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SEMI-GROUPS IN L. AND LOCAL ERGODIC THEOREM 

BY 

R. EMILION 

ABSTRACT. We show that any W -continuous semi-group in L^ is 
Lrnorm continuous. As an application we prove the /7-dimensional local 
ergodic theorem in L*. We also note that any bounded additive process in 
Loo is absolutely continuous. 

For n = 1 this local theorem improves those of R. Sato [14] and D. Feyel 
[6] and for n > 1 it generalizes M. Lin's ones which hold for positive 
operators [12]. 

1. Introduction and Notations. Let Lx (resp. Loo) be the usual space of equivalence 
classes of complex valued integrable (resp. bounded) functions on a cr-finite measure 
space (X, 3% fx). 

Let T = {T* t G Un
+} be an /i-parameter W -continuous semi-group of linear 

contractions on Loo. This means that T verifies the following properties. 

(1.1) Each Tt is a W -continuous linear contraction on L^ 

(1.2) T?+s = T?Tf for any t, s G Rn
+ 

(1.3) 
lim f (T?+Sf ~ Tff) 8(111 = 0 for any t G R"+, 

any / G Lœ and any g G L,. 

1.1 and 1.2 then imply that T is the adjoint semi-group of a Lx-semi-group, say T — 
{Tt, t G Un

+} and 1.3 shows that T is weakly continuous and thus strongly continuous 
(see [7] p. 306). 

We will assume that JUL is finite without loss of generality in the results of this note. 
Indeed it suffices to replace JJL by jl = u• JJL and Tt by T't where T't g = 1/w Tt(gu) for 
any g G Li(ji) and u G Lt(fx), « > 0 \x a.e. 

Let Xn denotes the Lebesgue measure on Un and for any interval / of Un
+ such that 

M / ) > 0, let 

(1.4) Mjf=XMrl \ TJdtformyfELi. 

Mff=(M,ffîormyfEU 
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so that Mi is a linear contraction on Lx. 
For any a > 0 we also put Ma (resp. M*) = M[0,a]« (resp. M^a]»). 
The main result of this paper is the following local ergodic theorem which answers 

a question raised by M. Lin ([12], p. 301): For any /E Lx, M*f converges a.e. to T*f 
as a —> 0+. 

Recall that M. Lin [11] has shown that for any fixed/ E Loo, there exists a scalar 
representative of {Maf, a G R"+} so that the pointwise convergence may be studied as 
a - > 0 + . 

In fact we first show that the W -continuity of 7* (1.3 above) implies a stronger 
property of Lrnorm continuity: 

lim \T?+Sf — T?f\ g du, = 0 (theorem 3.1 below). 

From this result, the «-dimensional local theorem in Lœ is proved by using the 
one-dimensional one for positive contractions on Lx (U. Krengel [10]). 

In the last section we will note that any bounded additive process in Lx is absolutely 
continuous (that is equal to (M//)/ for some/ E Loo), just as in the case of Lp (1 < p 
< °°) ([3], [4]). 

Local ergodic theorems in Loo were first proved by N. Wiener [15] and then by U. 
Krengel [9]. They have been recently generalized by R. Sato ([13], [14]), M. Lin [12] 
and D. Feyel [6] in the setting of semi-groups of operators. 

For n = 1 our result completes the partial ones of R. Sato [14] and D. Feyel [6]. 
Indeed in these papers it is assumed that the initially conservative part of the modulus 
of T, say C, is equal to X. Although this condition is not a restriction for L,-theorems 
(because l(AyC) Tt = 0), it is for Loo-theorems since \{X/c) T?need not be 0 (see [12] p. 
304, Remark 1). For n > 1 our result generalises those of M. Lin which hold for 
positive operators [12]. 

On a part of the space X, we will use some nice arguments of measure change due 
to R. Sato ([13], [14]). These arguments were also used by M. Lin [12]. 

2. Reduction of the Dimension. In ([5], 4.2, 4.1), we have proved that there exists 
a constant cn > 0 and a one-parameter strongly continuous semi-group of positive 
contractions in L1? say (£/,),>0>

 s u c n that the Cesàro averages of T are dominated by 
those of U. 

