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Abstract

During an epidemic outbreak, typically only partial information about the outbreak is
known. A common scenario is that the infection times of individuals are unknown, but
individuals, on displaying symptoms, are identified as infectious and removed from the
population. We study the distribution of the number of infectives given only the times
of removals in a Markovian susceptible–infectious–removed (SIR) epidemic. Primary
interest is in the initial stages of the epidemic process, where a branching (birth–death)
process approximation is applicable. We show that the number of individuals alive in
a time-inhomogeneous birth–death process at time t ≥ 0, given only death times up to
and including time t, is a mixture of negative binomial distributions, with the number of
mixing components depending on the total number of deaths, and the mixing weights
depending upon the inter-arrival times of the deaths. We further consider the extension
to the case where some deaths are unobserved. We also discuss the application of the
results to control measures and statistical inference.
Keywords: Branching processes; time-inhomogeneous birth–death process; negative
binomial distribution
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1. Introduction

A key public health consideration throughout the COVID-19 pandemic has been when and
how to act to control the disease. In infectious disease epidemiology there is a balance to be
struck between rapid introduction of control measures to limit the size of an epidemic outbreak
and the costs (for example, economic, social, and mental health costs) associated with control
measures. Given that the probability of a small epidemic outbreak can be close to 1 for a super-
critical epidemic (basic reproduction number R0 > 1), it is important to utilise information
from the epidemic outbreak to decide whether or not intervention will be cost-effective at any
given point in time.

The control of an epidemic outbreak, whether it is at a national or local level, needs to take
place early in the outbreak, before the disease has taken significant hold within the population.
During the early stages of an epidemic, a branching process approximation can be utilised
(see [2], [3], and [19]), with the probability of a small epidemic equated with the extinction
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probability of the approximating branching process. Therefore, a significant focus of this paper
is on modelling the approximating branching process.

Branching process approximations of epidemic processes are built upon coupling infec-
tive individuals to individuals in a branching process, with infectious contacts and removals
of infectives respectively corresponding to births and deaths in the branching process. At any
point in time, given the current state of the population, we can then compute properties of
the branching process (epidemic), such as the probability of extinction. However, in reality
we rarely know the current state of the population and instead have a partial observation of
the epidemic process; see, for example, [15] and [18]. Typically, we do not know when an
individual becomes infected, but we can have information on when they show symptoms.
Specifically, we consider susceptible–infectious–removed (SIR) epidemic models where all
individuals, except an initial infective, start in the susceptible state. A susceptible individual
on receiving an infectious contact becomes infected, and immediately infectious, and is able
to infect other individuals until their removal (for example, through recovery, quarantining, or
death). Removed individuals play no further role in the epidemic. Moreover, we assume that
individuals are potentially detected on removal but nothing is known about infectious individ-
uals prior to removal. This corresponds to observing only some of the deaths of individuals in
the approximating branching process.

This paper’s focus is the distribution of the number of infectives in an epidemic (the number
of individuals alive in a branching process) at any given point in time, t ≥ 0, based upon only
the detected removals (deaths) up to and including time t, with the first detected removal (death)
being observed at time t = 0. We focus primarily on the case where all removals are detected.
We consider a time-inhomogeneous Markovian SIR epidemic model and its approximat-
ing branching (birth–death) process. For time-inhomogeneous epidemics, the approximating
branching process has a varying environment, and all individuals alive at a given point in time
have the same birth rate. The environment can depend upon the number of removals/deaths
observed (cf. [14]). We show that the distribution of the number of individuals alive in the
approximating branching process at time t ≥ 0 can be expressed as a mixture of (kt + 1) nega-
tive binomial random variables, where kt denotes the total number of observed deaths/removals
up to and including time t. Given that we allow for time-inhomogeneity in the model, we are
able to derive the distribution of the number of infectives in the presence of control measures
or seasonal effects which change the infection and/or the removal rates. In particular, given
only removal data, we can easily obtain the probability that the epidemic is over, and hence
provide a guide for when to lift control measures.

The papers [9] and [18] consider the distribution of the number of individuals alive in a
branching process at the first detection, where each individual is detected an exponentially
distributed time after their birth (infection) assuming that they are still alive (infectious) at their
detection time. Individuals are assumed to have independent and identically distributed lifetime
distributions and, whilst alive, to reproduce at the points of a homogeneous Poisson point
process with rate α, say. These papers show that the population size at the first detection follows
a geometric distribution with support N, and [9] studies further properties of the population at
the first detection, such as the ages of individuals and the residual lifetimes. A key tool in [9]
is to obtain the (shifted geometric) distribution of the population t units after the birth of the
initial individual, conditional upon there being no detections up to time t. We take the same
approach in this paper to obtain, in Section 4, Lemma 4.1, a geometric distribution with support
N for the size of the population t units after the birth of the initial individual, conditional upon
there being no deaths up to time t. The Markovian models considered in this paper allow for
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explicit expressions for the parameters of the geometric distribution, in contrast to [9], where
the key quantities are expressed in terms of Laplace transforms. Moreover, we allow for time-
inhomogeneity in the model in both the birth and death rates. In [11], a birth–death process
with detections is considered, and this corresponds to the model of [9] with an exponential
lifetime distribution. In [11], the distribution of the number of individuals alive at the kth
detection is considered, but times between detections are not considered. Finally, in [10] the
general stochastic epidemic model (i.e. the Markovian SIR epidemic model with exponentially
distributed infectious periods) is considered, with detections possibly occurring at the removal
of individuals; the authors investigate the distribution of the number of infectives at the kth
detection. Both [10] and [11] allow for the parameters of the models to change at the detection
times. Since we consider the full time dynamics of the branching (epidemic) process, we can
allow for more general temporal behaviour of the parameters, but an important special case is
where the parameters are piecewise constant between detection times.

The paper is structured as follows. In Section 2, we introduce the time-inhomogeneous
Markovian SIR epidemic model and its branching (birth–death) process approximation. In
Section 3, we present the main result, Theorem 3.1, which shows that the distribution of the
number of individuals alive in the birth–death process, given only death times, can be expressed
as a mixture of negative binomial distributions. This is extended in Theorem 3.2 to the case
where only a subset of the death times are detected. The probability that the birth–death process
will go extinct and the likelihood of observing a given set of death times, given in Corollary 3.1,
follow immediately from Theorem 3.1. In Theorem 3.3 we derive the exact distribution of the
number of infectives in the SIR epidemic given only removal times, which is useful for assess-
ing the accuracy of the birth–death process approximations. In Sections 4–6 we provide the
proofs of Theorems 3.1–3.3 respectively. In Section 7 we present numerical results using sim-
ulations to illustrate the estimation of the number of individuals over time, the implementation
of control measures, and comparisons between the number of infectives in the epidemic and
the number of individuals alive in the approximating birth–death process. In particular, a time-
inhomogeneous birth–death process is shown to give a good approximation of the epidemic
process over its full trajectory. Finally, in Section 8 we present concluding remarks regard-
ing how the findings of this paper can be utilised from statistical inference and public health
perspectives.

2. Epidemic and branching process models

In this section, we introduce formally the time-inhomogeneous Markovian SIR epidemic
model and its approximating branching (birth–death) process.

The time-inhomogeneous Markovian SIR epidemic model is defined as follows. There is
assumed to be a closed population of size N with the epidemic initiated by a single infective
in an otherwise susceptible population. Whilst infectious, individuals make infectious con-
tacts at the points of a time-inhomogeneous Poisson point process with rate βt at time t. The
individual contacted by an infectious contact is chosen uniformly at random from the whole
population, independently of any other infectious contacts. If a susceptible individual is con-
tacted by an infectious contact, the individual becomes infected and is immediately able to
transmit the disease to other individuals. Infectious contacts with non-susceptible individuals
have no effect on the recipient. Infective individuals recover from the disease and are removed
from the epidemic process, playing no further role in the epidemic, at rate γt at time t. Let
S(t), I(t), and R(t) ( = N − S(t) − I(t)) denote the total numbers of susceptibles, infectives, and
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removed individuals, respectively, in the population at time t. Then it suffices to keep track of
{(S(t), I(t))}, and the model satisfies, for h ≥ 0,

P ((S(t + h), I(t + h)) = (x, y) |(S(t), I(t)) = (s, i) )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si

N
βth + o(h), (x, y) = (s − 1, i + 1) (infection),

iγth + o(h), (x, y) = (s, i − 1) (removal),

1 − i
{
βt

s
N + γt

}
h + o(h), (x, y) = (s, i) (no event),

(2.1)

with all other events occurring with probability o(h). We place no restriction on the form of
βt and γt, and these could be continuously varying and/or contain discontinuities. The former
can be used to model seasonal variability, whilst the latter allows for the implementation and
removal of control measures.

In the early stages of the epidemic, whilst the total number of individuals ever infected is
small, the epidemic process can be coupled to a branching process. Specifically, each infec-
tive in the epidemic has a corresponding individual in the coupled branching process whose
lifetime is identical to the infectious period of the infective, so the individual in the branch-
ing process dies when the infective is removed from the population. The individual in the
branching process gives birth to new individuals whenever the corresponding infective makes
infectious contacts in the epidemic process. Thus the two processes can be coupled (see, for
example, [3]) until the first time that there is an infectious contact with a previously infected
individual. For large N this does not occur until O(

√
N) of the population have been infected;

see [3]. Specifically, the time-inhomogeneous Markovian SIR stochastic epidemic model can
be approximated by a time-inhomogeneous linear birth–death process [8]. Let B(t) denote the
total number of individuals alive in the time-inhomogeneous linear birth–death process at time
t. Then for h ≥ 0, B(t) satisfies

P(B(t + h) = j|B(t) = i) =

⎧⎪⎪⎨
⎪⎪⎩

iβth + o(h), j = i + 1 (birth),

iγth + o(h), j = i − 1 (death),

1 − i{βt + γt}h + o(h), j = i (no event),

(2.2)

with all other events occurring with probability o(h).
Suppose that at time t we can estimate the proportion, st, of the population who are suscep-

tible in the epidemic process. We can then replace βt by βtst in (2.2) to obtain a birth–death
approximation of the epidemic which is valid after the epidemic has taken off. In Section 7 we
outline a simple estimate of st using only the inter-removal times, up to and including time t,
to create a time-inhomogeneous birth–death process approximation to the epidemic process.
In Figure 4 we show the excellent agreement between the estimates obtained from these two
processes of the mean number of infectives at time t, given only the inter-removal times up to
and including time t.

3. Main results

3.1. Overview

In this section, we present the main results along with the necessary notation. Throughout,
we set time so that the first death (removal) of the birth–death (epidemic) process occurs at
time 0. The time-varying parameters in (2.1) and (2.2) can be adjusted accordingly.
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In Section 3.2 we present Theorem 3.1, which states that the distribution of the number
of individuals alive in a time-inhomogeneous linear birth–death process given only times of
deaths follows a mixture of negative binomial distributions. We present an outline of the argu-
ments used to prove Theorem 3.1, with the details of the proof provided in Section 4. We
note that Theorem 3.1 allows computation of the probability that the birth–death process will
go extinct. In Corollary 3.1 we derive the likelihood of observing the given death times, which
can be used in statistical inference for inferring the parameters of the birth–death process given
data.

