ON HOMEOMORPHISMS OF A 3-DIMENSIONAL HANDLEBODY

SHIN'ICHI SUZUKI

1. Introduction. By a 3-dimensional handlebody V_{n} of genus n, we mean an oriented 3 -manifold which is a disk-sum of n copies of $D^{2} \times S^{1}$, where D^{2} is the unit disk and S^{1} is the boundary ∂D^{2}; and by a surface F_{n} of genus n we mean the oriented boundary surface ∂V_{n}.

Let $\mathscr{H}\left(F_{n}\right)$ be the group of all orientation preserving homeomorphisms of F_{n} onto itself, and $\mathscr{D}\left(F_{n}\right)$ the normal subgroup consisting of those homeomorphisms which are isotopic to the identity. Then the mapping class group $\mathscr{M}\left(F_{n}\right)$ of F_{n} is defined to be the quotient group $\mathscr{H}\left(F_{n}\right) / \mathscr{D}\left(F_{n}\right)$. By a classical result of Dehn [7], later simplified and reproved by Lickorish [14], the group $\mathscr{M}\left(F_{n}\right)$ is generated by so-called Dehn twists, see Birman [3; 4, Chapter 4]. Now we consider a subgroup, say $\mathscr{H}^{*}\left(F_{n}\right)$, of $\mathscr{H}\left(F_{n}\right)$ consisting of those homeomorphisms which can be extended to homeomorphisms of V_{n} onto itself, and a subgroup, say $\mathscr{M}^{*}\left(F_{n}\right)$, of $\mathscr{M}\left(F_{n}\right)$ consisting of isotopy classes of elements in $\mathscr{H}^{*}\left(F_{n}\right)$. The purpose of this paper is to determine generators for $\mathscr{M}^{*}\left(F_{n}\right)$, which responds partially to Problem 4 of Birman [5]. The group $\mathscr{M}^{*}\left(F_{0}\right)$ is trivial, the group $\mathscr{M}^{*}\left(F_{1}\right)$ has been studied extensively, and generators for $\mathscr{M}^{*}\left(F_{2}\right)$ were determined by Goeritz [9].

After establishing a standard model of V_{n} and loops on ∂V_{n}, we note in Section 2 a characterization of $\mathscr{H}^{*}\left(F_{n}\right)$ given by Griffiths [10]. In Section 3 we define some elementary maps, and in Section 4 we prove our main theorem. We shall only be concerned with the combinatorial category, so all homeomorphisms and isotopies are piecewise linear, and all curves are polygonal.

The author acknowledges his gratitude to Professor Terasaka and Professor Murasugi for conversations.

2. A model for V_{n} and a characterization of $\mathscr{H}^{*}\left(F_{n}\right)$.

2.1. For the sake of convenience, we first introduce a model for V_{n} in the 3 -dimensional euclidean space R^{3}.

Let B^{3} be a 3 -cell in R^{3}. On ∂B^{3} we take n mutually disjoint 2 -cells $C_{1}{ }^{2}, \ldots, C_{n}{ }^{2}$, and also we take two disjoint 2-cells $B_{i 0}$ and $B_{i 1}$ in $\operatorname{Int}\left(C_{i}{ }^{2}\right)$ for $1 \leqq i \leqq n$. Let $h_{i}: D^{2} \times I \rightarrow R^{3}, \quad 1 \leqq i \leqq n$, be embeddings with

Received March 16, 1976 and in revised form, August 4, 1976. This paper was written while the author was visiting at the University of Toronto, Canada in 1975-76, and has been supported by the National Research Council of Canada, Grant A4034.

$$
\begin{aligned}
& h_{\mathfrak{i}}\left(D^{2} \times\{0\}\right)=B_{i 0}, \quad h_{i}\left(D^{2} \times\{1\}\right)=B_{i 1} \\
& B^{3} \cap h_{i}\left(D^{2} \times I\right)=\partial B^{3} \cap h_{\mathfrak{i}}\left(D^{2} \times \partial I\right)=B_{i 0} \cup B_{i 1}
\end{aligned}
$$

and $h_{i}\left(D^{2} \times I\right) \cap h_{j}\left(D^{2} \times I\right)=\emptyset$ for $i \neq j$, as shown in Fig. 1. We obtain a handlebody $V_{n}=B^{3} \cup h_{1}\left(D^{2} \times I\right) \cup \cdots \cup h_{n}\left(D^{2} \times I\right)$ of genus n, and we call $h_{i}\left(D^{2} \times I\right)$ the i-th handle of V_{n}. V_{n} has the orientation induced from that of R^{3}, and we give orientations to $B_{i 0}, C_{i}{ }^{2}$ and so $\partial B_{i 0}=b_{i}, \partial C_{i}{ }^{2}=s_{i}$, $1 \leqq i \leqq n$, as shown in Fig. 1. We take simple oriented loops a_{1}, \ldots, a_{n} on ∂V_{n}, a point p in $\partial B^{3}-\left(C_{1}{ }^{2} \cup \ldots \cup C_{n}{ }^{2}\right)$ and simple oriented arcs d_{1}, \ldots, d_{n} on ∂V_{n} such that $a_{i} \cap b_{i}$ consists of one crossing point, $a_{i} \cap s_{i}=\emptyset$, $\partial d_{i}=p \cup\left(a_{i} \cap b_{i}\right), d_{i} \cap\left(s_{1} \cup \ldots \cup s_{n}\right)=d_{i} \cap s_{i}$ consists of one crossing point, $d_{i} \cap d_{j}=\partial d_{i} \cap \partial d_{j}=p$ for $i \neq j$, as shown in Fig. 1 .

Figure 1
To avoid a multiplicity of brackets, we refer to loops rather than to these homotopy or homology classes. Then it is obvious that $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}$ form, respectively, free abelian bases for the first integral homology groups $H_{1}\left(V_{n} ; Z\right)$ and $H_{1}\left(F_{n} ; Z\right)$. We also use a_{i}, b_{i} and s_{i} as p-based loops $d_{i} a_{i} d_{i}^{-1}, d_{i} b_{i} d_{i}^{-1}$ and $\tilde{d}_{i} s_{i} \tilde{d}_{i}^{-1}$ unless confusion, where \tilde{d}_{i} denotes an appropriate subarc of $d_{i}, 1 \leqq i \leqq n$. Then, the fundamental group $\pi_{1}\left(V_{n}, p\right)$ is freely generated by $\left\{a_{1}, \ldots, a_{n}\right\}$, and $\pi_{1}\left(F_{n}, p\right)$ is generated by $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}$ subject to the single relation

$$
\prod_{i=1}^{n} b_{i}^{-1} a_{i}^{-1} b_{i} a_{i} \simeq 1 \quad \text { rel } p \text { on } F_{n} .
$$

It holds that $s_{i} \simeq a_{i}^{-1} b_{i}^{-1} a_{i} b_{i}$ rel p on $F_{n}, 1 \leqq i \leqq n$.
2.2. By Nielsen [16] and Mangler [15], $\mathscr{M}\left(F_{n}\right)$ can also be characterized algebraically as the group of classes $\left(\bmod \operatorname{Inn} \pi_{1}\left(F_{n}, p\right)\right)$ of automorphisms
of $\pi_{1}\left(F_{n}, p\right)$ induced by free substitutions on the generators a_{i}, b_{i} which map $\Pi_{i=1}^{n} b_{i}^{-1} a_{i}^{-1} b_{i} a_{i}$ to its conjugate, see Birman [3, §1] and Birman-Hilden $[\mathbf{6}, \S 1]$.