The same holds for T : 

2.1. THEOREM: For any f E Loo and any a > 0, we have 

\Mtf\ < cnâ'1 \uf\f\ dr, where â = a2"" if 2*_1 < n < 2*. 

REMARK: The representation theorem and the proof below show that we may replace 
\M*af\ by o-" Jo"... • /olr*,. . . , ,„)/ | df, . . . . df„. 
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148 R. EMILION [June 

PROOF: For any positive real function g E Lx one has 

<|Af*/|, g) = <€ aM*/, g) where ea E L* and |e a | = 1 a.e. 

= </, Ma(ea£)> < <|/|, c„â-' PV,(ks|) df> 

([5], 4.2, 4.1) 

= < C Ô - 1 \auf\f\dt,g). 

This clearly implies 2 .1 . 

3. W*-Continuity of L* implies L,-norm-continuity. 

3.1. THEOREM: L ^ L* = (7\*)/eiR+ ^ fl W*-continuous semi-group of 

Loo-contractions. 77ien, /o r <my/ E L^ 

lim Hr* , , . . . , ^ / - TQ/HL, = 0. / = 1,. . . , « 

REMARKS: -If (JL is only a-finite, we have: 

(3.2) lim ||(r* tn)f-Ttf)g\\L, = 0 for a l l / E Lx and g E L , . 
/,—>o+ 

•(1.4) clearly implies that \\T?M?- M?\\x < X^/ )" 1 K(U + 0 A/) , where A stands 

for the symmetrical difference. 

Consequently, we have 

(3.3) lim ||7?M/*- M,% = 0 
t,-> o+ 

and thus 

(3.4) lim ||M,*0,Ul tn)lMf- M^\\x = 0. 
r,-*0+ 

•The assumption contractions may be replaced by T locally bounded and Tt 

positive. 

PROOF OF 3.1: First notice that T[ + 0 =TtT0 implies |T,| < \Tt\ \T0\ and thus we have 

(3.5) Strong- lim | Tit. , ,| = \T0\ 
ti-*o

+ ' ' " 

(see [8], p. 374). 

We prove 3.1 by induction on n. 

For n = 1, let S = (St)t>0 be the modulus semi-group of T [8] so that \Ttf\ ^ St\f\ 

i f / E L , . 

The argument of the proof of 2.1 then shows that we also have 

(3.6) | r ? / | < S ? | / | i f / E L » . 

On the conservative part of S we use some nice arguments of measure change due 

to R. Sato ([13], [14]). See also M. Lin [12]. 
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Let h = f0
œe'1 St 1 df, C = {h > 0} and D = X \ C. Let v = h.|x. 

It is easy to see that 

(3.7) Sth < éh 

(3.8) 1DS, = 0 

and thus 

(3.9) S,*(lo/) = 0 i f / E L . . 

3.6 and 3.9 then imply 

*/ (3.10) 7?(lD / ) = 0 for a n y / E L , . 

Following R. Sato [14], we consider the semi-group (/£,)* >o m Li(C, v) defined by 
Rtg = e-' Tt(gh)/h for any g E L^C, v). 

Then, for a n y / E Loo(C, v) = Lcc(C, JJL) = LX(C), we easily see that 

(3.11) R?f= £T'7?/a.e. on C 

and that 

( 3 ' 1 2 ) | |rt,*/| dv < | l/l dv because of 3.11, 3.6 and 3.7. 

3.12 then implies that Rt can be extended to a contraction on L, (C, v). Further, the 
W -continuity of T and 3.11 show that the map IR+ —» Lj (C, v) t-+ Rtgis continuous 
in the weak topology of Lj (C, v) for any g E LX(C, v) and thus for any g E Lx (C, v). 

Hence, by ([7], p. 306), this map is also continuous in the norm topology at every 
point s > 0. 

To see the continuity at 0, consider the set H = {g E LX(C, v) | norm— lim R*g 

= Rog\-
Since the Rt are contractions, H is closed in the norm topology and since H is a vector 

space H is also weakly closed. 
Let gELx(C, v). Since Rs g E H for any s > 0, w - lim R?g = R*g E H, that is 

g E H and H = L{(C, v). s~*0+ 

In particular for any/E L^{C) we have lim J \e~l TJ — T0f\h d|x = 0 and by 3.10 
we obtain '"* 

(3.13) lim f | 7 ? / - r* / | A d(ji = 0 i f / 6 L„. 