In Section 3.3, we consider the special case of the time-homogeneous linear birth–death
process. Lemma 3.1 specialises Theorem 3.1 to the time-homogeneous birth–death process
and Lemma 3.2 gives the distribution of the number of individuals alive in the birth–death
process immediately after the kth death, conditioning only upon there having been k deaths.
The proof of Lemma 3.2 is presented immediately after the lemma and is informative about
why, in general, the distribution of the number of individuals alive follows a mixture of negative
binomial distributions.

In Section 3.4, we consider the important extension of assuming that not all deaths are
detected. In Theorem 3.2, we show that the number of individuals alive given only the times of
detected deaths follows a mixture of negative binomial distributions. The overall structure of
the proof is similar to that of Theorem 3.1, but there are key differences, as Lemma 4.1, which
is a major component in the proof of Theorem 3.1, does not carry over to partial detection of
deaths. Therefore we need to resort to an alternative argument based on probability generating
functions, whose details are provided in Section 5. In Section 3.5, Theorem 3.3, we derive the
number of infectives in the general stochastic epidemic model at time t given only the times of
removals. This enables us, in Section 7, to compare the approximate distribution given by the
birth–death process for the number of infectives (individuals alive) with the exact distribution
given by Theorem 3.3. For succinctness of presentation in Sections 3.4 and 3.5, we assume that
the birth (infection) and death (removal) parameters are piecewise constant between observed
deaths (removals), although more general piecewise-constant parameter scenarios could easily
be considered.

3.2. Time-inhomogeneous linear birth–death process

For k = 1, 2, . . ., let Xk denote the number of individuals alive immediately after the kth
death, and for t ≥ 0, let Y(t) denote the number of individuals alive at time t, with Y(0) ≡ X1.
For k = 2, 3, . . ., let Tk denote the inter-arrival time from the (k − 1)th to the kth death, with
the convention that Tk = ∞ if fewer than k deaths occur, and let Sk = ∑k

j=2 Tj denote the time
of the kth death, with S1 = 0. Let T2:k = (T2, T3, . . . , Tk). For k = 2, 3, . . ., let tk denote the
observed inter-arrival time from the (k − 1)th to the kth death and sk = ∑k

j=2 tj, with s1 = 0.
For k = 2, 3, . . ., let t2:k = (t2, t3, . . . , tk); we consider the distribution of Xk|T2:k = t2:k. For
t ≥ 0, let kt denote the number of deaths, and let skt denote the time of the last death, up to
and including time t. Then for t ≥ 0, we consider the distribution of Y(t)|T2:kt = t2:kt . Note that
Y(sk) ≡ Xk, which is used repeatedly.

Before stating Theorem 3.1 we introduce some notation for probability distributions.
Throughout this paper, G ∼ Geom(p) denotes a geometric random variable with parameter
p and probability mass function

P(G = x) = (1 − p)xp (x = 0, 1, . . . ). (3.1)
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Also, for r = 0, 1, . . ., V = ∑r
i=1 Gi ∼ NegBin(r, p) denotes a negative binomial random vari-

able, where G1,G2, . . . ,Gr are independent and identically distributed according to Geom(p),
and for r = 0, P(V = 0) = 1.

Theorem 3.1 starts with the assumption that there exists 0<π0 < 1 such that X1 ≡ Y(0) ∼
Geom(π0). In the important special case where the birth and death rates are constant prior to
the first death—that is, for t ≤ 0, βt = α1, and γt =μ1—it is trivial (cf. the start of the proof
of Lemma 3.2) to show that the number of individuals alive immediately after the first death
is Geom (π0) with π0 =μ1/(α1 +μ1). (See also [9] and [18].) We discuss how the arguments
can be modified to other scenarios in Section 4, after the proof of Theorem 3.1.

Theorem 3.1. Suppose that X1 ≡ Y(0) ∼ Geom(π0) for some 0<π0 < 1.
For t ≥ 0, let πt solve the ordinary differential equation (ODE)

π ′
t = γt − (βt + γt)πt, (3.2)

with initial condition 0<π0 < 1.
For k = 2, 3, . . ., the distribution Xk of the number of individuals alive immediately

following the kth death satisfies

{Xk|T2:k = t2:k} ∼ NegBin(Rk, πsk ), (3.3)

where Rk is a random variable with support on {2, 3, . . . , k}, and P(Rk = j) = Bk,j with Bk =
(Bk,2, Bk,3, . . . , Bk,k) given by (3.11) below.

For t ≥ 0, the distribution Y(t) of the number of individuals alive at time t satisfies Y(t) ≡ Xkt

if t = skt , and if t> skt ,

{Y(t)|T2:kt = t2:kt} ∼ NegBin(Z(t), πt), (3.4)

where Z(t) is a random variable with support on {0, 1, . . . , kt}, and P(Z(t) = j) = Dt,j with
Dt = (Dt,0,Dt,1, . . . ,Dt,kt ) given by (3.12) and (3.13) below. If kt = 1, then T2 > t replaces
T2:kt = t2:kt in (3.4).

We begin by defining the notation required to obtain the distributions of Rk and Z(t) intro-
duced in Theorem 3.1. The process {Z(t) : t ≥ 0} is clarified in the proof of Corollary 4.1.
Briefly, it is an integer-valued stochastic process that decreases in steps of size 1 between
deaths until either it reaches 0, in which case the number of individuals alive is 0 and no fur-
ther deaths occur, or a death occurs, in which case Z(t) increases by 1. The process {Z(t) : t ≥ 0}
is Markovian given also the death times prior to t. We also further explore πt before present-
ing an outline of the main steps in the proof of Theorem 3.1, with the details provided in
Section 4.

For t ∈R, let pt = βt/{βt + γt} (resp. qt = γt/{βt + γt}) denote the probability that an event
occurring at time t is a birth (resp. death). Then for t ≥ 0, we can rewrite the ODE (3.2) for
πt as

π ′
t = (βt + γt)[qt − πt], (3.5)

with initial condition 0<π0 < 1. This highlights that πt is increasing (decreasing) if qt >πt

(qt <πt), with π0 defined by the birth and death rates prior to the first death.
For t, τ ≥ 0, let

φ(t; τ ) = exp

(
−

∫ t+τ

t
{βs + γs} ds

)
, (3.6)
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the probability that an individual alive at time t does not give birth or die in the interval
(t, t + τ ], and let

ψ(t; τ ) =
∫ t+τ

t
βu exp

(
−

∫ t+τ

u
{βs + γs} ds

)
du, (3.7)

the probability that an individual alive at time t has at least one offspring and their first offspring
(looking back from time t + τ ) survives to time t + τ . We can then rewrite (3.2) in integral
form as

πt+τ = πt exp

(
−

∫ t+τ

t
{βs + γs} ds

)
+

∫ t+τ

t
γu exp

(
−

∫ t+τ

u
{βs + γs} ds

)
du

= πtφ(t; τ ) + {1 − φ(t; τ ) −ψ(t; τ )}. (3.8)

We can now define the matrices needed for the probability mass functions of Rk and Z(t),
which define the distributions of Xk and Y(t) in Theorem 3.1. For k = 2, 3, . . . and for t, τ ≥ 0,
let Mk(t; τ ) be the (k − 1) × k matrix with (i, j)th element

[Mk(t; τ )]i,j =

⎧⎪⎨
⎪⎩

(i + 1)
( i

j−1

){ (1 − πt)πt

(1 − πt+τ )πt+τ
φ(t; τ )

}j−1{
πt

1 − πt+τ
ψ(t; τ )

}i+1−j

for j ≤ i + 1,

0 otherwise,

(3.9)

and let Jk(t; τ ) be the (k − 1) × (k + 1) matrix with (i, j)th element

[Jk(t; τ )]i,j =

⎧⎪⎨
⎪⎩

(i+1
j−1

){ (1 − πt)πt

(1 − πt+τ )πt+τ
φ(t; τ )

}j−1{
πt

1 − πt+τ
ψ(t; τ )

}i+2−j

for j ≤ i + 2,

0 otherwise.

(3.10)

Let B2 = (1), and for k = 3, 4, . . . let Bk = (Bk,2, Bk,3, . . . , Bk,k) be given by

Bk =
{(

k−1∏
j=2

Mj(sj; tj+1)

)
· 1�

k−1

}−1 k−1∏
j=2

Mj(sj; tj+1), (3.11)

with 1k−1 denoting a row vector of 1s of length k − 1. Let Dt = (Dt,0,Dt,1, . . . ,Dt,kt ) be given
by, for 0 ≤ t< s2,

Dt =
(

πtψ(0; t)

πtψ(0; t) + (1 − π0)φ(0; t)
,

(1 − π0)φ(0; t)

πtψ(0; t) + (1 − π0)φ(0; t)

)
, (3.12)

and for t ≥ s2,

Dt =
{( kt−1∏

j=2

Mj(sj; tj+1)

)
Jkt (skt ; t − skt ) · 1�

kt+1

}−1

×
( kt−1∏

j=2

Mj(sj; tj+1)

)
Jkt (skt ; t − skt ), (3.13)

with the convention
∏1

j=2 Mj(sj; tj+1) = I1 (the 1 × 1 identity matrix).
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To prove Theorem 3.1, we start by showing in Lemma 4.1 that the number of living indi-
viduals at time t + τ originating from a single individual at time t, conditional on no deaths
in the interval (t, t + τ ], is 1 + Geom(1 −ψ(t; τ )). This is proved using a probabilistic con-
struction of the process. We can use this to consider how the birth–death process evolves
between the first and second death when we have Geom (π0) rather than one initial individ-
ual. In Lemma 4.3, we show that for any given time t between the first and second deaths,
the distribution of the number of individuals alive follows a mixture of a geometric distri-
bution, G1(πt) ∼ Geom(πt), and a point mass at 0. This leads, through size-biased sampling
in Lemma 4.4, to the number of individuals alive immediately after the second death (time
s2 = t2) being distributed as a negative binomial distribution,

∑2
i=1 Gi(πs2 ) = NegBin(2, πs2 ).

Finally, the dynamics of the process between the first and second death, along with the
Markovian nature of the process, allow us to relatively straightforwardly write down the full
dynamics. In particular, given that {Xk|T2:k = t2:k} = ∑Rk

i=1 Gi(πsk ), we can consider the evolu-
tion of Rk independent processes each starting from Geom(πsk ) individuals. At time sk+1, the
(k + 1)th death will occur, and the death will belong to one of the Rk processes starting with
Geom(πsk ) individuals. The process with the death will have NegBin(2, πsk+1 ) individuals alive
at time sk+1 to contribute to Xk+1. The remaining Rk − 1 processes will have experienced no
deaths in the interval (sk, sk+1], and the number of individuals alive in each of these processes
is distributed according to a mixture of Geom(πsk+1 ) and a point mass at 0. This leads to the
binomial terms in (3.9) and (3.10) for the number of processes which have Geom(πsk+1 ) indi-
viduals alive; see Corollary 4.1. It is then straightforward, using Lemma 4.5, to iteratively
compute the distribution of {Xk|T2:k = t2:k} and complete the proof of Theorem 3.1.

We briefly discuss some interesting results which follow straightforwardly from
Theorem 3.1.