It will be noticed that for any $\psi \in \mathscr{H}\left(F_{n}\right)$, there exists an $\eta \in \mathscr{D}\left(F_{n}\right)$ with $\eta \psi(p)=p$.

Let $\left\{x_{1}, \cdots, x_{r}\right\}^{\nu}$ be the smallest normal subgroup of $\pi_{1}\left(F_{n}, p\right)$ containing the elements x_{1}, \cdots, x_{T} of $\pi_{1}\left(F_{n}, p\right)$.

It will be noted that:
2.3. Proposition. (Griffiths [11, Theorem 7.2]) Let $\iota: F_{n} \rightarrow V_{n}$ be the natural inclusion, and $K=\operatorname{ker}\left(\iota \#: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(V_{n}, p\right)\right)$. Then $K=\left\{b_{1}, \cdots, b_{n}\right\}^{\nu}$.

Now we have the following characterization of $\mathscr{H}^{*}\left(F_{n}\right)$.
2.4. Proposition. (Griffiths [10, Theorem 10.1]) Let $\psi:\left(F_{n}, p\right) \rightarrow\left(F_{n}, p\right)$ be an orientation preserving homeomorphism. Then, $\psi \in \mathscr{H}^{*}\left(F_{n}\right)$ if and only if $\psi_{\#}(K) \subset K$.

In [5, (14)], Birman defined two conjugate subgroups

$$
\mathscr{A}=\left\{[\psi] \in \mathscr{M}\left(F_{n}\right) \mid \psi_{\#}\left(\left\{a_{1}, \cdots, a_{n}\right\}^{\nu}\right) \subset\left\{a_{1}, \cdots, a_{n}\right\}^{\nu}\right\}
$$

and

$$
\mathscr{B}=\left\{[\psi] \in \mathscr{M}\left(F_{n}\right) \mid \psi_{\#}\left(\left\{b_{1}, \cdots, b_{n}\right\}^{\nu}\right) \subset\left\{b_{1}, \cdots, b_{n}\right\}^{\nu}\right\}
$$

of $\mathscr{M}\left(F_{n}\right)$. So the group \mathscr{B} is exactly $\mathscr{M}^{*}\left(F_{n}\right)$.
3. Elementary homeomorphisms of a handlebody. Throughout Sections 3 and 4, we will make free use of fundamental results of curves on a surface which are given by Baer [1] and Epstein [8]. In this section, we construct various homeomorphisms of V_{n} onto itself. By $\mathscr{H}\left(V_{n}\right)$ we denote the group of all orientation preserving homeomorphisms of $V_{n} \rightarrow V_{n}$, and for $\psi \in \mathscr{H}\left(V_{n}\right)$ we denote the restriction $\left.\psi\right|_{F_{n}}$ by $\psi \in \mathscr{H}^{*}\left(F_{n}\right)$.
3.1. Cyclic translation of handles (cf. Griffiths $[\mathbf{1 0}, \S 4])$. First we introduce a simple homeomorphism which is the same map as σ in Griffiths [10]. Let ρ be the rotation of V_{n} (and so R^{3}) on itself, about the vertical axis joining p and the center of the 3 -cell B^{3}, and through $2 \pi / n$ radians in the clockwise direction. Of course, $\rho \in \mathscr{H}\left(V_{n}\right)$, and it induces the automorphism

$$
\dot{\rho}_{\#}: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(F_{n}, p\right): \begin{cases}a_{i} \rightarrow a_{i+1} & (1 \leqq i \leqq n), \\ b_{i} \rightarrow b_{i+1} & (1 \leqq i \leqq n),\end{cases}
$$

where the indices are taken as modulo n.
3.2. Twisting a knob (Goeritz [9, p. 251], Griffiths [10, §5]). Since the loops s_{1}, \cdots, s_{n} are contractible in B^{3}, we have mutually disjoint properly embedded 2-cells $C_{1}{ }^{\prime 2}, \cdots, C_{n}{ }^{\prime 2}$ in B^{3} with $\partial C_{i}{ }^{\prime 2}=s_{i} . C_{i}{ }^{\prime 2}$ cuts off a handlebody, say K_{i}, of genus 1 which contains the i-th handle $h_{i}\left(D^{2} \times I\right)$; we call K_{i} the i-th knob
of V_{n}. We take a 2 -cell $C^{2} \subset K_{1}$ which is parallel to $C_{1}{ }^{\prime 2}$ in V_{n}. Let $f: I \times D^{2} \rightarrow V_{n}$ be an embedding with $f\left(\{0\} \times D^{2}\right)=C_{1}{ }^{\prime 2}, f\left(\{1\} \times D^{2}\right)=C^{2}$ and $f\left(I \times D^{2}\right) \cap F_{n}=f\left(I \times \partial D^{2}\right)$. We twist the knob K_{1} about the line $f(I \times\{0\})$ through π radians keeping $f\left(\{0\} \times D^{2}\right)={C_{1}}^{\prime 2}$ fixed. Now we have a map $\omega_{1} \in \mathscr{H}\left(V_{n}\right)$ with $\left.\omega_{1}\right|_{V_{n}-K_{1}}=$ identity (see Fig. 2).

Figure 2
The induced automorphism is given by:

$$
\dot{\omega}_{1 /}: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(F_{n}, p\right):\left\{\begin{array}{l}
a_{1} \rightarrow a_{1}^{-1} s_{1}^{-1}, \quad a_{j} \rightarrow a_{j} \quad(2 \leqq j \leqq n), \\
b_{1} \rightarrow a_{1}^{-1} b_{1}^{-1} a_{1}, \quad b_{j} \rightarrow b_{j}
\end{array} \quad(2 \leqq j \leqq n) .\right.
$$

For every $i, 1 \leqq i \leqq n$, we define $\omega_{i} \in \mathscr{H}\left(V_{n}\right)$ by the composites

$$
\omega_{i}=\rho^{i-1} \omega_{1} \rho^{-(i-1)} .
$$

3.3. Twisting a handle (Dehn [7], Lickorish [14], Birman [3; 4]). The following maps $\tau_{i}, 1 \leqq i \leqq n$, are the same maps as " C-homeomorphisms" using b_{i} in Lickorish [14], or "Dehn twists" about b_{i} in Birman [3; 4]. That is, $\tau_{1} \in \mathscr{H}\left(V_{n}\right)$ is defined in the following way. Cut V_{n} along B_{10}, twist the new free end $h_{1}\left(D^{2} \times\{0\}\right)$ through 2π, and glue together again. We obtain the induced automorphism as follows:

$$
\dot{r}_{1 \|}: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(F_{n}, p\right):\left\{\begin{array}{l}
a_{1} \rightarrow a_{1} b_{1}^{-1}, \quad a_{j} \rightarrow a_{j} \\
b_{i} \rightarrow b_{i}
\end{array} \quad(1 \leqq i \leqq n) . ~ . ~(1 \leqq j \leqq n),\right.
$$