Next let e > 0. 
3.14. There exists a number ô > 0 such that JB \T0\ 1 d|x < e whenever B E 2£ and 

|x(Z?) < 8. Furthermore |r0| 1 = 50 1 6 LX(C, jx) implies 
3.15. There exists a number p > 0 and a measurable set A C C = {/i > 0} such that 

\A\TQ\ 1 < p.h a.e. and |x(C\A) < ô. 
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Then, for a n y / G LX(X) we obtain 

/ \T*f ~ Ttf\ d|x = \ \Tt{T*f - Ttf)\ dp. 

=s / |r0|* (\T*f- Ttf\) dp. = | (|r0|i) \T*f- r*/ | o> 

< p f h\T*f - Ttf\ dji + 2 ||/||M f |r0| 1 dp. (3.15) 
J JC\A 

< p \ h\T*f - Ttf\ du + 2 ||/||„ e (3.15 and 3.14). 

The property 3.13 then implies that lim sup \\T,f - T0f\\Ll < 2 ||/||„ e for any e > 
0, that is lim \\T*f - Ttf\\L, = 0. '^0+ 

In particular we also have 

(3.16) lim ||(7?/ - Ttf)g\\Ll = 0 for a n y / E U and g E L,. 
, ->0 + 

So, we have proved 3.1 if n = 1. 
Now, suppose that 3.1 holds for an integer n and let us prove that it also holds for 

any (n + l)-parameter w -continuous semi-group T . 
First note that 

r 't" rji-T* T nn^ î  r j - i ^ /HT HT \ 

( / , , . . . , *„ , / „+ , ) ~" ^ 0 — * ( f j , . . . , r„ ,0) "~ i 0 "•" 1 (* , , . . . , r„,0) U ( 0 , . . . ,0,/„ + ,) ~~ * 0 ) • 

Hence for any / E Loo we obtain 

llr,*,.....,„.,„,,,/- r j / lk s K -,.o,/- roVlk 

+ /(|r(,„....(..o,|i)|r ( 0 , . . . , 0 , / „ + l ) 

^ ||r(*,...,fji.0)/- r0*/lk + / (|r0|i) | r*, . . . ,o, ,+ l ) /- r0*/l dp, 

+ 2||/|U||r(ri,....riro)l i - Wilk 
As r, —> 0+ independently for / = 1,. . . , n, n + 1, the first term of the last member 

tends to 0 because of the induction hypothesis, the second one also tends to 0 because 
of 3.16 and the last term tends to 0 because of 3.5. 

The proof of the theorem is completed. 

3.17. REMARK: If we apply the above arguments to the semi-group of positive 
operators (£/,), >0 obtained in section 2 and if h — Çe~l Ut\ dt, C = {h > 0}, D = 
X\C, v = A.|x, we get uff= e?R*f a.e. on C for any/eLoo(C) (3.11), (where (/?,*),>0 

is a strongly continuous semi-group of positive contractions in Lx (C, v)) and Ut(\Df) 
— 0 for a n y / E Lœ. 
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4. The local ergodic theorem in L». 

4.1. THEOREM: Let T be as in section 1 then for anyf E Lx lim Maf = T0f a.e. 
and in Lrnorm. a~*° 

4.2. COROLLARY: Let (XVr
x)x>0 be a resolvent in Loo such that W*-lim XV^/exists 

for a n y / E Lx, then lim Wkf exists a.e. (KVX is assumed to be a W -continuous 
contraction). x^°° 

PROOF OF THEOREM 4.1: Let / E Lœ and let / = lim sup \M*f - T*f\. By 3.4 we 

have lim Ma(Afp/) = M$f = T0(M$f) a.e. for any p > 0. Thus, since Maf = 
* %*0+ 

Ma(T0f), we have 

/ < lim sup \Mt(Ttf ~ Mtf)\ + \Mtf - r0*/l 

for any p > 0. 
2.1 then yields / < cn lim sup a"1 jf I / f l r ? / - Af^/|) df + |Mp*/ - 7 ? / | 

a-*0+ 

Denoting /p the first term of the last member, we get 

U = cB lim sup a"1 fiuMTtf - Mtf\) at 

< t/0/p, since/p E Loo and U* is positive. 