Given that Theorem 3.1 provides the probability mass function of Z(t), it is straightforward
to compute moments of Y(t), the number of individuals alive at time t. However, the forms
of (3.4) and (3.13) do not permit any simplifications for rapid calculations of the moments of
Y(t).

From [8, Equation (18)] we have that at time t, the probability of non-extinction of the
time-inhomogeneous birth–death process from a single individual is

ρt =
{

1 +
∫ ∞

t
γs exp

( ∫ s

t
[γu − βu] du

)
ds

}−1

. (3.14)

Therefore, given t2:kt , at time t we have that the probability that the birth–death process will go
extinct is

E

[
(1 − ρt)

Y(t)
∣∣∣ T2:kt = t2:kt

]
=E

[(
πt

1 − (1 − πt)(1 − ρt)

)Z(t)
∣∣∣∣∣ T2:kt = t2:kt

]
. (3.15)

It is straightforward to compute the right-hand side of (3.15) using the probability mass func-
tion of Z(t), which is given by (3.13). Note that if, for all u ≥ t, βu = α and γu =μ, then
ρt = 1 − min{1, μ/α}, and (3.15) gives the probability of extinction if the current birth and
death rate were to persist.

We can compute the likelihood of observing inter-death times t2:k using Corollary 3.1.
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Corollary 3.1. For k = 2, 3, . . . and sk <∞, we have that the probability density function of
T2:k is given by

fT2:k (t2:k) =
k∏

j=2

πsj−1 (1 − πsj−1 )γsjφ(sj−1; tj)

π2
sj

×
{[

k−1∏
j=2

Mj(sj; tj+1)

]
· 1�

k−1

}
,

(3.16)

with, for k = 2, the vacuous latter term set equal to 1.

Corollary 3.1 is the key result in using the findings of this paper for statistical inference
and inferring the parameters of the birth–death process given t2:k. The generality of the time-
inhomogeneous birth–death process allows for different features such as the periodicity or
control measures to be incorporated. We will explore likelihood inference for the birth–death
process given only death times in future work.

3.3. Time-homogeneous linear birth–death process

An important special case of Theorem 3.1 is the time-homogeneous model, where, for all
t ∈R, βt = α and γt =μ. In this case, for all t ≥ 0,

πt = qt = μ

α+μ
= π̂ , say,

and for all τ ≥ 0, φ(t; τ ) = φ̂(τ ) = exp(−[α +μ]τ) and ψ(t; τ ) = ψ̂(τ ) = π̂
{
1 − φ̂(τ )

}
. For

k = 2, 3, . . ., let M̂k(τ ) be the (k − 1) × k matrix with (i, j)th element

[
M̂k(τ )

]
i,j

=
⎧⎨
⎩(i + 1)

( i
j−1

){ ˆφ(τ )
}j−1{

π̂ (1 − φ̂(τ ))
}i+1−j

for j ≤ i + 1,

0 otherwise,
(3.17)

and let Ĵk(t; τ ) be the (k − 1) × (k + 1) matrix with (i, j)th element

[
Ĵk(t; τ )

]
i,j

=
⎧⎨
⎩

(i+1
j−1

){ ˆφ(τ )
}j−1{

π̂ (1 − φ̂(τ ))
}i+2−j

for j ≤ i + 2,

0 otherwise.
(3.18)

Lemma 3.1. For the time-homogeneous birth–death process with birth rate βt = α and death
rate γt =μ, the number of individuals alive immediately following the first death at time t = 0
satisfies

X1 ≡ Y(0) ∼ Geom(π̂ ).

For k = 2, 3, . . ., Xk satisfies (3.3) with πsk = π̂ and Bk given by (3.11), with M̂k(τ ) given
in (3.17) replacing Mk(t; τ ).

Similarly, for t ≥ 0, Y(t) satisfies (3.4) with πt = π̂ and Dt given by (3.12) and (3.13), with
M̂k(τ ) and Ĵk(τ ) given in (3.17) and (3.18) replacing Mk(t; τ ) and Jk(t; τ ), respectively.

From Lemma 3.1, we observe that Xk|Sk = ∑k
j=2 Tj <∞ (conditioning on at least k deaths

occurring in the birth–death process) is a mixture of negative binomial random variables
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{Qj ∼ NegBin(j, π̂ ); j = 2, 3, . . . , k}. We can look to integrate over T2:k to obtain the distri-
bution of Xk|Sk <∞, which can be equivalently expressed as Xk|Xk−1 > 0. However, a direct
argument, which we present below, yields Lemma 3.2 and gives a straightforward illustration
of how the number of individuals alive immediately after a death follows a mixture of negative
binomial distributions.

Lemma 3.2. For k = 2, 3, . . ., let R̂k be a discrete random variable with support {2, 3, . . . , k}
and probability mass function

P
(
R̂k = j|Xk−1 > 0

) = ck−1,k−jπ̂
k−j∑k

l=2 ck−1,k−lπ̂k−l
,

where {cm,j} are the entries of Catalan’s triangle (see, for example, [17]), a triangular array
satisfying the following: for j = 0, 1, . . . and m = 1, 2, . . ., cm,0 = 1, cm,j = 0 (j ≥ m), and

cm,j =
j∑

i=0

cm−1,i = cm−1,j + cm,j−1 = m − j

m + j

(
m + j

m

)
. (3.19)

Then for k = 2, 3, . . .,

{Xk|Xk−1 > 0} ∼ NegBin(R̂k, π̂ ).

Proof. Given that the outcome (birth/death) of each event is independent, the number
of births which take place between each pair of deaths are independent and are distributed
according to Ĝ ∼ Geom(π̂ ). Therefore, for k = 1, 2, . . .,

Xk
D= Xk−1 + Ĝ − 1, (3.20)

subject to Xk−1 > 0. Given X0 = 1 (the birth of the initial individual), it immediately follows
from (3.20) that X1 ∼ Ĝ.

To study Xk (k> 1), we consider a Markov chain for the evolution of the birth–death process
until the kth individual is born (which guarantees at least k deaths occur) or the process goes
extinct. Let (a, d) denote the state in the Markov chain corresponding to a births and d deaths
having occurred. Then for k = 2, 3, . . ., the possible states are

{(a, d); a = 1, 2, . . . , k − 1, d = 0, 1, . . . , a} ∪ {(k, d); d = 0, 1, . . . , k − 2},
with a total of Lk = (k + 4)(k − 1)/2 possible states. The Markov chain starts in state (1,0),
the birth of the initial individual, and has absorbing states E = {(x, x); x = 1, 2, . . . , k − 1} (the
birth–death process dies out before the kth birth) and I = {(k, d); d = 0, 1, . . . , k − 2} (there
are at least k births in the birth–death process). For (a, d) ∈ E ∪ I, we have that the probability
of transiting from state (a, d) to state (a + 1, d) (birth) is 1 − π̂ and the probability of transiting
from state (a, d) to state (a, d + 1) (death) is π̂ . Note that the process reaches an absorbing state
in at most 2k − 3 transitions, and if the birth–death process reaches a = k, it does so through a
birth, so that there are at least two individuals alive (a − d ≥ 2).

Let Vk denote the final (absorbing) state of the Markov chain. For d = 0, 1, . . . , k − 2,

P(Vk = (k, d)) = ck−1,d(1 − π̂ )k−1π̂d, (3.21)
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where {ck−1,d} are the Catalan numbers given in (3.19). The derivation of (3.21) is as fol-
lows. Any path from (1,0) to (k, d) must include k − 1 births and d deaths, so has probability
(1 − π̂ )k−1π̂d of occurring. The admissible paths are those for which, at any point on the path,
the number of births (including the initial ancestor) is always greater than the number of deaths.
Therefore, the number of admissible paths is equivalent to the number of ways of counting the
votes in the ballot theorem with candidates A and B having k and d votes, respectively, such
that after the first vote, candidate A always has more votes than candidate B, with there being
ck−1,d such paths. Hence, for j = 2, 3, . . . , k,

P(Vk = (k, k − j)|Vk ∈ I) = ck−1,k−j(1 − π̂ )k−1π̂k−j∑k
l=2 ck−1,k−l(1 − π̂ )k−1π̂k−l

= ck−1,k−jπ̂
k−j∑k

l=2 ck−1,k−lπ̂k−l
. (3.22)

Conditioned upon the birth–death process reaching state (k, k − j) (j = 2, 3, . . . , k), the
number of additional births until the kth death is the sum of j independent and identically
distributed Ĝ random variables. Hence, the number of individuals alive immediately following
the kth death is distributed according to

j∑
i=1

Ĝi ∼ NegBin(j, π̂ ), (3.23)

and the lemma follows immediately from (3.22) and (3.23). �

3.4. Partial observations of deaths

We turn our attention to the case where not every death is detected. Suppose δt denotes the
probability that a death at time t is detected and that the detection or otherwise of a death is
independent of all other events. The epidemic model considered in [10] can be constructed
in this manner. We are in a situation similar to that studied in [9] and [11], although in those
papers (i) the death and detection processes are independent and (ii) individuals do not die
upon detection.

We modify the notation slightly to take account of partial detection of the death process. For
k = 2, 3, . . ., let T̃k denote the length of time between the (k − 1)th and kth detected deaths,
with the convention that T̃1 denotes the time from the birth of the initial individual to the first
detected death (with T̃1 = ∞ if no death is ever detected). Given that T̃1 <∞, i.e. that a death
is detected, we set time 0 to be the time at which the first death is detected. Let X̃k denote the
number of individuals alive immediately after the kth detected death. In Theorem 3.2 we show
that X̃k is a mixture of negative binomial random variables with mixture weights depending on
T̃2:k = t̃2:k, similarly to Theorem 3.1. Note that we set s̃k = ∑k

j=2 t̃j.
As stated in Section 3.1, we assume that the birth and death rates are piecewise con-

stant between detected deaths. That is, setting s̃0 = −∞, we assume for s̃k−1 < t ≤ s̃k that
(βt, γt, δt) = (α̃k, μ̃k, d̃k). Let q̃k = μ̃k/(α̃k + μ̃k) and p̃k = 1 − q̃k. Note that for s̃k−1 < t ≤ s̃k,
qt = q̃k and pt = p̃k. Let
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uk =
√

1 − 4p̃kq̃k(1 − d̃k), λk = 1 + uk − 2p̃k

1 + uk
,

νk = 1 − uk

2p̃k
, ζk = 1 + uk

2p̃k
= 1

1 − λk
,

φ̃k(τ )= exp( − [α̃k + μ̃k]ukτ ), ψ̃k(τ )= (1 − λk)(1 − φ̃k(τ )

1 − νk(1 − λk)φ̃k(τ )
.

(3.24)

Note that if d̃k = 1, i.e. all deaths are detected, then the above simplify to uk = 1, λk = q̃k,
νk = 0, ζk = 1/p̃k, φ̃k(τ ) = exp( − [α̃k + μ̃k]τ ), and ψ̃k(τ ) = p̃k[1 − exp( − [α̃k + μ̃k]τ )]. Thus
λk, φ̃k(τ ), and ψ̃k(τ ) take the roles of qt, φ(t; τ ), and ψ(t; τ ) in Section 3.2.