We also define $\tau_{i} \in \mathscr{H}\left(V_{n}\right), 1 \leqq i \leqq n$, by:

$$
\tau_{i}=\rho^{i-1} \tau_{1} \rho^{-(i-1)}
$$

3.4. Interchanging two knobs (Griffiths [10, pp. 198-201]). The following map $\rho_{12} \in \mathscr{H}\left(V_{n}\right)$ is the same map as ψ in Griffiths $[\mathbf{1 0}, \S 6]$. In the notation in Section 2, we take a simple arc e on ∂B^{3} such that e spans s_{1} and s_{2} and $e \cap\left(s_{1} \cup \cdots \cup s_{n} \cup d_{1} \cup \cdots \cup d_{n}\right)=e \cap\left(s_{1} \cup s_{2}\right)=$ de. Let D be the regular neighborhood of $C_{1}{ }^{2} \cup e \cup C_{2}{ }^{2}$ on ∂B^{3}. By twisting $C_{1}{ }^{2} \cup e \cup C_{2}{ }^{2}$ in D through π radians in the clockwise direction we have a homeomorphism $\rho_{12}{ }^{\prime}: D \rightarrow D$ such that $\rho_{12}{ }^{\prime}\left(C_{1}{ }^{2}\right)=C_{2}{ }^{2}, \quad \rho_{12}{ }^{\prime}\left(C_{2}{ }^{2}\right)=C_{1}{ }^{2}, \quad \rho_{12}{ }^{\prime}(e)=e$ and $\left.\rho_{12}{ }^{\prime}\right|_{\partial D}=$ identity (see Fig. 3).

Thus the homeomorphism $\rho_{12}{ }^{\prime}$ is easily extended to a homeomorphism of V_{n} onto itself, so that $\rho_{12}{ }^{\prime}\left(K_{1}\right)=K_{2}, \rho_{12}{ }^{\prime}\left(K_{2}\right)=K_{1}$ and $\left.\rho_{12}\right|_{V_{n}-K}=$ identity, where K is the regular neighborhood of $K_{1} \cup e \cup K_{2}$ in V_{n}. We apply the maps ω_{1} and ω_{2}, and we obtain the map $\rho_{12} \in \mathscr{H}\left(V_{n}\right)$ as

$$
\rho_{12}=\omega_{2} \omega_{1} \rho_{12}{ }^{\prime} .
$$

The induced automorphism is given by:

$$
\dot{\rho}_{12 \#}: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(F_{n}, p\right):\left\{\begin{array}{l}
a_{1} \rightarrow s_{1}{ }^{-1} a_{2} s_{1}, a_{2} \rightarrow a_{1}, \\
a_{j} \rightarrow a_{j}(3 \leqq j \leqq n), \\
b_{1} \rightarrow s_{1}{ }^{-1} b_{2} s_{1} b_{2} \rightarrow b_{1}, \\
b_{j} \rightarrow b_{j} \quad(3 \leqq j \leqq n) .
\end{array}\right.
$$

We define maps in $\mathscr{H}\left(V_{n}\right)$ by:

$$
\begin{aligned}
& \rho_{i, i+1}=\rho^{i-1} \rho_{12} \rho^{-(i-1)} \quad(1 \leqq i \leqq n), \\
& \rho_{1,1+r}=\left(\rho_{12}-1 \cdots \rho_{r-1, r}^{-1}\right) \rho_{r, r+1}\left(\rho_{r-1, r} \cdots \rho_{12}\right), \\
& \rho_{i, i+r}=\rho^{i-1} \rho_{1,1+r} \rho^{-(i-1)} \quad(1 \leqq i \leqq n, 1 \leqq r \leqq n-1),
\end{aligned}
$$

where the indices are taken as modulo n. It will be noticed that $\rho_{i, i+r}$ is obtained by the same way as that of ρ_{12} using a simple arc $e_{i, i+r}$ on ∂B^{3} such that $e_{i, i+r}$ spans s_{i} and s_{i+r} and $e_{i, i+r} \cap\left(s_{1} \cup \cdots \cup s_{n} \cup d_{1} \cup \cdots \cup d_{n}\right)=$ $e_{i, i+r} \cap\left(s_{i} \cup s_{i+r}\right)=\partial e_{i, i+r}$.
3.5. Spin and sliding (cf. Birman [4, Chapter 4]). Let $V_{n}{ }^{i}$ be a handlebody of genus $n-1$ obtained from the V_{n} by removing the i-th handle $h_{i}\left(D^{2} \times I\right)$. Let $z_{i 0}$ and $z_{i 1}$ be the centers of $B_{i 0}$ and $B_{i 1}$, respectively. Suppose that c is any simple oriented loop on $\partial V_{n}{ }^{i}$ with $z_{i 0} \notin c, z_{i 1} \in c$. Let N be a cylindrical neighborhood of c on $\partial V_{n}{ }^{i}$, parametrized by (y, θ), with $-1 \leqq y \leqq 1,0 \leqq \theta \leqq 2 \pi$, where c is described by $y=0$, and $z_{i 1}=(0,0)$. We use the map "spin of $z_{i 1}$ about c" given by Birman [4, p. 158] except for obvious modifications. An orientation preserving homeomorphism $\dot{\sigma}_{c z i 1}: \partial V_{n}{ }^{i} \rightarrow \partial V_{n}{ }^{i}$, which will be called a spin of $z_{i 1}$ about c, is defined by the rule that if a point is in N, then its image is given by:

$$
\begin{aligned}
& \dot{\sigma}_{c z i 1}(y, \theta)=(y, \theta+2 \pi(2 y-1)) \quad \text { if } 1 / 2 \leqq y \leqq 1, \\
& \dot{\sigma}_{c z i 1}(y, \theta)=(y, \theta-2 \pi(2 y+1)) \quad \text { if }-1 \leqq y \leqq-1 / 2, \\
& \dot{\sigma}_{c z i 1}(y, \theta)=(y, \theta) \quad \text { if }-1 / 2 \leqq y \leqq 1 / 2
\end{aligned}
$$

while all points of $\partial V_{n}{ }^{i}-N$ are left fixed, see Fig. 4.
It is easy to see that the $\dot{\sigma}_{c z_{i 1}}$ is extended to an orientation preserving homeomorphism of $V_{n}{ }^{i} \rightarrow V_{n}{ }^{i}$; which may be denoted by $\sigma_{c z i 1}$ and still called a spin of $z_{i 1}$ about c. Without loss of generality we may assume that $B_{i 1} \subset N$ with $-1 / 2 \leqq y \leqq 1 / 2$, and $B_{i 0} \cap N=\emptyset$. So we can extend the $\sigma_{c z_{i 1}}$ to a map $\sigma_{c B i 1} \in H\left(V_{n}\right)$ with $\left.\sigma_{c B i 1}\right|_{h_{i}\left(D^{2} \times I\right)}=$ identity; and we will call it a sliding of $B_{i 1}$ about c. Replacing $z_{i 1}$ and $B_{i 1}$ with $z_{i 0}$ and $B_{i 0}$, we obtain a spin $\sigma_{c z i 0}$ of $z_{i 0}$ about c and a sliding $\sigma_{c B i 0}$ of $B_{i 0}$ about c.