Hence 

/ / p d M . ^ / ( I / 0 l ) / P d M . 

- c„ [ (I/0 1) (lim sup ÔT1 \au%lc\Ttf ~ M*/|) df) dp, 

(see 3.17) 

= cn f (U0 1) (lim sup à"1 [ V / ? f ( l c | r Ô 7 - MpVl) dr) djx 

(we may apply 3.17 because U0 1 E Lj(C, jx)) 

= cn f (I/o 1) (lim sup ÔT1 [ V a d r o V " Mp*/|) dr) dp, 
J a -»0 + J0 

= c„ J (t/0 1) / ?* ( l c | r 0 * / - Mp*/|) d(x 

(3.17 and U. Krengel's local theorem applied in L,(C, v) [10]) 

= c J (i/o 1) i / o d c l r * / - < / | ) dpi 

(see 3.17) 
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= cn\(U
2
0l)Vc\TÏf-MÎf\)d[L 

= cn\(U0l)\TÎf-MÏf\diL 

(because U0 1 E LX(C) and U2
0 = U0). 

Finally we have 

| / d^ < cn\ (U0 1) |r0*/ - M*/l ^ + / \Mtf - Ttf\ d^ 

for any (3 > 0. 
Letting (3 —» 0 and applying 3.2 and 3.1 we see that / = 0 that is lim Maf = T0 

/ a . e . 
The Lj-norm-convergence is the property 3.1. 
The proof is completed. 

PROOF OF 4.2: \VX is the adjoint of a L,-resolvent, say \WX, such that strong— lim 
XWk = T0 exists. ~*°° 

Hence Wx — Çe~Ks Ts ds where (Ts)s>0 is a strongly continuous semi-group of 
Lx -contractions. 

Since Vx — Ce'ks Ts ds, 4.2 is a consequence of 4.1 as Cesàro convergence implies 
Abel convergence. 

Note that the condition of w -convergence at infinity is necessary for the pointwise 
convergence to hold for any / E Lœ. 

4. Additive processes in L^. 
In this last section we note that any bounded additive process in Lœ is absolutely 

continuous. 
/„ denotes the class of all intervals of Un

+. 

DEFINITION: (M. A. Akcoglu - U. Krengel - A. Del Junco [2], [1]) A set function 
F: In —» Loo will be called a bounded additive process with respect to T = (Tt)tEU"+ if 
it satisfies the following conditions: 

• sup {||F(/)/M/)||oo |/ E /„, KM) >0} = K(F) < + oo 

• TtF(I) = F(I + u) for all u E W+ and / E /„ 

• If A , . . . , lk E In are pairwise disjoint and if 
it 

* * 
/ = U IkEI„ then F(I) = S F(/f). 

n* In the following Tt need not be a contraction and the proof below also holds in 
* Lp(\ < p < oo) [3], [4] or in any space for which bounded sets are W -compact. 

4.1: THEOREM: For any bounded additive process F, there exists a function f S Lœ 

such that F (I) = JjTtfdtfor any I E /„. 
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PROOF: First note that TSF(I) = F (I). Then the w*-continuity of 7* at 0 and the 
arguments of M. Akcoglu-A. Del Junco in ([1] lemma 3.2) yield 

4.2. Given g E L,, / E /„ and any e > 0 there is a u E (R+ - {0})" such that if 

A E / : = { / E / „ | / C [0, K], X„(/) > 0 } 
then 

|<F(/) - f Tf(F(A)/ K(A)) dr, g>\ < e 

Next, for any x > 0 put F, = F([0, *["). 
The boundedness condition implies that there is a sequencext•,—» 0+ such that/ = w 

— lim x,~" Fx. exists. 

Let / E /„, g E Li, e > 0 be given. Let u be as in 4.2. Let / be such that [0, JC,-]" C 

Then 

\(F(i) - f r,*/dr, g)| < |(F(/) - f r ^ r ^,) dr, g)| 

+ |< f T*(x;" Fx) - f) At, g)\ < e + \(x7" FXI - f, f T, g dt)\ < 2 . e. 

e and g being arbitrary we obtain F (I) = // T?fdt for any / E /„. 
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