Let π̃1 = λ1, and for k = 2, 3, . . . let

π̃k = λk[1 − νk(1 − π̃k−1)] − (1 − νk)[λk − π̃k−1]φ̃k(t̃k)

1 − νk(1 − π̃k−1) + νk[λk − π̃k−1]φ̃k(t̃k)
. (3.25)

Thus π̃k = πs̃k , the success probability of the geometric at the kth detected death, and we can
modify (3.25) to obtain πt (t ≥ 0); see (3.29).

Theorem 3.2. For the piecewise time-homogeneous linear birth–death process with parame-
ters (βt, γt, δt) = (α̃k, μ̃k, d̃k) (s̃k−1 < t ≤ s̃k), we have the following:

1. X̃1|T̃1 <∞ ∼ Geom(π̃1).

2. Let B̃2 = (1), and for k = 3, 4, . . ., let B̃k = (B̃k,2, B̃k,3, . . . , B̃k,k) be given by

B̃k =
{(

k−1∏
j=2

M̃j(t̃j+1)

)
· 1�

k−2

}−1 k−1∏
j=2

M̃j(t̃j+1), (3.26)

where, for τ ≥ 0, M̃k(τ ) is the (k − 1) × k matrix with (i,j)th element

[
M̃k(τ )

]
i,j

=
{

(i + 1)
( i

j−1

)
h̃k+1(τ )j−1

[
1 − h̃k+1(τ )

]i+1−j
r̃k+1(τ )i for j ≤ i + 1,

0 otherwise,

where

h̃k+1(τ ) = 1 − π̃k+1 − ψ̃k+1(τ )(
1 − π̃k+1

)(
1 − ψ̃k+1(τ )

) (3.27)

and

r̃k+1(τ ) = π̃k
[
λk+1 + (1 − λk+1)(1 − νk+1)φ̃k+1(τ )

]
λk+1

[
1 − νk+1

(
1 − π̃k

)] − (1 − νk+1)
[
λk+1 − π̃k

]
φ̃k+1(τ )

.

Then for k = 2, 3, . . ., X̃k, the number of individuals alive immediately following the kth
detected death, satisfies {

X̃k|T̃2:k = t̃2:k
} ∼ NegBin

(
R̃k, π̃k

)
, (3.28)

where R̃k has support {2, 3, . . . , k} and P(R̃k = j) = B̃k,j (j = 2, 3, . . . , k).
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3. For k = 2, 3, . . ., let J̃k(τ ) be the (k − 1) × (k + 1) matrix with (i,j)th entry

[
J̃k(τ )

]
i,j

=
{(i+1

j−1

)
h̃k+1(τ )j−1

[
1 − h̃k+1(τ )

]i+2−j
r̃k+1(τ )i+1 for j ≤ i + 2,

0 otherwise.

For t ≥ 0, let k̃t and s̃k̃t
denote the number of detected deaths and the time of the last

detected death, respectively, up to and including time t. Let D̃t = (D̃t,0, D̃t,1, . . . , D̃t,kt )
satisfy, for t< s̃2,

D̃t =
(

π̃tψ̃2(t)

(1 − π̃t)(1 − ψ̃2(t))
,

1 − π̃t − ψ̃2(t)

(1 − π̃t)(1 − ψ̃2(t))

)
,

where

π̃t = λk̃t

[
1 − νk̃t

(
1 − π̃k̃t−1

)] − (
1 − νk̃t

)[
λk̃t

− π̃k̃t−1

]
φ̃k̃t

(
t − s̃k̃t

)
1 − νk̃t

(
1 − π̃k̃t−1

) + νk̃t

[
λk̃t

− π̃k̃t−1

]
φ̃k̃t

(
t − s̃k̃t

) , (3.29)

and for t ≥ s̃2,

D̃t =
{( kt−1∏

j=2

M̃j(tj+1)

)
J̃kt

(
t − s̃k̃t

) · 1�
k−1

}−1( kt−1∏
j=2

M̃j(tj+1)

)
J̃kt

(
t − s̃k̃t

)
.

Then Y(t) satisfies Y(t) ≡ X̃k̃t
, if t = s̃k̃t

, and{
Y(t)|T̃2:k̃t

= t̃2:k̃t

}
∼ NegBin

(
Z̃(t), πt

)
,

where Z̃(t) has support {0, 1, . . . , kt} and P(Z̃(t) = j) = D̃t,j (j = 0, 1, . . . , k̃t).

3.5. General stochastic epidemic

Finally, we turn our attention to the time-inhomogeneous general stochastic epidemic,
defined by (2.1) in Section 2, with one initial infective in an otherwise susceptible population
of size N. Let {(S(t), I(t))} denote the process of the numbers of susceptibles and infectives
at time t; as with the birth–death process, we employ the convention that the first removal
takes place at time 0. In a natural change of terminology for moving from the birth–death pro-
cess to the epidemic process, let Tk denote the inter-arrival time between the (k − 1)th and kth
removals, and let Sk denote the time of the kth removal, with the convention that S1 = 0.

The Markovian nature of the general stochastic epidemic model allows us to model the
evolution of {(S(t), I(t))} using continuous-time Markov chains; see, for example, [5] and [12].
To facilitate analysis of the model, we assume that the infection and removal parameters are
piecewise constant, and for succinctness of presentation we assume, as with the birth–death
process with partial detection of deaths, that the parameters are piecewise constant between
removals. That is, we assume that for sk−1 < t ≤ sk, between the (k − 1)th and kth removal,
βt = αk and γt =μk in (2.1).

For k = 1, 2, . . . ,N and sk ≤ t< sk+1, we derive the distribution of {I(t)|T2:k = t2:k} in
Theorem 3.3 as a product of matrices which determine the transition in the number of infec-
tives between removal events and the transition at a removal event. We continue by defining
the required matrices before stating Theorem 3.3.
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For k = 0, 1, . . . ,N, let

�k = {(N − k − i, i) : i = 1, 2, . . . ,N − k}
be the set of states of {(S(t), I(t))} in which the epidemic is still going (i.e. there is at least
one infective) and precisely k removals have occurred. Give the states in �k the labels
k1, k2, . . . , kN−k, where the state (N − k − i, i) has label ki (i = 1, 2, . . . ,N − k). For k =
0, 1, . . . ,N, let Qk,k = [qki,kj ] be the (N − k) × (N − k) transition-rate matrix for transitions
of {(S(t), I(t))} within �k. Then, using (2.1), with βt = αk+1 and γt =μk+1,

qki,kj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
(
αk+1

N
(N − k − i)i +μk+1i

)
if j = i,

αk+1

N
(N − k − i)i if j = i + 1,

0 otherwise.

(3.30)

For k = 0, 1, . . . ,N − 1, let Qk,k+1 = [qki,(k+1)j ] be the (N − k) × (N − k − 1) transition-rate
matrix for transitions of {(S(t), I(t))} from �k to �k+1 (a removal), so that, using (2.1),

qki,(k+1)j =
{

iμk+1 if i ∈ {2, 3, . . . ,N − k} and j = i − 1,

0 otherwise.

The above partitioning of the state space differs from that of both [5] and [12], where the state
space is partitioned on the basis of the number of susceptibles remaining and the focus is on
the final size (number of removals) of the epidemic.

In a similar vein, for k = 0, 1, . . . ,N, let

�̃k = {(N − k − j, j) : j = 0, 1, . . . ,N − k}
be the set of all states of {(S(t), I(t))} in which precisely k removals have occurred. Thus
�̃k =�k ∪ {(N − k, 0)}. Let Q̃k,k be the (N − k + 1) × (N − k + 1) transition-rate matrix for
transitions of {(S(t), I(t))} within �̃k. The elements of Q̃k,k are given by (3.30), except that the
indices now run from 0 to N − k. Note that the first row of Q̃k,k comprises all zeros as the
process has been absorbed. Finally, for k = 0, 1, . . . ,N, let Q̃k,k+1 be the (N − k) × (N − k)
transition-rate matrix for transitions of {(S(t), I(t))} from �k to �̃k+1. Note that Q̃k,k+1 is the
diagonal matrix with successive diagonal elements μk+1, 2μk+1, . . . , (N − k)μk+1.

Theorem 3.3. Consider an epidemic satisfying (2.1) with one initial infective in an otherwise
susceptible population of size N, and let s1 = 0, so the first removal occurs at time 0.

For k = 2, 3, . . . ,N, i = 0, 1, . . . ,N − k, and τ ≥ 0, let

vk,i(τ |t2:k) = P(I(sk + τ ) = i|T2:k = t2:k, Tk+1 > τ ),

with v1,i(τ ) = P(I(τ ) = i|T2 > τ ), and let

vk(τ |t2:k) = (vk,0(τ |t2:k), vk,1(τ |t2:k), . . . , vk,N−k(τ |t2:k)).

Then

vk(τ |t2:k) = 1

ck(τ )
u1Q−1

0,0

(
k−1∏
i=1

Qi−1,i exp(Qi,iti+1)

)
Q̃k−1,k exp

(
Q̃k,kτ

)
, (3.31)
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where u1 is the row vector of length N whose first element is 1 and all other elements are 0,

ck(τ ) = u1Q−1
0,0

(
k−1∏
i=1

Qi−1,i exp(Qi,iti+1)

)
Q̃k−1,k exp(Q̃k,kτ ) · 1�

N+1−k, (3.32)

and the product in (3.31) is equal to IN−1 if k = 1.
Also setting τ = 0 in (3.31) yields the conditional distribution of the number infected

immediately after the kth removal, given only the removal times. Note that exp(Q̃k,k0) =
IN−k+1.

The key difference from the approach for the birth–death process is the effect of the finite
size of the population, which means that infectives do not behave independently, but that for
moderate N, matrix multiplication directly yields the distribution of I(t) given only removal
times. To obtain the distribution of I(t) we require matrix exponentials and matrix multi-
plication with the initial matrices of size N × N. By comparison, the computation of the
distribution of Z(t) involves successive vector–matrix multiplication with the largest matri-
ces of size (kt − 1) × (kt + 1). Therefore, it is much faster to compute the distribution of Z(t),
and subsequently the distribution of Y(t), than the distribution of I(t).

4. Time-inhomogeneous Markov model

In this section, we study the time-inhomogeneous linear birth–death process, with the main
aim of proving Theorem 3.1. We begin by assuming that at time t = 0 (the first death), X1 ∼
Geom(π0) for some 0<π0 < 1. For example, if the birth and death rates are constants, α1
and μ1 respectively, prior to the first death, then we can follow Section 3.3 and obtain π0 =
α1/(α1 +μ1). We address the distribution of X1 (Y(0)) more fully at the end of this section,
after the proof of Theorem 3.1.

The first step to proving Theorem 3.1 is to show how the birth–death process progresses
between death events. In Lemma 4.1 we show that if we start with one initial individual at time
t, then given that no deaths have been observed by time t + τ , the number of offspring origi-
nating from the initial individual follows a geometric distribution. Before stating and proving
Lemma 4.1 we introduce some notation.

For a non-negative, integer random variable W, t ≥ 0, and τ > 0, let EW
t,τ and DW

t,τ respec-
tively denote the events that there are no deaths in the interval [t, t + τ ) and that the first death
in the birth–death process after time t is at time t + τ , given that there are W individuals in the
population at time t. For w ∈N, if P(W = w) = 1, we employ the convention Ew

t,τ .