Figure 4

We use frequently a simple oriented loop c on $\partial V_{n}{ }^{i}$ with $z_{i 0} \in c$ and $z_{i 1} \notin c$ (respectively, $z_{i 0} \notin c$ and $z_{i 1} \in c$). For brevity, such a simple loop will be called a $z_{i 0}$-loop (respectively, a $z_{i 1}$-loop). The followings are immediate consequences of the definition of a sliding.
3.6. Lemma. (1) Let c be a $z_{i 1}$-loop such that $c \simeq 1$ rel $z_{i 1}$ on $\partial V_{n}{ }^{i}-z_{i 0}$. Let C^{2} be a 2 -cell on $\partial V_{n}{ }^{i}$ with $\partial C^{2}=c$ (as sets), and we assume that C^{2} has the orientation induced from that of $\partial V_{n}{ }^{i}$. Then $\sigma_{c B i_{1}}$ is isotopic to $\tau_{i}{ }^{-1}$ or τ_{i} according as the orientation of c does or does not agree with the orientation of ∂C^{2}.
(2) Let c_{1} and c_{2} be $z_{i 1}$-loops. Suppose $c_{1} \simeq c_{2} \operatorname{rel} z_{i 1}$ on $\partial V_{n}{ }^{i}-z_{i 0}$; then $\sigma_{c_{1 B i 1}}$ is isotopic to $\sigma_{c_{2} B i 1}$ modulo τ_{i}.
3.7. Lemma. Let $c_{0}, c_{1}, \cdots, c_{m}$ be $z_{i 1}$-loops. Suppose that $c_{0} \simeq c_{1} \cdots c_{m}$ rel $z_{i 1}$ on $\partial V_{n}{ }^{i}-z_{i 0}$; then $\sigma_{c_{0} B i 1}$ is isotopic to the product $\sigma_{c_{m} B i 1} \cdots \sigma_{c_{1} B i 1}$ modulo τ_{i}.

From now on, we will select some special loops on $\partial V_{n}{ }^{i}$ and define some special slidings.
3.8 Slidings θ. Let α be a z_{11}-loop such that

$$
\alpha \cap\left(a_{2} \cup b_{2} \cup \cdots \cup a_{n} \cup b_{n} \cup d_{1} \cup \cdots \cup d_{n}\right)=\alpha \cap b_{2}
$$

consists of one crossing point and $\alpha \simeq a_{2}$ on $\partial V_{n}{ }^{1}-z_{10}$. Now we will denote by θ_{12} the composition map $\sigma_{\alpha B_{11} \tau_{1}}{ }^{-1}$. Then the induced automorphism is given by:

$$
\dot{\theta}_{12 \#}: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(F_{n}, p\right):\left\{\begin{array}{l}
a_{1} \rightarrow a_{1}\left(b_{2}{ }^{-1} a_{2}{ }^{-1} b_{2}\right), \\
a_{j} \rightarrow a_{j}(j \neq 1), \\
b_{2} \rightarrow a_{2} b_{2}\left(a_{1} b_{1} b_{1} a_{1}\right)\left(b_{2}^{-1} a_{2}^{-1} b_{2}\right), \\
b_{j} \rightarrow b_{j}(j \neq 2) .
\end{array}\right.
$$

We define $\theta_{i j}, \theta_{12}{ }^{*}, \theta_{i j}{ }^{*} \in \mathscr{H}\left(V_{n}\right)$ by:

$$
\begin{aligned}
& \theta_{1,1+r}=\rho_{2,1+r} \theta_{12} \rho_{2,1+r}{ }^{-1}, \quad 1 \leqq r \leqq n-1, \\
& \theta_{i, i+r}=\rho^{i-1} \theta_{1,1+r} \rho^{-(i-1)}, \quad 1 \leqq r \leqq n-1,1 \leqq i \leqq n, \\
& \theta_{12}^{*}=\omega_{1}^{-1} \theta_{12} \omega_{1}, \\
& \theta_{1,1+r}{ }^{*}=\rho_{2,1+r} \theta_{12}{ }^{*} \rho_{2,1+r^{-1},}, \quad 1 \leqq r \leqq n-1, \\
& \theta_{i, i+r}{ }^{*}=\rho^{i-1} \theta_{1,1+r}{ }^{*} \rho^{-(i-1)}, \quad 1 \leqq r \leqq n-1,1 \leqq i \leqq n,
\end{aligned}
$$

where $\rho_{j j}=$ identity, and the indices are taken as modulo n.
It should be noted that:
(1) $\theta_{12}{ }^{*}$ is a sliding $\sigma_{\alpha B_{10}}$ of B_{10} about α modulo τ_{1}, where α is a z_{10}-loop such that $\alpha \cap\left(a_{2} \cup b_{2} \cup \cdots \cup a_{n} \cup b_{n} \cup d_{1} \cup \cdots \cup d_{n}\right)=\alpha \cap b_{2}$ consists of one crossing point and $\alpha \simeq a_{2}$ on $\partial V_{n}{ }^{1}-z_{11}$.
(2) $\theta_{i j}$ (respectively, $\theta_{i j}{ }^{*}$) is a sliding $\sigma_{\alpha B i 1}$ of $B_{i 1}$ (respectively, $\sigma_{\alpha B i 0}$ of $B_{i 0}$) about α modulo τ_{i}, where α is a $z_{i 1}$-loop (respectively, a $z_{i 0}$-loop) such that

$$
\begin{array}{r}
\alpha \cap\left(a_{1} \cup b_{1} \cup \cdots \cup a_{i-1} \cup b_{i-1} \cup a_{i+1} \cup b_{i+1} \cup \cdots \cup a_{n} \cup b_{n} \cup\right. \\
\left.d_{1} \cup \cdots \cup d_{n}\right)=\alpha \cap b_{j}
\end{array}
$$

consists of one crossing point and $\alpha \simeq a_{j}$ on $\partial V_{n}{ }^{i}-z_{i 0}$ (respectively, $\left.\partial V_{n}{ }^{i}-z_{i 1}\right)$.
3.9. Slidings ξ. Let β be a z_{11}-loop such that

$$
\beta \cap\left(a_{2} \cup b_{2} \cup \cdots \cup a_{n} \cup b_{n} \cup d_{1} \cup \cdots \cup d_{n}\right)=\beta \cap a_{2}
$$

consists of one crossing point and $\beta \simeq b_{2}$ on $\partial V_{n}{ }^{1}-z_{10}$. We also denote by ξ_{12} the composition map $\sigma_{\beta B_{11}} \tau_{1}^{-1}$. Then, the induced automorphism is given by:

$$
\dot{\xi}_{12 \#}: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(F_{n}, p\right):\left\{\begin{array}{l}
a_{1} \rightarrow b_{1} a_{1} b_{2}^{-1} s_{2}\left(a_{1}^{-1} b_{1}^{-1} a_{1}\right), \\
a_{2} \rightarrow a_{2} b_{2}\left(a_{1} b_{1}^{-1} b_{1}^{-1} a_{1}\right) b_{2}^{-1}, \\
a_{j} \rightarrow a_{j}(j \neq 1,2), \\
b_{i} \rightarrow b_{i} \quad(1 \leqq i \leqq n) .
\end{array}\right.
$$

