angular velocity in the Sun are not cylindrical, as early theo­
ries of differential rotation predicted (Durney, 1976), but rather are "disk shaped" 
(Riidiger, 1989). Realistic numerical models show this property if the Rossby num­
ber is of order unity (Tuominen and Rtidiger, 1989) and if the Taylor number is 
not too large (Ta ^ 106, i.e. ut £ 3 x 1013). There is a remarkable consequence for 
a/2-type dynamo models: oscillatory solutions can only be obtained if Cn is large 
enough ( ^ 103), i.e. 77* ̂  1012. This is a puzzle, because ut and % are turbulent 
kinematic and magnetic diffusivities which are not expected to differ substantially 
from each other. Future work will show how much this Taylor number puzzle 
(Brandenburg et al. 1990b) is model dependent. 

8. The dfi/dr > 0 problem 

Differential rotation is a good candidate not only for causing the cyclic behav­
ior, but also the migration of the solar magnetic field pattern. However, strong 
anisotropics of the a-effect can produce solar-like butterfly diagrams as well (Weiss-
haar, 1982). One reason why such approaches have not been considered further is 
that the degree of anisotropy needed is rather large. 

Latitudinal differential rotation can also yield oscillatory dynamos, but such 
models do not exhibit any significant field migration, only periodic field emergence 
at mid-latitudes followed by diffusion both to higher and lower latitudes (Kohler, 
1973). Only with a sufficient amount of radial differential rotation is there equator-
ward migration at low latitudes and poleward migration at high latitudes (polar 
branch). Such models have solar-like field geometry if the inductive effects at low 
latitudes are as in Eq.(2). Parker (1989) suggested that, in addition to a purely 
latitudinal differential rotation, suitable nonuniform distributions of the a- and 
/2-effects might result in an equatorward migration. For example, an enhanced a 
at low latitudes (cf. Schmitt, 1987) might modify latitudinal diffusion in some way. 
However, satisfactory models have not been presented yet. 

The most promising mechanism for explaining (i) the cyclic behavior and (ii) 
the migration properties as well as (iii) the strength of the toroidal field relative to 
the poloidal field seems to be a dynamo of afl-type with dQ/dr being important. 
Recent results of helioseismology (e.g. Goode, these Proceedings) seem to exclude 
the possibility of a negative radial f?-gradient at the equator. The consequences 
for current a/2-dynamo models are either a poleward migration of dynamo waves 
(if a cos 8 > 0) or an incorrect phase relation between poloidal and toroidal field 
(BrBt > 0 if a c o s # < 0 ) . 

In recent years various aQ-dyn&mo models with dQ/dr > 0 have been pre­
sented (e.g. Belvedere et a/., 1990a), where the problem with the phase relation 
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has obviously been ignored. These models are mainly designed for the lower con­
vection zone or for the overshoot layer below. The hope is perhaps that the upper 
convection zone might lead to a systematic phase flip. However, even dynamo mod­
els with complicated radial profiles of a and dO/dr do not give deviations from 
the expected phase relation. The possibility that the observations are not reliable 
enough does not seem to be justified, although measurements of Br and B4, are 
tricky, cf. Stix (1981). 

The model presented by Wilson (1988) tries to explain the dynamo dilemma in 
terms of a two component fluid with magnetic and non-magnetic constituents. He 
suggests that the dynamo does not "feel" the average angular velocity (di2/dr), 
but rather the angular velocity (dQ/dr)B, associated with magnetic flux tubes. 
A negative (dn/dr)s seems plausible, if flux tube motion is considered as being 
predominantly governed by the Coriolis force. That these gradients are different is 
supported by the observation that the rotation rate of young sunspots (Tuominen 
and Virtanen, 1988) and magnetic tracers (Stenflo, 1989a) is larger than the value 
obtained from helioseismology. 

9. Dynamos for the overshoot layer 

The overshoot layer of the Sun is of considerable interest for the dynamo for two 
reasons: (i) magnetic flux losses due to magnetic buoyancy are small here, and (ii) 
there is evidence that a changes sign at the bottom of the convection zone, which 
when combined with dQ/dr > 0 gives equatorwaxd migration. A change of sign 
of a in the overshoot layer follows from a formula due to Krause (1967). However, 
this formula is perhaps invalid at this location where the turbulence is expected 
to be far from homogeneous. One should note that the argument for a reversal of 
a, often quoted in the literature, comes from results of Boussinesq convection! 

DeLuca and Gilman (1986) considered a hydromagnetic, two-dimensional, 
Cartesian model for the interface between the convection zone and the radiative 
interior. An interesting property of their model is that magnetic energy consider­
ably exceeds kinetic energy. The importance of this for understanding the observed 
magnetic fluxes in the Sun has been stressed by Durney et al. (1990). 