Lemma 4.1. For t ≥ 0 and τ > 0, let Y (t)(τ ) denote the number of individuals alive at time
t + τ , given that one individual is alive at time t. Then for n ∈N,

P

(
Y (t)(τ ) = n, E1

t,τ

)
=ψ(t; τ )n−1φ(t; τ ), (4.1)

where φ(t; τ ) = exp
(

− ∫ t+τ
t (βs + γs) ds

)
and ψ(t; τ ) = ∫ t+τ

t βu exp
(
−∫ t+τ

u (βs + γs)ds
)

du

(see (3.6) and (3.7)). Therefore, we have that

P
(
E1

t,τ

) = φ(t; τ )

1 −ψ(t; τ )
, (4.2)

and

Y (t)(τ )|E1
t,τ ∼ 1 + Geom(1 −ψ(t; τ )). (4.3)
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Proof. The proof is similar to the exploration process in [9, Section 2].
First, we note that the probability that the initial individual survives to time t + τ is

exp
(

− ∫ t+τ
t γs ds

)
. We then start at time t + τ and explore the lifeline of the initial individual

back from time t + τ until we either discover an offspring or reach time t. The probability that

we reach time t, i.e. that the initial individual has no offspring, is exp
(

− ∫ t+τ
t βs ds

)
, with

exp
(

− ∫ t+τ
t γs ds

)
× exp

(
− ∫ t+τ

t βs ds
)

= φ(t; τ ).

The (defective) probability density function for the time of the first offspring, looking back

from time t + τ , is βu exp
(
− ∫ t+τ

t+u βs ds
)

. Therefore the probability that the initial individual

has at least one offspring and their first offspring (looking back from time t + τ ) survives to
time t + τ is given by ψ(t; τ ). If the initial individual has at least one offspring and their first
offspring survives to time t + τ , then we repeat the above process of exploring lifelines back
from time t + τ until we either discover an offspring or reach time t. This will start with the
offspring’s lifeline, and if they have no offspring, we will continue with the unexplored lifeline
of the initial individual. The total length of the lifeline to explore is again of length τ , and

therefore, as above, the probability of no additional offspring is exp
(
− ∫ t+τ

t βs ds
)

, while the

probability of at least one offspring and that the first offspring discovered survives until time
t + τ is ψ(t; τ ). We can repeat this process by at each stage considering the combined unex-
plored lifelines of length τ and whether or not an offspring is discovered, and if an offspring is
discovered whether or not it survives to time t + τ . This yields (4.1).

By summing over n in (4.1), we have (4.2), and (4.3) follows immediately. �

Before we consider the birth–death process evolving from a random number of individuals
at time t, and specifically a geometrically distributed number of individuals in Lemma 4.3,
we give the following elementary lemma concerning the sums of geometric random variables,
which will prove useful throughout the remainder of the paper.

Lemma 4.2. Let X, Y1, Y2, . . . be independent, with X ∼ Geom(q1) and Yi ∼ 1 + Geom(q2)
(i = 1, 2, . . . ). Let

Z =
X∑

i=1

Yi,

where Z = 0 if X = 0. Then

Z
D=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X̃ with probability
1 − q1

1 − q1q2
,

0 with probability
q1(1 − q2)

1 − q1q2
,

where X̃ ∼ Geom(q1q2).

Proof. This is elementary using probability generating functions. An alternative, more
constructive, proof is available by noting that if X′ ∼ 1 + Geom(q1) and Yi ∼ 1 + Geom(q2)

(i = 1, 2, . . . ) are independent then
∑X′

i=1 Yi ∼ 1 + Geom(q1q2). �
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For t ≥ 0, let

Gt ∼ Geom(πt), (4.4)

where πt is given by (3.2) with initial condition π0 satisfying 0<π0 < 1.

Lemma 4.3. For t ≥ 0, suppose that the number of individuals alive in a birth–death process
at time t is distributed according to Gt. For τ > 0, let Wt(τ ) denote the number of individuals
alive at time t + τ . Then

Wt(τ )|EGt
t; τ

D=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gt+τ with probability h(t; τ ) = (1 − πt)φ(t; τ )

(1 − πt+τ )[1 −ψ(t; τ )]
,

0 with probability 1 − h(t; τ ) = πt+τψ(t; τ )

(1 − πt+τ )[1 −ψ(t; τ )]
.

(4.5)

Proof. Firstly, using Lemma 4.1, it is easily shown that{
Gt|EGt

t; τ

}
D= X̃ ∼ Geom

(
1 − (1 − πt)φ(t; τ )

1 −ψ(t; τ )

)
.

The birth–death processes from each individual alive at time t proceed independently, so by
Lemma 4.1,

{
Wt(τ )|EGt

t; τ

}
=

X̃∑
i=1

Ỹi, (4.6)

where the Ỹis are independent and identically distributed according to Ỹ ∼ 1 + Geom(1 −
ψ(t; τ )). From (3.8), we have that(

1 − (1 − πt)φ(t; τ )

1 −ψ(t; τ )

)
{1 −ψ(t; τ )} = πt+τ . (4.7)

Then the lemma follows immediately from (4.6) and (4.7), using Lemma 4.2. �

An immediate consequence of Lemma 4.3 is that if T2 > t, then

Y(t)
D=

{
W0(t)|EG0

0; t

}
,

thus proving (3.4) for 0 ≤ t< s2.
We are now in a position to show that if a second death is observed in the birth–death

process, then the distribution of X2 only depends on T2 = t2 through πt2 .

Lemma 4.4. For any 0< t2 <∞,

{X2|T2 = t2} ∼ Q2(t2) = NegBin(2, πt2 ).

Proof. Given that X1
D= G0 and T2 = t2, for any 0 ≤ τ < t2, we have that Y(τ )

D= W0(τ )|EG0
0; τ ,

given in Lemma 4.3, (4.5). Therefore, for x = 0, 1, . . .,

P(X2 = x|T2 = t2) = lim
τ↑t2

P(Y(τ ) = x + 1|T2 = t2)

= lim
τ↑t2

fT2 (t2|Y(τ ) = x + 1, T2 > τ )P(Y(τ ) = x + 1|T2 > τ )P(T2 > τ )

fT2 (t2)
.

(4.8)

https://doi.org/10.1017/apr.2022.58 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.58


912 F. BALL AND P. NEAL

We consider the four terms on the right-hand side of (4.8). The first two terms are

lim
τ↑t2

fT2 (t2|Y(τ ) = x + 1, T2 > τ ) = (x + 1)γt2 (4.9)

and, using Lemma 4.3,

lim
τ↑t2

P(Y(τ ) = x + 1|T2 > τ ) = (1 − π0)φ(0; t2)

(1 − πt2 )[1 −ψ(0; t2)]
× (1 − πt2 )x+1πt2 . (4.10)

Since P(T2 > τ ) = P(EG0
0; τ ), it is straightforward, using (4.2) and (3.8), to show that

lim
τ↑t2

P(T2 > τ ) = lim
τ↑t2

π0[1 −ψ(0; τ )]

πτ
= π0[1 −ψ(0; t2)]

πt2
. (4.11)

Finally, for t ≥ 0,

fT2 (t) = − d

dt
P(T2 > t).

Since πt = 1 −ψ(0; t) − (1 − πt)φ(0; t), with φ′(0, t) = −{βt + γt}φ(0, t) and

ψ ′(0, t) = −{βt + γt}ψ(0; t) + βt,

it follows by the quotient rule that

fT2 (t) =
− π0

ψ ′(0, t){1 −ψ(0; t) − (1 − π0)φ(0; t)} − [1 −ψ(0, t)]{−ψ ′(0, t) − (1 − π0)φ′(0; t)}
π2

t

= −π0(1 − π0)φ(0; t)
ψ ′(0, t) − βt − γt + (βt + γt)ψ(0, t)

π2
t

= π0(1 − π0)φ(0; t)γt

π2
t

. (4.12)

Substituting (4.9)–(4.12) into (4.8), we obtain, for x = 0, 1, . . .,

P(X2 = x|T2 = t2) = (x + 1)γt2 × (1 − πt2 )x+1πt2
(1 − π0)φ(0; t2)

(1 − πt2 )(1 −ψ(0; t2))

×π0(1 −ψ(0; t2))

πt2

/
π0(1 − π0)φ(0; t2)γt2

π2
t2

= (x + 1)(1 − πt2 )xπ2
t2 ,

as required. �

An immediate consequence of Lemma 4.4 is that the distribution of Xk|T2:k = t2:k given by
(3.3) holds for k = 2 with P(R2 = 2) = 1. We proceed by building upon Lemmas 4.3 and 4.4 to
derive Z(t) for t> s2, and Rk = Z(sk) (k = 3, 4, . . . ).

Corollary 4.1. Suppose that at time t ≥ 0 there exists j ∈N such that Z(t) = j; that is, there are
Qj(t) ∼ NegBin(j, πt) individuals in the population. Then{

Z(t + τ )|Z(t) = j, E
Qj(t)
t,t+τ

}
∼ Bin(j, h(t; τ )) (4.13)
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and {
Z(t + τ )|Z(t) = j,D

Qj(t)
t,t+τ

}
∼ 2 + Bin(j − 1, h(t; τ )), (4.14)

where h(t; τ ) is defined in Lemma 4.3, (4.5).
Similarly, for j, k = 1, 2, . . . we have, for sk, tk+1 ≥ 0,

{Rk+1|Rk = j, Sk = sk, Tk+1 = tk+1} ∼ 2 + Bin(j − 1, h(sk; tk+1)). (4.15)

Proof. For t ≥ 0, suppose that at time t a family group comprises a random number of
individuals distributed according to Geom(πt). Then Z(t) denotes the number of family groups
at time t; note that a family group can contain 0 individuals. The corollary follows immediately
from Lemmas 4.3 and 4.4, since the j family groups present at time t evolve independently. If
there are no deaths in the interval [t, t + τ ), then all j family groups, independently, behave
according to (4.5), giving (4.13). On the other hand, if the first death after time t is at time
t + τ , one family group must be responsible for the death, and the size of that family group
following the death is NegBin(2, πt+τ ), by a modification of the arguments in Lemma 4.4 with
a time shift of t. That is, the family group responsible for the death splits (or gives birth to a
family group) to become two family groups. The other j − 1 family groups have experienced
no deaths in an interval of length τ , and the sizes of these family groups are independently
distributed according to (4.5), giving (4.14). An identical argument gives (4.15). �

We continue by studying {(Rj, Tj); j = 1, 2, . . .} in detail, with Z(t), and consequently
Xk and Y(t), following trivially. Before proceeding we note that by the Markov prop-
erty, {(Rj, Tj); j = (k + 1), (k + 2), . . .} depends on {(Rl, Tl); l = 2, 3, . . . , k} through Rk only.
Also, if R1 ≡ 1, which is the case in the statement of Theorem 3.1 as we can write X1 ∼
NegBin(1, π0), it follows that Rk only takes values in the range {2, 3, . . . , k}. The process
{(Rj, Tj); j = 1, 2, . . .} is a (possibly terminating) semi-Markov sequence (see, for example,
[16] or [7]). Lemma 4.5 gives a recursive relationship expressing Bk (the probability mass
function of Rk) in terms of Bk−1 (the probability mass function of Rk−1) and Tk = tk, after
which we will be in a position to complete the proof of Theorem 3.1.