We also define $\xi_{i j}, \xi_{12}{ }^{*}, \xi_{i j}{ }^{*} \in \mathscr{H}\left(V_{n}\right)$ by:

$$
\begin{aligned}
& \xi_{1,1+r}=\rho_{2,1+r} \xi_{12} \rho_{2,1+r^{-1}}, \quad 1 \leqq r \leqq n-1, \\
& \xi_{i, i+r}=\rho^{i-1} \xi_{1,1+r} \rho^{-(i-1)}, \quad 1 \leqq r \leqq n-1,1 \leqq i \leqq n \\
& \xi_{12^{*}}{ }^{*}=\omega_{1}{ }^{-1} \xi_{12} \omega_{1}, \\
& \xi_{1,1+r}^{*}=\rho_{2,1+r} \xi_{12}{ }^{*} \rho_{2,1+r^{-1}}, \quad 1 \leqq r \leqq n-1, \\
& \xi_{i, i+r}^{*}=\rho^{i-1} \xi_{1,1+r}{ }^{*} \rho^{-(i-1)}, \quad 1 \leqq r \leqq n-1,1 \leqq i \leqq n,
\end{aligned}
$$

where $\rho_{j j}=$ identity, and the indices are taken as modulo n.
It will be noticed that:
(1) $\xi_{12}{ }^{*}$ is a sliding $\sigma_{\beta B_{10}}$ of B_{10} about β modulo τ_{1}, where β is a z_{10}-loop such that $\beta \cap\left(a_{2} \cup b_{2} \cup \cdots \cup a_{n} \cup b_{n} \cup d_{1} \cup \cdots \cup d_{n}\right)=\beta \cap a_{2}$ consists of one crossing point and $\beta \simeq b_{2}$ on $\partial V_{n}{ }^{1}-z_{11}$.
(2) $\xi_{i j}$ (respectively, $\xi_{i j}{ }^{*}$) is a sliding $\sigma_{\beta B i 1}$ of $B_{i 1}$ (respectively, $\sigma_{\beta B i 0}$ of $B_{i 0}$) about β modulo τ_{i}, where β is a $z_{i 1}$-loop (respectively, a $z_{i 0}$-loop) such that

$$
\begin{array}{r}
\beta \cap\left(a_{1} \cup b_{1} \cup \cdots \cup a_{i-1} \cup b_{i-1} \cup a_{i+1} \cup b_{i+1} \cup \cdots \cup a_{n} \cup b_{n} \cup\right. \\
\left.d_{1} \cup \cdots \cup d_{n}\right)=\beta \cap a_{j}
\end{array}
$$

consists of one crossing point and $\beta \simeq b_{j}$ on $\partial V_{n}{ }^{i}-z_{i 0}$ (respectively, $\partial V_{n}{ }^{i}-z_{i 1}$).
3.10. Lemma. Let c be any $z_{i 1}$-loop. Then, the sliding $\sigma_{c B_{i 1}}$ of $B_{i 1}$ about c is isotopic to a power product of $\theta_{i j}$'s, $\xi_{i j}$'s and τ_{i} 's, where $j \neq i, 1 \leqq j \leqq n$. This remains valid if $\sigma_{c B i 0}, \theta_{i j}{ }^{*}, \xi_{i j}{ }^{*}$ are substituted for $\sigma_{c B i 1}, \theta_{i j}, \xi_{i j}$, respectively.

Proof. From the definitions in 3.3, 3.5, 3.8 and 3.9, it suffices to show the case $i=1$ of $\sigma_{c B_{11}}$. We choose a system of z_{11}-loops $\left\{\alpha_{2}, \cdots, \alpha_{n}, \beta_{2}, \cdots, \beta_{n}\right\}$ on $\partial V_{n}{ }^{1}$ such that $\alpha_{j} \cap \alpha_{k}=z_{11}(j \neq k), \beta_{j} \cap \beta_{k}=z_{11}(j \neq k), \alpha_{j} \cap \beta_{h}=$ $z_{11}(1 \leqq j, h \leqq n)$ and α_{j} and $\beta_{j}(2 \leqq j \leqq n)$, satisfy the conditions of α and β in 3.8(2) and $3.9(2)$ with $i=1$, respectively. We know that the set $\left\{\alpha_{2}, \cdots, \alpha_{n}, \beta_{2}, \cdots, \beta_{n}\right\}$ forms a free basis of $\pi_{1}\left(\partial V_{n}{ }^{1}-z_{10}, z_{11}\right)$; a free group of rank $2 n-2$. So, c is homotopic (rel z_{11} on $\partial V_{n}{ }^{1}-z_{10}$) to a power product
of $\alpha_{2}, \cdots, \alpha_{n}, \beta_{2}, \cdots, \beta_{n}$. By virtue of Lemma 3.6, Lemma 3.7 and the remarks $3.8(2)$ and $3.9(2)$, we conclude the lemma.
3.11. Corollary. Any sliding $\sigma_{c B i 1}$ of $B_{i 1}$ and any sliding $\sigma_{c B i 0}$ of $B_{i 0}$, $1 \leqq i \leqq n$, are isotopic to power products of $\rho, \rho_{12}, \omega_{1}, \tau_{1}, \theta_{12}$ and ξ_{12}.
3.12. For future reference, we introduce maps $\mu_{i} \in \mathscr{H}\left(F_{n}\right), 1 \leqq i \leqq n$, with $\mu_{i} \notin \mathscr{H}^{*}\left(F_{n}\right)$. With K_{1} as in 3.2, let $U_{1}=\partial K_{1} \cap \partial V_{n} ; U_{1}$ is a compact oriented 2 -manifold of genus 1 with $\partial U_{1}=s_{1}$. Cutting U_{1} along the simple loops a_{1} and b_{1}, we have an annulus $U_{1}{ }^{\prime}$, and we twist the new boundary of $U_{1}{ }^{\prime}$ through $\pi / 2$ radians keeping s_{1} fixed. Now we have a map $\mu_{1} \in \mathscr{H}\left(F_{n}\right)$ with $\left.\mu_{1}\right|_{F_{n}-U_{1}}=$ identity, $\mu_{1}\left(a_{1}\right)=b_{1}, \mu_{1}\left(b_{1}\right)=-a_{1}$. The induced automorphism is given by:

$$
\mu_{1 \sharp}: \pi_{1}\left(F_{n}, p\right) \rightarrow \pi_{1}\left(F_{n}, p\right):\left\{\begin{array}{ll}
a_{1} \rightarrow a_{1}^{-1} b_{1} a_{1}, & a_{j} \rightarrow a_{j} \\
b_{1} \rightarrow a_{1}^{-1}, & b_{j} \rightarrow b_{j}
\end{array}(j \neq 1),\right.
$$