There has been considerable interest in models without explicit radial depen­
dence, with the idea that the dynamo works in a thin layer. However, it is not 
at all evident that radial structure is unimportant. A model without vertical ex­
tent was presented by Leighton (1969), without, however, attributing it to a "thin 
shell". Nonlinear dynamics of such models have been investigated by Schmitt and 
Schiissler (1989), Jennings and Weiss (1990), and Belvedere et al. (1990b). There 
is evidence that such dynamos are of a2/2-type (Gilman et al., 1989). In order to 
produce the correct period and number of field belts the correlation length should 
be two hundred times shorter than the local pressure scale height (Choudhuri, 
1990). This result is based on a Cartesian approximation. Dynamos in thin spher­
ical shells, however, seem to have many belts, or otherwise they become steady 
(Moss et al., 1990b). 
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10. Flux tubes and magnetic buoyancy 

The solar magnetic field is highly intermittent (see review by Stenflo, 1989b). This 
must have consequences for the traditional a/2-dynamo. Is it possible, that the 
mean-field concept is still applicable (Schussler, 1980), and only that the transport 
coefficients (e.g. a, rjt) are reduced (Childress, 1979))? 

Another consequence is magnetic buoyancy experienced by horizontal field (see 
Hughes and Proctor, 1988). The idea often presented is that the dynamo generates 
a diffusive field which gets concentrated into flux tubes by doubly diffusive instabil­
ities (Schmitt and Rosner, 1983), dynamical fragmentation (Schussler, 1977,1979), 
or flux expulsion (Galloway et a l , 1977). Magnetic buoyancy acting on these tubes 
can then rapidly remove field from the dynamo region (Parker, 1975). However, it 
is unclear how efficient this effect is, or whether it even negates the mechanism of 
a solar dynamo. 

Meanwhile several arguments have been accumulated against the importance 
of buoyancy, for example turbulent diamagnetism and topological pumping as well 
as drag forces (Schussler, 1984). On the other hand, Petrovay (these Proceedings) 
presented new arguments at this conference as to why topological pumping might 
actually not work. Many other interesting ideas have been proposed, for example 
Parker (1987) estimated that thermal shadows could push flux tubes down whereas 
Choudhuri (1989) argues that flux tube motion is dominated by the Coriolis force 
and hence tubes rise parallel to the rotation axis. In this case one might expect 
sunspots to emerge at rather high latitudes. Schussler (1983) concluded from Hale's 
polarity law that bipolar regions can only be produced by strong flux tubes which 
can resist the irregular turbulent motions and prevent the field from being "brain­
washed" . 

11. Fast and convective dynamos 

Much attention has been devoted to the investigation of fast dynamos (Vainshtein 
and Zeldovich, 1972). The relevant timescale here is not the global diffusion time 
TVUff = -t2/»? (where 77 is the non-turbulent value!), but the convective turnover time 
Tconv = i/wtnrb- Thus dissipation acts on the length scale of small magnetic flux 
concentrations. Fast dynamos are of astrophysical relevance, because the global 
diffusion timescale for the Sun is comparable to the age of the universe. 

Kinematic fast dynamos have been investigated using prescribed ABC-flows, 
with and without the presence of diffusion (Galloway and Frisch, 1986; Gilbert 
and Sulem, 1990). Recently there have been a number of direct simulations of 
the dynamo without parametrization of diffusivities and viscosities. Meneguzzi 
and Pouquet (1989) find dynamo action on a convective timescale, which may be 
called a fast dynamo. Mean-field dynamos are also fast, because the timescale is 
essentially independent of the (non-turbulent) diffusivities (cf. Moffatt, 1990). The 
first dynamo simulations in spherical geometry were those of Gilman and Miller 
(1981). Valdettaro and Meneguzzi (these Proceedings) presented the first spherical 
dynamos with compressible flow. 
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Fig . 1. Snapshot from a video animation showing magnetic field vectors in yellow (the 
strongest) and red (less strong) and those of vorticity in white. Transparent surfaces 
of constant negative pressure fluctuation are shown in blue. Note that the vectors of 
magnetic field form flux tubes which become wound up around a tornado-like vortex. 
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Simulations including overshoot (Brandenburg et al., 1990c) give the impres­
sion that magnetic buoyancy may not be a problem for the dynamo, because it 
is overwhelmed by other dynamical forces. Indeed, such dynamical forces are re­
sponsible for the formation of flux tubes in the first place. The picture of diffuse 
field generation is therefore not appropriate. 

Figure 1 shows a snapshot from the video animation presented at the confer­
ence. This video shows the evolution of magnetic field, generated and maintained 
by the turbulent motions, in a Cartesian box located at the bottom of the con­
vection zone. There is a strong tendency for field to be sucked by the downdrafts 
whilst upward motions of buoyant flux tubes were barely detectable. 

12. Conclusions 

The solar dynamo problem has many aspects - only some of them have been 
highlighted in this review. It is clear that at present there is no good dynamo 
model for the Sun! Many details are uncertain. Is the solar dynamo really of <xQ-
type? Is the traditional mean-field concept appropriate? Is magnetic buoyancy 
a problem? Recent simulations indicate that flux tube dynamics are governed 
by suction of field in the vicinity of strong cyclonic downdrafts. Flux tubes are 
formed and deformed by the flow, and actively participate in the dynamo process. 
However, these simulations ignore the global nature of the solar dynamo. It remains 
a challenge to combine these separate pieces of information into a coherent picture 
of the solar dynamo, which may perhaps then be describable in terms of mean 
fields after all. 
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