Lemma 4.5. For k = 3, 4, . . . and j = 2, 3, . . . , k, Bk,j satisfies

Bk,j =
∑k−1

l=j−1

(l−1
j−2

){ (1−πsk−1 )πsk−1
(1−πsk )πsk

φ(sk−1; tk)
}j−2{ πsk−1

1−πsk
ψ(sk−1; tk)

}l+1−j
lBk,l∑k

m=2

{
πsk
πsk+1

(1 −ψ(sk; tk+1))
}m−1

mBk,m

. (4.16)

Hence,

Bk = 1

Ck−1
Bk−1Mk−1(sk−1; tk), (4.17)

where, for τ ≥ 0, Mk−1(t; τ ) is a (k − 2) × (k − 1) matrix given in (3.9), and

Ck−1 =
k−1∑
m=2

{
πsk−1 (1 −ψ(sk−1; tk))

πsk

}m−1

mBk−1,m = Bk−1Mk−1(sk−1; tk) · 1�
k−1.

(4.18)
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Proof. By conditioning upon Rk−1, we have that

Bk,j = P(Rk = j|T2:k = t2:k)

=
k−1∑
l=2

P(Rk = j, Rk−1 = l|T2:k = t2:k)

=
k−1∑
l=2

P(Rk = j|Tk = tk, Rk−1 = l)fTk (tk|T2:k−1 = t2:k−1, Rk−1 = l)Bk−1,l

fTk (tk|T2:k−1 = t2:k−1)
. (4.19)

The denominator in (4.19) satisfies

fTk (tk|T2:k−1 = t2:k−1) =
k−1∑
m=2

fTk (tk|T2:k−1 = t2:k−1, Rk−1 = m)Bk−1,m, (4.20)

and by considering the Rk−1 = j independent family groups, it follows by using (4.11) and
(4.12) that for τ > 0,

fTk (τ |Rk−1 = j,T2:k−1 = t2:k−1) = j

{
πsk−1 (1 −ψ(sk−1; τ ))

πsk−1+τ

}j−1

× πsk−1 (1 − πsk−1 )φ(sk−1; τ )γsk−1+τ
π2

sk−1+τ
. (4.21)

Let Lk−1 = {πsk−1 (1 − πsk−1 )φ(sk−1; tk)γsk}/π2
sk

; then it follows from (4.20) and (4.21) that

fTk (tk|T2:k−1 = t2:k−1) = Lk−1

k−1∑
m=2

m

{
πsk−1 (1 −ψ(sk−1; tk))

πsk

}m−1

Bk−1,m. (4.22)

Given that Rk ≤ Rk−1 + 1, and from (3.8), πsk = 1 −ψ(sk−1; tk) − (1 − πsk−1 )φ(sk−1; tk), it
follows that

k−1∑
l=2

P(Rk = j|Tk = tk, Rk−1 = l)fTk (tk|T2:k−1 = t2:k−1, Rk−1 = l)Bk−1,l

=
k−1∑

l=j−1

(
l − 1

j − 2

)
h(sk−1; tk)j−2{1 − h(sk−1; tk)}l+1−j

× l

{
πsk−1 (1 −ψ(sk−1; tk))

πsk

}l−1πsk−1 (1 − πsk−1 )φ(sk−1; tk)γsk

π2
sk

× Bk−1,l

= Lk−1

k−1∑
l=j−1

(
l − 1

j − 2

){
(1 − πsk−1 )φ(sk−1; tk)

(1 − πsk )(1 −ψ(sk−1; tk))

}j−2{
1 − (1 − πsk−1 )φ(sk−1; tk)

(1 − πsk )(1 −ψ(sk−1; tk))

}l+1−j

× l

{
πsk−1 (1 −ψ(sk−1; tk))

πsk

}l−1

× Bk−1,l
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= Lk−1

k−1∑
l=j−1

(
l − 1

j − 2

){
πsk−1 (1 − πsk−1 )φ(sk−1; tk)

(1 − πsk )πsk

}j−2

×
{

πsk−1

(1 − πsk )πsk

(πsk (1 −ψ(sk−1; tk)) − (1 − πsk−1 )φ(sk−1; tk))

}l+1−j

× lBk−1,l

= Lk−1

k−1∑
l=j−1

(
l − 1

j − 2

){
πsk−1 (1 − πsk−1 )

(1 − πsk )πsk

φ(sk−1; tk)

}j−2{ πsk−1

(1 − πsk )
ψ(sk−1; tk)

}l+1−j

lBk−1,l.

(4.23)

Therefore (4.16) follows from substituting (4.22) and (4.23) into (4.19).
It is straightforward to check that C−1

k−1Bk−1Mk−1(sk−1; tk) gives Bk satisfying (4.17), and
the lemma is proved. �

Proof of Theorem 3.1. By noting that B2 = I1 (the 1 × 1 identity matrix) and iterating from
k to 2, it follows from Lemma 4.5, (4.17), that Bk satisfies (3.11), and (3.3) is proved.

We now turn to Z(t). As noted after Lemma 4.3, for 0 ≤ t< s2 the probability mass function
of Z(t) is given by Dt defined in (3.12). For t ≥ s2, kt ≥ 2, and let σt = t − skt denote the time
since the last death, up to and including time t. It follows, by arguments similar to those in the
proof of Lemma 4.5, that for kt = 2, 3, . . . and j = 0, 1, . . . , kt,

Dt,j =
kt∑

l=2

P
(

Z(t) = j, Z
(
skt

) = Rkt = l
∣∣ T2:kt = t2:kt

)

=
∑kt

l=2 P
(
Z(t) = j

∣∣Z(
skt

) = l,T2:kt = t2:kt

)
P
(
Tkt+1 >σt|Z

(
skt

) = l
)
Bkt,l∑kt

m=2 P
(
Tkt+1 >σt|Z

(
skt

) = m
)
Bkt,m

=
∑kt

l=j

(l
j

)
h(skt ; σt)j{1 − h(skt ; σt)}l−j ×

{
πskt
πt

(
1 −ψ(skt ; σt)

)}l

× Bkt,l

∑kt
m=2

{
πskt
πt

(
1 −ψ(skt ; σt)

)}m

Bkt,m

=
∑kt

l=j

(l
j

){ (1−πskt
)πskt

(1−πt)πt
φ(sk; σt)

}j{
πskt
1−πt

ψ(sk; σt)

}l−j

Bkt,l

∑kt
m=2

{
πskt
πt

(
1 −ψ(sk; σt)

)}m

Bkt,m

. (4.24)

It is straightforward to combine (4.24) with Lemma 4.5 to show that Dt can be expressed in
matrix form as (3.13), completing the proof of Theorem 3.1. �

We return to the distribution of X1. As already noted, if, for t< 0, βt = α1 and γt =μ1,
then X1 ∼ Geom (π0) with π0 =μ1/(α1 +μ1). Suppose that T1 = t1 is known; for example,
it might be known, or found by contact tracing, when the introductory individual entered the
population. Then the initial individual is born at time −t1, and it follows from Lemma 4.1 and
arguing along similar lines to Lemma 4.4 that, for x = 0, 1, . . .,

P(X1 = x|T1 = t1) = (x + 1) (ψ( − t1; t1))x (1 −ψ( − t1; t1))2 ,
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and therefore X1|T1 = t1 ∼ NegBin(2, 1 −ψ( − t1; t1)). It is straightforward to adjust the above
arguments by setting π0 = 1 −ψ( − t1; t1) and using (3.8) to obtain the distribution Xk|T1:k =
t1:k and Y(t)|T1:k = t1:kt . Specifically, for k = 1, 2, . . ., the development of the birth–death
process with known introductory time after the kth death will mirror the development of the
birth–death process with unknown introductory time after the (k + 1)th death. Consequently,
for the case of known introductory time, the distribution of the size of the population at time t
will be a mixture of {NegBin(j, πt); j = 0, 1, . . . , kt + 1}.

We conclude this section with the proof of Corollary 3.1.

Proof of Corollary 3.1. In the case k = 2, (3.16) follows immediately from (4.12) in the
proof of Lemma 4.4.

To prove (3.16) for k> 2, we can use induction. From (4.22) and (4.18), we have that

fTk (tk|T2:k−1 = t2:k−1) = Lk−1Ck−1

= πsk−1 (1 − πsk−1 )φ(sk−1; tk)γsk

π2
sk

×
[
Bk−1Mk−1(sk−1; tk) · 1�

k−1

]
.

Using (3.11), we have that

Bk−1Mk−1(sk−1; tk) · 1�
k−1

=
⎡
⎣
{

k−2∏
j=2

Mj(sj; tj+1) · 1�
k−2

}−1 k−2∏
j=2

Mj(sj; tj+1)

⎤
⎦ Mk−1(sk−1; tk) · 1�

k−1

=
{

k−2∏
j=2

Mj(sj; tj+1) · 1�
k−2

}−1{ k−1∏
j=2

Mj(sj; tj+1) · 1�
k−1

}
. (4.25)

Therefore,

fT2:k (t2:k) = fTk (tk|T2:k−1 = t2:k−1)fT2:k−1 (t2:k−1)

= πsk−1 (1 − πsk−1 )φ(sk−1; tk)γsk

π2
sk

{
k−2∏
j=2

Mj(sj; tj+1) · 1�
k−2

}−1{ k−1∏
j=2

Mj(sj; tj+1) · 1�
k−1

}

×
k−1∏
j=2

πsj−1 (1 − πsj−1 )γsjφ(sj−1; tj)

π2
sj

×
{[

k−2∏
j=2

Mj(sj; tj+1)

]
· 1�

k−2

}

=
k∏

j=2

πsj−1 (1 − πsj−1 )γsjφ(sj−1; tj)

π2
sj

×
{[

k−1∏
j=2

Mj(sj; tj+1)

]
· 1�

k−1

}
, (4.26)

as required. �

5. Partial detection of deaths

In this section, we prove Theorem 3.2 with piecewise constant birth and death rates between
the detected deaths. The overall structure of the proof of Theorem 3.2 is similar to that of

https://doi.org/10.1017/apr.2022.58 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.58


The size of an SIR epidemic given only removal data 917

Theorem 3.1, but Lemma 4.1 does not extend to the case where some deaths are not detected.
It is straightforward to modify [9, Section 2] to show that, given that there is one individ-
ual at time t and that there has been no detection by time t + τ , the number of individuals
alive, Ỹ (t)(τ ), at time t + τ is a shifted geometric random variable. Specifically, if Ẽt,τ is
the event that there are no detections in the interval [t, t + τ ], then there exist a(τ ) and b(τ )
such that P(Ỹ (t)(τ ) = 0|Ẽt,τ ) = a(τ ) and P(Ỹ (t)(τ ) = n + 1|Ỹ (t)(τ ) = 0, Ẽt,τ ) = (1 − b(τ ))nb(τ )
(n = 0, 1, . . . ). However, this approach does not yield explicit expressions for a(τ ) and b(τ ).
It is more constructive to use probability generating functions and in particular [6], which
gives the joint probability generating function of the number of individuals alive and the total
number of deaths up to time t in a time-homogeneous birth–death process with one initial
individual at time 0. The result analogous to Lemma 4.1 is given in Lemma 5.1. A conse-
quence of Lemma 5.1 is that the number of individuals alive immediately following the first
detected death satisfies Theorem 3.2(1), i.e. X̃1|T̃1 <∞ ∼ Geom(π̃1), where π̃1 = λ1 is defined
in (3.24). Then in Lemma 5.2, we prove results analogous to Lemmas 4.3 and 4.4, stating that
if the number of individuals alive at time t follows a geometric distribution and there are no
detected deaths in the interval [t, t + τ ), then the number of individuals alive at time t + τ is
a mixture of a geometric random variable and a point mass at 0, and if the first detected death
after time t is at time t + τ , then the number of individuals alive at time t + τ follows a negative
binomial distribution with shape parameter 2. The proof of Lemma 5.2 utilises probability gen-
erating functions in a similar manner to the proof of Lemma 5.1. The remainder of the proof
of Theorem 3.2 follows straightforwardly as Corollary 4.1 and Lemma 4.5 hold with minor
modifications.