For every $i, 1 \leqq i \leqq n$, we define $\mu_{i} \in \mathscr{H}\left(F_{n}\right)$ by:

$$
\mu_{i}=\rho^{i-1} \mu_{1} \rho^{-(i-1)} .
$$

4. Generators for $\mathscr{M}^{*}\left(F_{n}\right)$. In this section, we will establish the following:
4.1. Theorem. The group $\mathscr{M}^{*}\left(F_{n}\right)$ is generated by $[\dot{\rho}],\left[\dot{\rho}_{12}\right],\left[\dot{\omega}_{1}\right],\left[\dot{\tau}_{1}\right],\left[\dot{\theta}_{12}\right]$ and $\left[\dot{\xi}_{12}\right]$. In particular, $\mathscr{M}^{*}\left(F_{0}\right) \cong 0, \mathscr{M}^{*}\left(F_{1}\right)$ is generated by $\left[\dot{\omega}_{1}\right]$ and $\left[\dot{\tau}_{1}\right]$, and $\mathscr{M}^{*}\left(F_{2}\right)$ by $[\dot{\rho}],\left[\dot{\omega}_{1}\right],\left[\dot{\boldsymbol{r}}_{1}\right],\left[\dot{\theta}_{12}\right]$ and $\left[\dot{\xi}_{12}\right]$.

The proof will be given by an induction on genus n, utilizing Birman's result in [4] and Corollary 3.11.
4.2. The cases $n=0$ and $n=1$. In the case $n=0$, it is well-known that $\mathscr{M}\left(F_{0}\right) \cong \mathscr{M}^{*}\left(F_{0}\right) \cong 0$; recall that F_{0} is a 2 -sphere. In the case $n=1$, it is also well-known that $\mathscr{M}\left(F_{1}\right) \cong \mathrm{Sp}(2, Z)$, the group of 2×2 integral matrices with determinant 1 ; see, for example, Birman [3, p. 58]. $\mathscr{M}^{*}\left(F_{1}\right)$ is isomorphic to a subgroup of $\mathrm{Sp}(2, Z)$ consisting of matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $c=0$. Such a subgroup is generated by two matrices $\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$, and these are representation matrices of $\dot{\tau}_{1 *}$ and $\dot{\omega}_{1 *}$, respectively, as automorphisms of the free Z-module $\pi_{1}\left(F_{1}, p\right) \cong H_{1}\left(F_{1} ; Z\right)$ with the basis $\left\{a_{1}, b_{1}\right\}$. The topological proof is omitted here.
4.3. Proof of 4.1 ; First step. From now on, we assume that $n \geqq 2$. For brevity, let G denote the set $\left\{\rho, \rho_{12}, \omega_{1}, \tau_{1}, \theta_{12}, \xi_{12}\right\}$, and let $\mathscr{D}\left(V_{n}\right)$ denote the subgroup of $\mathscr{H}\left(V_{n}\right)$ whose elements are itosopic to the identity, and $\mathscr{S}(n)$ a subgroup of $\mathscr{H}\left(V_{n}\right)$ which is generated by all slidings, and so by $\theta_{i j}, \theta_{i j}{ }^{*}, \xi_{i j}, \xi_{i j}{ }^{*}$ and τ_{i}, $1 \leqq i \neq j \leqq n$, by Lemmas 3.6 and 3.10. From the definitions of maps in $\S 3$ and Corollary 3.11 , it suffices to show that $\mathscr{M}^{*}\left(F_{n}\right)$ is generated by $[\dot{\rho}]$, $\left[\dot{\rho}_{i j}\right]$, [$\left.\dot{\omega}_{i}\right]$ and the isotopy classes of slidings in $\mathscr{S}(n)$.

Let $\psi \in \mathscr{H}^{*}\left(F_{n}\right)$ and $\psi: V_{n} \rightarrow V_{n}$ an extension homeomorphism. We claim:
4.4. Lemma. There exists an elemeni $\psi_{0} \in \mathscr{H}\left(V_{n}\right)$ that is power product of elements in G and $\mathscr{D}\left(V_{n}\right)$ such that $\left.\psi_{0} \psi\right|_{B_{n 0}}=$ identity.

Proof. Let ∇ denote the union $B_{10} \cup B_{11} \cup \cdots \cup B_{n 0} \cup B_{n 1}$. Since V_{n} is irreducible, there exists an $\eta_{1} \in \mathscr{D}\left(V_{n}\right)$ such that $\eta_{1} \psi\left(B_{n 0}\right) \cap \nabla$ consists of a finite number of simple arcs; we denote $\eta_{1} \psi$ by ψ_{1}. Let $l \subset \psi_{1}\left(B_{n 0}\right) \cap \nabla$ be an innermost arc on $\psi_{1}\left(B_{n 0}\right)$, and let $\Delta \subset \psi_{1}\left(B_{n 0}\right)$ be the 2 -cell cut off by l with Int $\Delta \cap \nabla=\emptyset$. We assume $l \subset \psi_{1}\left(B_{n 0}\right) \cap B_{k 0}$, and $m=\partial \Delta-l$.

If $m \subset h_{k}\left(\partial D^{2} \times I\right)$, there is $\quad \eta_{0} \in \mathscr{D}\left(V_{n}\right)$ with $\eta_{0} \psi_{1}\left(B_{n 0}\right) \cap \nabla \subset$ $\left(\psi_{1}\left(B_{n 0}\right) \cap \nabla\right)-l$. So we may assume that $m \cap h_{k}\left(\partial D^{2} \times I\right)=\emptyset$. The simple loop $l \cup m$ divides ∂B^{3} into two 2-cells, say Σ_{1} and Σ_{2}, and we assume that $\Sigma_{2} \supset B_{k 1}$. If $B_{i 0} \subset \Sigma_{1}$ (respectively, $B_{i 1} \subset \Sigma_{1}$), $i \neq k$, we can choose a $z_{10^{-}}$(respectively, a $z_{i 1^{-}}$) loop c such that $c \cap \partial B_{k 0}$ consists of one crossing point; and we apply $\sigma_{c B i 0}$ of $B_{i 0}$ (respectively, $\sigma_{c B_{i 1}}$ of $B_{i 1}$) about c. Now it is easy to obtain an element $\eta_{2} \in \mathscr{D}\left(V_{n}\right)$ such that

$$
\eta_{2} \sigma_{c B i \epsilon}\left(\Sigma_{1}\right) \subset \Sigma_{1}, \quad \eta_{2} \sigma_{c B_{i \epsilon}}\left(\Sigma_{1}\right) \cap B_{i \epsilon}=\emptyset, \quad \epsilon=0 \text { or } 1
$$

