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modern nonlinear dynamics one has first to understand the linearization of the action along its
orbits and then to ask how the linearization helps one to understand the global structure. The
book deals essentially with the first part of this programme, culminating in the rigidity theorems
of Margulis and Zimmer.

After a basic introduction to topological dynamics and ergodic theory, which assumes knowl-
edge of measure theory, the text launches into an introduction to Lie theory and group actions
on smooth manifolds. This is couched in the language of differential geometry and culminates
in some representation theory for semisimple Lie groups. I would have said this is a bit brisk
for a graduate student (at whom the book is aimed) without an acquaintance with Lie theory
and would need supplementing with a more thorough treatment. A knowledge of differential
geometry up to principal bundles, for which a brief introduction is provided, is assumed.

After this the book moves on to its true goal with further discussion of ergodic theory, the
Moore and Birkhoff theorems, Anosov systems and a proof of the Oseledec theorem. In the final
chapter the rigidity theorems of Margulis and Zimmer appear.

An important feature of the text is the inclusion of many exercises, always a helpful thing.
But the author might have provided some hints or, occasionally references, for their solution.

C. ATHORNE

GOLDMAN, W. M. Complez hyperbolic geometry (Oxford Mathematical Monographs, Clarendon
Press, 1999), xx + 316 pp., 0 19 853793 X, £65.

The unit ball in C*, and complex manifolds for which this is the universal cover, have been
studied from many points of view ranging from complex analysis to algebraic geometry. Until
recently the literature contained comparatively little about these subjects from a purely geo-
metrical viewpoint. After an auspicious beginning with major work of Picard, Giraud and Elie
Cartan, the geometrical side of the subject fell into decline. A revival of interest began about 25
years ago with major contributions by Chen, Greenberg, Mostow and others. This resurgence
has been intensified over the last 10 years, largely inspired by Goldman’s interest. This makes
the publication of the book under review very timely as well as an invaluable guide to the recent
developments.

The book is a monumental result of an investigation of complex hyperbolic geometry con-
ducted over more than a decade. It contains a wealth of useful, beautiful and intriguing facts
that the author has discovered during this study. Many of these results are of fundamental
importance for those studying complex hyperbolic geometry. As well as pioneering new areas of
the subject, the book is anchored into the existing literature (for example, it contains a com-
mentary on Giraud’s seminal paper). There is a long bibliography and references for further
reading are provided throughout the text. There are many different conventions and systems
of notation in the literature. This potential source of confusion is minimized by Goldman, who
fixes conventions and notation throughout. It is to be hoped that (unless there are clear reasons
for not doing so) writers of future papers and books in this subject will either adopt Goldman’s
notation or else provide a clear means of translating between their conventions and his.

The unit ball in C™ has a natural metric of constant negative holomorphic sectional curvature,
called the Bergman metric. As such it forms a model for complez hyperbolic n-space HZ analogous
to the ball model of (real) hyperbolic space H%. The main difference is that the (real) sectional
curvature is no longer constant, but is pinched between two negative numbers whose ratio is
4. Goldman normalizes so that the holomorphic sectional curvature is —1 which means that
the sectional curvatures lie in the interval [—1, —1/4]. (There seems to be no consensus about
which interval to take. Different choices lead to awkward factors of 2 or 4 in various key places.)
The geometry of HZ is not a completely straightforward generalization of HZ. Aspects such
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as negative curvature and the fact that maximal parabolic subgroups are nilpotent rather than
abelian tend to make it hard to generalize real hyperbolic results to the complex case. However,
the complex structure gives more tools for solving problems (for example complex hyperbolic
space is a Kahler manifold). These two effects tend to cancel one another out. It is not the case
that results from Hy either generalize to H? or else break down. Using analogy as a guide, one
can often formulate qualitatively similar results, but the methods of proof are usually rather
different. This makes the subject rich and leads to many surprises when trying to make these
analogies more concrete.

As a first step to understanding the geometry of the unit ball with the Bergman metric, it
is natural to consider the totally geodesic submanifolds. Goldman shows that these are either
embedded copies of HT' or HY for 1 < m < n. Thus, the real dimension of a totally geodesic
submanifold is either at most n or else is even. In particular, there are no totally geodesic
real hypersurfaces in complex hyperbolic n-space (for n > 2). This increases the difficulty of
constructing polyhedra (for example, fundamental polyhedra for discrete groups of complex
hyperbolic isometries). One of the major themes of this book is the study of a particular class
of real hypersurfaces which are a good substitute for totally geodesic ones. These hypersurfaces
are bisectors: the locus of points equidistant from a particular pair of points. The boundary
of a bisector is called a spinal sphere. Although not totally geodesic, bisectors are foliated
by totally geodesic real and complex submanifolds. Important consequences of their not being
totally geodesic are that bisectors have non-trivial intersection properties and polyhedra whose
boundaries are made up of pieces of bisectors are not convex. A goal of this book is to clas-
sify bisector intersections. In the process, many beautiful aspects of the geometry of complex
hyperbolic space are developed. In the light of recent developments, bisectors and spinal spheres
may not play such an important role as was first thought. Bisectors are rather inflexible and
polyhedra whose faces are pieces of bisectors tend to be rather complicated. These difficulties
have recently been overcome by Schwartz, who constructs ‘hybrid spheres’, and Falbel, who
constructs ‘C-spheres’. These generalize spinal spheres and form the boundaries of richer classes
of hypersurfaces from which one may construct polyhedra. Importantly, they are much more
flexible and promise to be much more powerful tools.