Before proving Theorem 3.2, we show how we can use [6] to combine the probability
generating function of the number of individuals alive at time τ > 0 with the events of no
deaths being detected in the interval [0, τ ) and the first detected death after time 0 being at time
τ . Let ω= (α, μ, d) denote a generic triple of birth rate, death rate, and detection probability,
with ω̃k = (α̃k, μ̃k, d̃k) denoting the triple of birth rate, death rate, and detection probability
between the (k − 1)th and kth detections of death. For τ > 0, let Yω(τ ), Vω(τ ), and Uω(τ )
denote the number of individuals alive, the number of deaths, and the number of detected
deaths, respectively, in a time-homogeneous birth–death process with parameters ω at time τ
given a single initial individual at time 0. Let

HE
ω(τ, θ ) =E

[
θYω(τ )1{T̃>τ }

]
=E

[
θYω(τ )1{Uω(τ )=0}

]
,

where T̃ denotes the time of the first detected death after time t. Since Uω(τ )|Vω(τ ) ∼
Bin(Vω(τ ), d), it follows that

HE
ω(τ, θ ) =E

[
θYω(τ )(1 − d)Vω(τ )

]
.

In line with the notation prior to Theorem 3.2, we set p = α/(μ+ α), q =μ/(μ+ α),

ū = √
1 − 4pq(1 − d), λ̄ = 1 + ū − 2p

1 + ū
,

ν̄ = 1 − ū

2p
, ζ̄ = 1 + ū

2p
= 1

1 − λ̄
,

φ̄(τ ) = exp(−[α +μ]ūτ) , ψ̄(τ ) = (1 − λ̄)(1 − φ̄(τ ))

1 − ν̄(1 − λ̄)φ̄(τ )
.
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Then, using the equation before (3) in [6], we have, in our notation and after a minor
rearrangement, that

HE
ω(τ, θ ) = 1

2p
− ū

2p

[
θ − ζ̄ + (θ − ν̄)φ̄(τ )

θ − ζ̄ − (θ − ν̄)φ̄(τ )

]

= (θ − ζ̄ )ν̄ − (θ − ν̄)ζ̄ φ̄(τ )

θ − ζ̄ − (θ − ν̄)φ̄(τ )
. (5.1)

Similarly, we can define

HD
ω (τ, θ ) =E

[
θWω(τ )|T̃ = τ

]
fT̃ (τ )

= ∂

∂θ
HE
ω(τ, θ )

= ū2φ̄(τ )

p2[θ − ζ̄ − (θ − ν̄)φ̄(τ )]2
= [1 − 4pq(1 − d)]φ̄(τ )

p2[θ − ζ̄ − (θ − ν̄)φ̄(τ )]2
. (5.2)

Lemma 5.1. Suppose that for t< 0, (βt, γt, δt) = (α̃1, μ̃1, d̃1). Then

{Y(0)|T̃ <∞} ∼ Geom (π̃1) . (5.3)

Proof. Given that a death is detected (T̃ <∞) and the parameters prior to the first detected
death are ω̃1, we have that {Y(0)|T̃ <∞} has probability generating function

E

[
θY(0)

∣∣∣ T̃ <∞
]
=E

[
θ

Wω̃1
(T̃)

∣∣∣ T̃ <∞
]
=

∫ ∞
0 HD

ω̃1
(τ, θ ) dτ∫ ∞

0 HD
ω̃1

(τ, 1) dτ
. (5.4)

It is then straightforward, applying a change of variable y = θ − ζ̃1 − [θ − ν̃1]φ̃1(τ ) in the
integrals in (5.4), to show that

E

[
θY(0)

∣∣∣ T̃ <∞
]
= π̃1

1 − (1 − π̃1)θ
,

whence (5.3) follows. �
Lemma 5.2. Suppose that we have a time-homogeneous linear birth–death process with
parameters ω= (α, μ, d). For t ≥ 0, let Ȳω(t) denote the number of individuals alive at time t,
with Ȳω(0) ∼ Geom(π∗) for some 0<π∗ < 1.

Let Ēτ and D̄τ denote the events that there are no detected deaths on the interval [0, τ ) and
that the first detected death after time 0 is at time τ , respectively. Then

Ȳω(τ )|Ēτ ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Geom(π̌τ ) with probability h̄(τ ) = 1 − π̌τ − ψ̄(τ )

(1 − π̌τ )(1 − ψ̄(τ ))
,

0 with probability 1 − h̄(τ ) = π̌τ ψ̄(τ )

(1 − π̌τ )(1 − ψ̄(τ ))
,

(5.5)

and

Ȳω(τ )|D̄τ ∼ NegBin(2, π̌τ ), (5.6)
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where

π̌τ =
λ̄[1 − ν̄(1 − π∗)] − (1 − ν̄)[λ̄− π∗]φ̄(τ )

1 − ν̄(1 − π∗) + ν̄[λ̄− π∗]φ̄(τ )
. (5.7)

Proof. To prove (5.5), we first note that the joint probability generating function of Ȳω(τ )
and no death detected in the interval [0, τ ) can be written, for 0 ≤ θ ≤ 1, as

E

[
θ Ȳω(τ )1{Ēτ }

]
=

∞∑
j=0

HE
ω(τ, θ )j(1 − π∗)jπ∗. (5.8)

It follows from (5.1) and ζ̄ = 1/(1 − λ̄) that

∞∑
j=0

{
HE
ω(τ, θ )(1 − π∗)

}j

= θ − ζ̄ − (θ − ν̄)φ̄(τ )

[θ − ζ̄ − (θ − ν̄)φ̄(τ )] − (1 − π∗)[(θ − ζ̄ )ν̄ − (θ − ν̄)ζ̄ φ̄(τ )]

= 1 − ν̄(1 − λ̄)φ̄(τ ) − (1 − λ̄)(1 − φ̄(τ ))θ

[1 − ν̄(1 − π∗) + ν̄(λ̄− π∗)φ̄(τ )] − [(1 − λ̄)(1 − ν̄(1 − π∗)) + (λ̄− π∗)φ̄(τ )]θ
. (5.9)

Setting θ = 1 in (5.9) and substituting into (5.8) yields

P(Ēτ ) = π∗[λ̄+ (1 − λ̄)(1 − ν̄)φ̄(τ )]

λ̄[1 − (1 − π∗)ν̄] − (1 − ν̄)[λ̄− π∗]φ̄(τ )
. (5.10)

Using (5.8)–(5.10) and the definitions of π̌t and ψ̄(τ ), we have that

E

[
θ Ȳω(τ )

∣∣∣ Ēτ
]

=
E

[
θ Ȳω(τ )1{Ēτ }

]
P(Ēτ )

= λ̄[1 − (1 − π∗)ν̄] − (1 − ν̄)[λ̄− π∗]φ̄(τ )

λ̄+ (1 − λ̄)(1 − ν̄)φ̄(τ )

× 1 − ν̄(1 − λ̄)φ̄(τ ) − (1 − λ̄)(1 − φ̄(τ ))θ

[1 − ν̄(1 − π∗) + ν̄(λ̄− π∗)φ̄(τ )] − [(1 − λ̄)(1 − ν̄(1 − π∗)) + (λ̄− π∗)φ̄(τ )]θ

= 1 − ν̄(1 − λ̄)φ̄(τ ) − (1 − λ̄)(1 − φ̄(τ ))θ

λ̄+ (1 − λ̄)(1 − ν̄)φ̄(τ )
× π̌τ

1 − [1 − π̌τ ]θ

= 1 − ψ̄(τ )θ

1 − ψ̄(τ )
× π̌τ

1 − [1 − π̌τ ]θ

= π̌τ ψ̄(τ )

(1 − π̌τ )(1 − ψ̄(τ ))
+ 1 − π̌τ − ψ̄(τ )

(1 − π̌τ )(1 − ψ̄(τ ))
× π̌τ

1 − [1 − π̌τ ]θ
. (5.11)

Then (5.5) follows immediately from (5.11).
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Finally, let

L(τ ; θ ) = ∂

∂θ
E

[
θYω(τ )

∣∣∣ Ēτ
]

= π̌τ [1 − π̌τ − ψ̄(τ )]

[1 − ψ̄(τ )][1 − (1 − π̌τ )θ ]2
.

Then, given that fT̄ (τ ) = L(τ, 1), it is straightforward to show that for 0 ≤ θ ≤ 1,

E

[
θ Ȳω(τ )

∣∣∣ D̄τ
]
= L(τ ; θ )

L(τ ; 1)
= π̌2

τ

[1 − (1 − π̌τ )θ ]2
,

which yields (5.6) and completes the proof of Lemma 5.2. �

Proof of Theorem 3.2. Part 1 is proved in Lemma 5.1; we now provide the details of the
proof of Part 2, the distribution of the number of individuals alive immediately following the
kth detected death. The proof of Part 3, the distribution of the number of individuals alive at
time t, can then be obtained along similar lines to those used in the proof of Theorem 3.1,
using the distribution of the number of individuals alive at, and the time since, the most recent
detected death.

Let R̃k (k = 1, 2, . . .) be defined to satisfy

{X̃k|T̃2:k} ∼ NegBin(R̃k, π̃k).

Then it follows from Lemma 5.2, using arguments virtually identical to those in the proof of
Corollary 4.1, that for k = 2, 3, . . . and j = 1, 2, . . .,

{R̃k|R̃k−1 = j, T̃k = t̃k} ∼ 2 + Bin(j − 1, h̃k(t̃k)),

where h̃k(t̃k) is given in (3.27). It is then straightforward, following the proof of Lemma 4.5, to
show that P(Rk = j|T̃2:k) = B̃k,j, where B̃k = (B̃k,2, B̃k,3, . . . , B̃k,k) satisfies (3.26), completing
the proof of Part 2. �

6. Process of infectives in general stochastic epidemic given removal times

In this section, we prove Theorem 3.3. We begin by outlining some results from the theory
of aggregated continuous-time Markov chains from which the proof of Theorem 3.3 follows
straightforwardly.