We denote $\eta_{2} \sigma_{c B_{i} \in} \psi_{1}$ by ψ_{2}. It will be noticed that:
(*) If $B_{i \epsilon} \cap \psi_{1}\left(B_{n 0}\right) \neq \emptyset$, then some new intersections occur in $\psi_{2}\left(B_{n 0}\right) \cap B_{k 0}$.
Repeating the procedure, we can assume that $\eta_{2} \sigma_{c B_{i f}}(l \cup m)=$ $l \cup \eta_{2} \sigma_{c B_{i \epsilon}}(m)$ bounds a 2 -cell $\eta_{2} \sigma_{c B}\left(\Sigma_{1}\right)$ on ∂B^{3} with $\eta_{2} \sigma_{c B i \epsilon}\left(\Sigma_{1}\right) \cap \nabla=$ $\Sigma_{1} \cap B_{k 0}$. Now, there exists $\eta_{3} \in \mathscr{D}\left(V_{n}\right)$ with

$$
\eta_{3} \psi_{2}\left(B_{n 0}\right) \cap \nabla \subset\left(\psi_{1}\left(B_{n 0}\right) \cap \nabla\right)-l ;
$$

it will be noticed that the new intersections given in $\left(^{*}\right)$ are also removed.
By the repetition of the procedure, we can conclude that there exist $\eta \in \mathscr{D}\left(V_{n}\right)$ and $\sigma \in \mathscr{S}(n)$ with $\eta \sigma \psi\left(B_{n 0}\right) \cap \nabla=\emptyset$; let ψ_{3} denote $\eta \sigma \psi$.

There are two cases to be considered.
Case 1: There exists a handle, say $h_{k}\left(D^{2} \times I\right)$, with $\psi_{3}\left(B_{n 0}\right) \subset h_{k}\left(D^{2} \times I\right)$. Since $\partial B_{n} \nsimeq 1$ on F_{n}, there exists $\eta_{4} \in \mathscr{D}\left(V_{n}\right)$ with $\eta_{4} \psi_{3}\left(B_{n 0}\right)=B_{k 0}$. Then $\rho^{n-k} \eta_{4} \psi_{3}\left(B_{n 0}\right)=B_{n 0}$; let ψ_{4} denote $\rho^{n-k} \eta_{4} \psi_{3}$. If the orientation of $\psi_{4}\left(B_{n 0}\right)$ does not agree with that of $B_{n 0}$, we apply ω_{n} and an appropriate $\eta_{5} \in \mathscr{D}\left(V_{n}\right)$, so that $\eta_{5} \omega_{n} \psi_{4}\left(B_{n 0}\right)=B_{n 0}$ and $\eta_{5} \omega_{n} \psi_{4}\left(B_{n 0}\right)$ has the same orientation as that of $B_{n 0}$.

Let $\psi_{5}=\psi_{4}$ or $\eta_{5} \omega_{n} \psi_{4}$ according as the orientation of $\psi_{4}\left(B_{n 0}\right)$ does or does not agree with that of $B_{n 0}$. Since $\left.\psi_{5}\right|_{B_{n 0}}$ is orientation preserving, there exists $\eta_{6} \in \mathscr{D}\left(V_{n}\right)$ with $\left.\eta_{6} \psi_{5}\right|_{B_{n 0}}=$ identity, this completes the proof of 4.4 in Case 1.

Case 2: $\psi_{3}\left(B_{n 0}\right) \subset B^{3}$. Now the simple loop $\psi_{3}\left(\partial B_{n 0}\right) \subset \partial B^{3}-\nabla$ bounds two 2-cells $\Sigma_{1}{ }^{\prime}$ and $\Sigma_{2}{ }^{\prime}$ on ∂B^{3}. Since $\partial B_{n 0}$ is not homologous to zero on F_{n}, there exists a handle, say $h_{k}\left(D^{2} \times I\right)$, of V_{n} with $B_{k 0} \subset \Sigma_{1}{ }^{\prime}$ and $B_{k 1} \subset \Sigma_{2}{ }^{\prime}$.

If there is a handle $h_{j}\left(D^{2} \times I\right), j \neq k$, with $B_{j 0} \subset \Sigma_{1}{ }^{\prime}$ (respectively $B_{j 1} \subset \Sigma_{1}{ }^{\prime}$), we can choose a $z_{j 0}$ (respectively, $z_{j 1^{-}}$) loop d such that $d \cap \partial B_{k 0}$ consists of one crossing point, and we apply $\sigma_{d B_{j 0}}$ of $B_{j 0}$ (respectively. $\sigma_{d B_{j 1}}$ of $B_{j 1}$). Then there exists $\eta_{7} \in \mathscr{D}\left(V_{n}\right)$ such that $\eta_{7} \sigma_{d B_{j} \epsilon}\left(\Sigma_{1}{ }^{\prime}\right) \subset \Sigma_{1}{ }^{\prime}, \eta_{7} \sigma_{d B_{j} \epsilon}\left(\Sigma_{1}{ }^{\prime}\right) \cap$ $B_{j \epsilon}=\emptyset, \epsilon=0$ or 1 ; let $\psi_{6}=\eta_{7} \sigma_{d B_{j} \epsilon} \psi_{3}$. Repeating the procedure, we can now assume that $\psi_{6}\left(\partial B_{n 0}\right)$ bounds a 2 -cell $\Sigma_{1}{ }^{\prime}$ on ∂B^{3} with $\Sigma_{1}{ }^{\prime} \cap \nabla=\Sigma_{1}{ }^{\prime} \cap$ $B_{k 0}=B_{k 0}$; and we have $\eta_{8} \in \mathscr{D}\left(V_{n}\right)$ with $\eta_{8} \psi_{6}\left(B_{n 0}\right)=B_{k 0}$. In the same way as that of Case 1, we also conclude 4.4 in Case 2.
4.5. Proof of 4.1; Second step: By virtue of Lemma 4.4, to prove Theorem 4.1, we may assume that $\left.\psi\right|_{B_{n 0}}=$ identity. From the definition of handles, we may assume that $\left.\psi\right|_{n_{n}\left(D^{2} \times I\right)}=$ identity with appropriate isotopy. Let

$$
\psi^{\prime}=\left.\psi\right|_{V_{n} n}: V_{n}^{n} \rightarrow V_{n}^{n} ;
$$

ψ^{\prime} is an orientation preserving homeomorphism with $\left.\psi^{\prime}\right|_{B_{n_{0}} \cup B_{n 1}}=$ identity; and we regard $V_{n}{ }^{n}$ as V_{n-1}. It will be noticed that ψ will be isotopic to the identity if and only if ψ^{\prime} is isotopic to the identity.

Now, induction of genus n is in order. The group $\mathscr{M}^{*}\left(F_{1}\right)$ is generated by the isotopy classes of the elements of G. We assume, inductively, that $\mathscr{M}^{*}\left(F_{n-1}\right)$ is generated by the isotopy classes of the elements of G.