The boundary of complex hyperbolic n-space is the one point compactification of the (2n—1)-
dimensional Heisenberg group in the same way that the boundary of real hyperbolic n-space is
the one point compactification of Euclidean (n — 1)-space. Just as the internal geometry of real
hyperbolic space may be studied using conformal geometry on the boundary, so the internal
geometry of complex hyperbolic space may be studied using CR-geometry on the Heisenberg
group. The foliations of bisectors by real and complex totally geodesic subspaces give rise to
two foliations of spinal spheres by lines of longitude and latitude. In addition, when n = 2, the
boundary is three dimensional and so it is easy to illustrate geometrical objects. This book is
very profusely illustrated and many of the figures show objects on the boundary of complex
hyperbolic space in this way. In order to do this the author, together with Mark Phillips and
Robert Miner, developed a computer program called HEISENBERG. This is very useful for gaining
insight into the geometry of objects in HZ. These illustrations are fascinating and beautiful in
their own right. Often Goldman gives a sequence of views of the same geometric objects, for
example, in figs 4.5-4.8. It is quite a challenge to reconstruct these three-dimensional objects
from such a sequence of illustrations—and then to visualize the four-dimensional objects of which
these are the boundaries. Most of the figures are very well drawn, but there are exceptions (such
as fig. 4.4).

The book has a coherent structure and is well organized, even if the organization is, of neces-
sity, rather complicated at times. In order to make the book easier to use, it would have been
helpful to have an index of formulae. A very useful feature, particularly for those using the
book to learn the subject, is the first chapter, where some of the material is worked out in
the classical case of n = 1. After this chapter, Goldman spends time in outlining the diverse
background material he will use from algebra, geometry and analysis. Only at this point does
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the main discussion of objects in complex hyperbolic space and on its boundary begin. There
are sections on the two main models of complex hyperbolic space and their boundaries, followed
by an extensive discussion of bisectors and spinal spheres, automorphisms and numerical invari-
ants. The amount of material it contains makes the book rather daunting, particularly to those
learning the subject. Furthermore, much of the material is treated from a very refined point of
view. This can make parts of the book rather terse and it may seem unmotivated. In fact, this
is not the case: there are many applications contained in the bibliography. For example, one of
the main motivating forces behind the book is the study of discrete groups of complex hyper-
bolic isometries and fundamental polyhedra for such groups. Though isometries are mentioned
throughout the book, there is relatively little material about discrete groups, and fundamental
polyhedra only make it into the last section.

The field of complex hyperbolic geometry is wide open and is currently enjoying more interest
than for many years. This book will certainly be of paramount importance in future progress.
In the various preprint versions the book has become a standard reference and, now that a
definitive version has been published, it is a necessary item for the library of everyone working
in this field. It makes a rather challenging introduction to the subject but is an invaluable source
of useful facts. I strongly recommend it to all those who work on related fields from differential
geometry to several complex variables and from symplectic topology to discrete groups.

J. R. PARKER

DONKIN, S. The g-Schur algebra (London Mathematical Society Lecture Note Series vol. 253,
Cambridge, 1998), x + 179 pp., 0 521 64558 1 (paperback), £24.95 (US$39.95).

The aim of this book is to present g-analogues of the results on the classical (¢ = 1) Schur
algebra which appear in J. A. Green’s seminal monograph Polynomial representations of GL, [2].
The Schur algebras, symmetric groups and general linear groups which appear in Green’s work
are respectively replaced by ¢-Schur algebras, Hecke algebras of type A and the ‘quantum GL,’
introduced by the author and R. Dipper [1].

The book started life as the sixth in the author’s well-known series of papers ‘On Schur
algebras and related algebras’, and evolved into its current form as more topics were added. In
contrast to Green’s treatment of the classical case, many of the main methods used here come
from homological algebra and from the theory of quantum groups. There are various definitions
of the term ‘quantum group’ in the literature, but here, the statement ‘G is a quantum group
over k’ means that the author has in mind a Hopf algebra k[G] which is dual to G in the sense
that a morphism between two quantum groups G; — G> is identified with a homomorphism of
Hopf algebras k[G2] — k[G1]. This approach allows mysterious objects such as ‘quantum GL,’
to be studied by means of their dual objects.

The material is organized as follows. Chapter 0 is an introductory section which defines the
main objects of study. Chapter 1 is devoted to the study of g-analogues of exterior algebra and
of bideterminants. In Chapter 2, the g-analogue of the Schur functor is introduced; this is a
functor from modules for the ¢-Schur algebra to modules for the Hecke algebra. This is a very
useful tool which links the representation theory of Hecke algebras and g-Schur algebras, and is
used in the same chapter to study the representation theory of the ¢-Schur algebra at ¢ = 0. The
latter develops the work of P. N. Norton on the 0-Hecke algebra [3], and a character formula is
obtained for the irreducible modules. In Chapter 3, the author develops an infinitesimal theory
for quantum GL,, for ¢ a primitive I-th root of unity, analogous to the infinitesimal theory for
reductive groups in prime characteristic. The main results include g-analogues of Steinberg’s
tensor product theorem and the theory of tilting modules for quantum GL, (concentrating on
the case n = 2).
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