Let {W(t)} = {W(t) : t ≥ 0} be a homogeneous continuous-time Markov chain hav-
ing finite state space E = {1, 2, . . . , n} and transition-rate matrix Q = [qij]. Thus qij =
limt↓0 t−1

P(W(t) = j|W(0) = i) (i = j) and qii = − ∑
j =i qij. The state space is partitioned

as E = A ∪ B, where A = {1, 2, . . . , nA} and B = {nA + 1, nA + 2, . . . , n}. Let nB = n − nA

denote the cardinality of B. Partition Q into

Q =
[

QAA QAB

QBA QBB

]
,

in the obvious fashion.

https://doi.org/10.1017/apr.2022.58 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.58


The size of an SIR epidemic given only removal data 921

Suppose that W(0) ∈ A, and let T = inf{t> 0 : W(t) ∈ B} be the time when {W(t)} first
visits B. Suppose that P(T <∞|W(0) = i) = 1 for all i ∈ A. Let F(t) = [Fij(t)] be defined
elementwise by

Fij(t) = P(T ≤ t and W(T) = nA + j|W(0) = i) (t ≥ 0; i = 1, 2, . . . , nA; j = 1, 2, . . . , nB),

and let f(t) = F′(t), where the differentiation is elementwise. Then (see for example [4])

f(t) = exp(QAAt)QAB (t ≥ 0). (6.1)

Further, let PAB be the nA × nB matrix with (i, j)th element given by P(W(T) = nA + j|W(0) =
i). Then

PAB =
∫ ∞

0
f(t) dt = −Q−1

AAQAB. (6.2)

Note that QAA is nonsingular since A is a transient class, so by [1, p. 77], all eigenvalues of
QAA have strictly negative real parts.

Proof of Theorem 3.3. For k = 2, 3, . . . ,N + 1 and i = 0, 1, . . . ,N + 1 − k, let fk,i(t2:k) be
the probability density of the event {T2:k = t2:k and I(Sk) = i}, and let

fk(t2:k) = (fk,0(t2:k), fk,1(t2:k), . . . , fk,N+1−k(t2:k)).

Exploiting the conditional independence along the sample paths of {(S(t), I(t))}, application
of (6.2) followed by repeated application of (6.1) yields

fk(t2:k) = −u1Q−1
0,0Q0,1

(
k−2∏
i=1

exp(Qi,iti+1)Qi,i+1

)
exp(Qk−1,k−1tk)Q̃k−1,k, (6.3)

where u1 is the row vector of length N whose first element is 1 and all of whose other elements
are 0, and the product is given by the identity matrix IN−1 when k = 2.

Let

wk(t2:k) = (wk,0(t2:k),wk,1(t2:k), . . . ,wk,N−k(t2:k)),

where wk,i(t2:k) = P(I(Sk) = i|T2:k = t2:k). Then

wk(t2:k) = fk(t2:k)/(fk(t2:k) · 1�
N+1−k).

Then, since Q̃k,k is the transition-rate matrix for transitions of {(S(t), I(t))} within �̃k, for 0 ≤
τ < tk+1,

vk(τ |t2:k) = wk(t2:k) exp(Q̃k,kτ ).

Using (6.3), we have that (3.31) and (3.32) follow immediately. �

7. Numerical results

In this section, we illustrate briefly the practical usefulness of the results of this paper.
We simulated a time-homogeneous linear birth–death process with βt = 1.5 and γt = 1.0

up to the 200th death and estimated the size of the population over time based upon (partial)
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FIGURE 1. Number of individuals alive (solid line) and median of Y(t)|t2:kt (dashed line) up to the 200th
death, with βt = 1.5 and γt = 1.0. The shaded area represents the probability mass between the 10% and
90% quantiles of Y(t). Top: d = 1. Bottom: d = 0.25.

observation of the death process. We considered the cases where the detection probability of
a death was d = 1 (all deaths are detected) and d = 0.25. In Figure 1, we plot the number of
individuals alive against time, along with the median of Y(t) calculated using Theorem 3.1
(d = 1) and Theorem 3.2 (d = 0.25). The plot also includes the 10% and 90% quantiles of
Y(t), l(t), and h(t), respectively, with [l(t), h(t)] shaded for all t ≥ 0. We set time t = 0 to be
the time of the first death and note that for the case d = 0.25 the first detected death is not
until t = 0.9875, at which point the estimation of the number of individuals alive starts. The
estimation of Y(t) is similar in both cases, although for d = 0.25 the loss of information from
detecting only a quarter of the deaths is observed in a larger quantile range for Y(t).
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FIGURE 2. Number of individuals alive (solid line) and E[Y(t)|t2:kt ] (dashed line) for a population with
control measures and γ = 1. Parameters: αN = 1.5 (no control measures), αC = 0.5 (control measures),
ϑU = 4 (control measures introduced), ϑL = 1 (control measures lifted). Shaded area denotes control
measures in place.

We demonstrate the use of Theorem 3.1 for implementing control measures. Suppose that
the birth rate is αN > 1 when there are no control measures and αC < 1 when control measures
are in place. Let γt ≡ 1, so that the birth–death process is super-critical in the absence of
control measures and sub-critical when control measures are in place. We assume that ini-
tially the population evolves without control measures until an upper threshold, ϑU , is hit,
at which point control measures are introduced. The population remains in control measures
until a lower threshold, ϑL, is reached, at which point control measures are removed. We
assume that the population can enter and leave control measures multiple times. We con-
sider control measures based upon E[Y(t)|t2:kt ], which can be implemented in real time,
although alternatives based on the median of Y(t) or the probability of extinction in the
absence of control measures could easily be used. We have that control measures are intro-
duced for the first time at u1 = mint{E[Y(t)|t2:kt ] ≥ ϑU} and are lifted for the first time at
l1 = mint>u1{E[Y(t)|t2:kt ] ≤ ϑL}. Note that it follows from Theorem 3.1 that E[Y(t)|t2:kt ] jumps
up at death times and decreases continuously between death times. Therefore the introduction
of control measures immediately follows a death, with subsequent lifting when no death has
occurred for a sufficiently long time interval. An illustration of a simulation with control mea-
sures is given in Figure 2, in which αN = 1.5, αC = 0.5, ϑU = 4, and ϑL = 1. In the example,
three episodes of control measures are required. A plot of πt given by the ODE in (3.2) is
presented in Figure 3, which shows rapid changes after the introduction and removal of control
measures.

Finally, we apply the birth–death process calculations to an epidemic outbreak. We con-
sider two different birth–death process approximations of the general stochastic epidemic
model. At the kth removal times we compare the mean number of individuals alive in the
birth–death process approximation calculated using Theorem 3.1 with the corresponding mean
number of infectives in the general stochastic epidemic model calculated using Theorem 3.3.
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FIGURE 3. Plot of πt against time for the population with control measures in Figure 2. Parameters: αN =
1.5 (no control measures), αC = 0.5 (control measures), γ = 1 (death rate), ϑU = 4 (control measures
introduced), ϑL = 1 (control measures lifted). Horizontal dashed lines at qC = 1/(1 + αC) = 2/3 (upper)
and qN = 1/(1 + αN ) = 2/5 (lower) correspond to the probability that an event is a death under a constant
regime of control measures (upper) and no control measures (lower).
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FIGURE 4. Plot of the number of infectives at removal times against time (black dots) for an
epidemic of final size 829 in a population of size N = 2000, generated with βt( = α) = 1.25 and
γt( =μ) = 1. The mean number of infectives estimated using only removal times is given using the gen-
eral stochastic epidemic model (red line), time-homogeneous birth–death process (green, dotted line),
and time-inhomogeneous birth–death process with non-susceptibles accounted for (blue, dashed line).
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In Figure 4, an epidemic outbreak with final size 829 in a population of size N = 2000 gen-
erated with βt( = α) = 1.25 and γt( =μ) = 1 is plotted, with the mean number of infectives
(individuals alive) after each removal (death) calculated using Theorem 3.3 (Theorem 3.1).
The two birth–death process approximations we consider are the time-homogeneous birth–
death process with α = 1.25 and μ= 1, which does not take account of the removal of
infectives, and the time-inhomogeneous birth–death process with piecewise constant birth
rate αk = 1.25(N − {k − 1 +E[Y(sk−1)|T2:k−1 = t2:k−1]})/N between the (k − 1)th and kth
removal and death rate μ= 1, which reduces the birth rate by the estimated proportion of the
population who are not susceptible (k − 1 removed individuals and E[Y(sk−1)|T2:k−1 = t2:k−1],
the estimated number of infectives). We observe that both approximations give a reasonable
estimate of the mean number of infectives, especially in the early stages of the epidemic, when
the birth–death process approximation is most appropriate. By taking account of the number
of non-susceptible individuals we obtain a very good approximation in which the expected
number of infectives differs by at most 0.9157 from that given by the general stochastic epi-
demic model. It should be noted that the computation of the distribution of the birth–death
approximation is much faster than that of the general stochastic epidemic model, as the former
involves vector–matrix multiplication while the latter involves matrix exponentials and matrix
multiplication.

8. Concluding remarks

Explicit formulae for the distribution of the number of infectives (individuals alive) in a gen-
eral stochastic epidemic (branching process), given only partial information, have the potential
to assist with many areas of disease management. Firstly, from a statistical perspective, we are
able to calculate the likelihood of the observed removal times (Corollary 3.1) without the need
for computationally intensive data augmentation (cf. [13, 15]). This allows rapid computa-
tion of the likelihood, enabling the use of likelihood-based statistical methods to maximise the
likelihood or obtain estimates from the posterior distribution of the parameters, and allowing
for greater understanding as we do not need to integrate over augmented data. Moreover, the
ability to include time-varying parameters allows the estimation of infection rates before and
after control measures are introduced. We will present a summary of statistical methodology,
including partial observations of the death (removal) process, elsewhere. Secondly, from a pub-
lic health perspective, we can easily obtain epidemic quantities of interest, such as the mean
number of infectives or the probability that the epidemic is, or will go, extinct. This enables
the introduction and lifting of control measures in a scientifically informed manner, extending
this work beyond the numerical illustrations given in Section 7.

In this paper we have focused on the Markovian SIR epidemic model and its approximating
branching (birth–death) process. We can extend the model to allow for a more general infec-
tious period (lifetime) distribution. It is straightforward using [9] to show that the number of
individuals alive immediately after the first death in a branching process, where individuals
have a constant birth rate and independent and identically distributed lifetimes, follows a geo-
metric distribution. The distribution of residual lifetime of individuals alive at the first death
time means that the arguments used in Section 4 do not extend beyond exponential lifetime
distributions. Progress can be made for phase-type lifetime distributions, and we will show
elsewhere that the number of individuals alive in the approximating branching process at time
t ≥ 0 can be expressed as a sum of kt (the total number of observed deaths/removals up to
and including time t) independent random variables. Each of the random variables in the sum
satisfies one of the three distributions, based on (a) a geometric random variable, (b) a mixture
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of a geometric random variable and a point mass at 0, and (c) a sum of an independent geo-
metric random variable and a Bernoulli random variable. Note that for birth–death processes
considered in this paper, only the random variables (a) and (b) feature in the distribution of the
number of individuals alive at a given point in time.
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