Let $\mathscr{H}^{*}\left(F_{n-1} ; z_{n 0} \cup z_{n 1}\right)$ be the group of all orientation preserving homeomorphisms $\dot{\psi} \in \mathscr{H}^{*}\left(F_{n-1}\right)$ with $\dot{\psi}\left(z_{n 0} \cup z_{n 1}\right)=z_{n 0} \cup z_{n 1}$, and let $\mathscr{M}^{*}\left(F_{n-1}\right.$; $\left.z_{n 0} \cup z_{n 1}\right)$ be the group of all isotopy classes of elements in $\mathscr{H}^{*}\left(F_{n-1} ; z_{n 0} \cup z_{n 1}\right)$ with respect to isotopies keeping $z_{n 0} \cup z_{n 1}$ fixed. We can state our version of a special case of Birman's result.
4.6. Lemma. (Birman [4, Theorem 4.2, Theorem 4.3 and pp. 158-160]). Let $j_{*}: \mathscr{M}^{*}\left(F_{n-1} ; z_{n 0} \cup z_{n 1}\right) \rightarrow \mathscr{M}^{*}\left(F_{n-1}\right)$ be the homomorphism induced by the natural inclusion $j: \mathscr{H}^{*}\left(F_{n-1} ; z_{n 0} \cup z_{n 1}\right) \rightarrow \mathscr{H}^{*}\left(F_{n-1}\right)$. Then,

$$
\mathscr{M}^{*}\left(F_{n-1} ; z_{n 0} \cup z_{n 1}\right)
$$

is generated by ker j_{*} and the lifts of the generators of $\mathscr{M}^{*}\left(F_{n-1}\right)$ to $\mathscr{M}^{*}\left(F_{n-1} ; z_{n 0} \cup z_{n 1}\right)$. Moreover, $\operatorname{ker} j_{*}$ is generated by $\dot{\omega}_{n}{ }^{\prime}=\left.\dot{\omega}_{n}\right|_{F_{n-1}}$ and spins of $z_{n 0}$ and $z_{n 1}$ about appropriate loops.

We proceed with our proof. From the definitions of maps in Section 3, we conclude that:
4.7. By slight modifications, if necessary, we may assume that every element of G keeps $z_{n 0} \cup z_{n 1}$ fixed as a homeomorphism of $V_{n-1} \rightarrow V_{n-1}$.

Thus, by Lemma 4.6, ψ^{\prime} is isotopic to a power product of $\dot{\omega}_{n}{ }^{\prime}$, spins of $z_{n 0}$ and $z_{n 1}$ and $\dot{\rho}, \dot{\rho}_{12}, \dot{\omega}_{1}, \dot{\tau}_{1}, \dot{\theta}_{12}$ and $\dot{\xi}_{12}$; and so ψ^{\prime} is isotopic to a power product of $\omega_{n}{ }^{\prime}=\left.\omega_{n}\right|_{V_{n-1}}$, spins of $z_{n 0}$ and $z_{n 1}$ and elements of G (as homeomorphisms of
$V_{n-1} \rightarrow V_{n-1}$). By the definitions of spin and sliding given in 3.5, we conclude that ψ is isctopic to a power product of ω_{n}, slidings of $B_{n 0}$ and $B_{n 1}$ and elements of G. By the definition of ω_{n} and Corollary $3.11, \psi$ is isotopic to a power product of elements of G, this completes the proof of 4.1.

4.8. Proposition. The group $\mathscr{M}\left(F_{n}\right)$ is generated by $[\dot{\rho}],\left[\dot{\tau}_{1}\right],\left[\dot{\theta}_{12}\right]$ and $\left[\mu_{1}\right]$.

Proof. By Lickorish [14] (cf. Birman [3;4]), $\mathscr{M}\left(F_{n}\right)$ is generated by Dehn twists about simple loops $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$ and $\gamma_{1}, \cdots, \gamma_{n-1}$ on F_{n}, where γ_{j} is contained in $\partial B^{3}-\left(B_{10} \cup B_{11} \cup \cdots \cup B_{n 0} \cup B_{n 1}\right)$ which bounds a 2 -cell $\Gamma_{j} \subset \partial B^{3}$ with $\Gamma_{j} \cap\left(B_{10} \cup B_{11} \cup \cdots \cup B_{n 0} \cup B_{n 1}\right)=B_{j 1} \cup B_{j+1,0}$, $1 \leqq j \leqq n-1$. Recall that the Dehn twist about b_{i} is the same to $\dot{\tau}_{i}$, see 3.3. Since μ_{i} maps a_{i} onto b_{i}, and $\dot{\theta}_{j, j+1}$ maps γ_{j} onto b_{j+1}, Dehn twists about a_{i} and γ_{j} are isotopic to power products of $\dot{\tau}_{i}, \mu_{i}$ and $\dot{\tau}_{j+1}, \dot{\theta}_{j, j+1}$, respectively. From the definitions of maps $\dot{\tau}_{i}, \mu_{i}, \dot{\theta}_{j, j+1}$, we conclude 4.8.
4.9. Remark. It is easy to check that our maps are topological realizations of generators for the Siegel's modular group $\mathrm{Sp}(2 n, Z)$ given by Hua-Reiner [12] and Klingen [13]; cf. Birman [2].

References

1. R. Baer, Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. reine angew. Math., 159 (1928), 101111.
2. J. S. Birman, On Siegel's modular group, Math. Ann. 191 (1971), 59-68.
3. - Mapping class groups of surfaces: A survey, Ann. of Math. Studies 79, Discontinuous Groups and Riemann Surfaces, ed. Greenberg (Princeton Univ. Press, Princeton, N.J., 1974), 57-71.
4. - Braids, links and mapping class groups, Ann. of Math. Studies 82 (Princeton Univ. Press, Princeton N.J., 1974).
5. -_ Poincaré conjecture and the homeotopy group of a closed orientable 2-manifold, J. Aust. Math. Soc. 17 (1974), 214-221.
6. J. S. Birman and H. M. Hilden, On the mapping class groups of closed surfaces as covering spaces, Ann. of Math. Studies 66, Advances on the Theory of Riemann Surfaces, ed. Ahlfors et al. (Princeton Univ. Press, Princeton, N.J., 1972), 81-115.
7. M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 13j-206.
8. D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
9. L. Goeritz, Die Abbildungen der Brezelflachen und der Vollbrezel vom Geschlecht 2, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 244-259.
10. H. B. Griffiths, Automorphisms of a 3-dimensional handlebody, Abh. Math. Sem. Univ. Hamburg 26 (1964), 191-210.
11. Some elementary topology of 3-dimensional handlebodies, Comm. Pure and Appl. Math. 17 (1964), 317-334.
12. L. K. Hua and I. Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. 65 (1949), 415-426.
13. H. Klingen, Charakterisierung der Siegelschen Modulgruppe durch ein endliches System definierender Relationen, Math. Ann. 144 (1961), 64-82.
14. W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Camb. Phil. Soc. 60 (1964), 769-778. Alsc Corrigendum, 62 (1966), 679-681.
15. W. Mangler, Die klassen von topologischen Abbildungen einer geschlossenen Flache auf sich, Math. Z. 44 (1939), 541-554.
16. J. Nielsen, Untersuchen zur Topologie der geschlossenen Zweiseitigen Flächen I, Acta Math. 50 (1927), 184-358. Also, III, Acta Math. 58 (1932), 87-167.

University of Toronto,
Toronto, Ontario

