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Abstract Let E be a UMD Banach space, and L a positive self-adjoint operator in L2 of Laplace type, for
which the imaginary powers L−it form a C0-group of exponential growth 0 � α < π on Lp(E), where 1 <

p < ∞. Suppose G(z) is holomorphic inside and on the boundary of the sector {z : z �= 0, | arg z| � φ},
and zκG(z) → 0 uniformly as z → ∞ for some κ > 0 and φ > α. Then G(tL) (t > 0) defines a bounded
family of linear operators on Lp(E); and the maximal operator f �→ supt>0 ‖G(tL)f‖E is bounded on the
domain of log L. The proof uses transference methods. These hypotheses hold for the maximal solution
operators for the heat, wave and Schrödinger equations, and for Cesàro sums.
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1. Introduction and main results

Let X be a smooth manifold, and µ a σ-finite positive Radon measure on X. Suppose
that L is an operator of Laplace type over X, so that L defines a positive and self-
adjoint operator in a dense linear subspace of L2(µ) with core the smooth functions
of compact support C∞

c (X); to avoid possible ambiguity, we further suppose that the
spectral projection corresponding to the singleton set {0} is zero. Any bounded and Borel
measurable function G : (0,∞) → C gives rise to a bounded linear operator G(L) on
L2(µ) by the spectral theorem.

The solutions to the abstract Cauchy problem ∂u/∂t = iLu, u(0, x) = f(x), for the
Schrödinger equation are given by u(t, x) = eitLf(x); although this problem is well posed
for initial data f ∈ L2(µ), one typically obtains µ-almost sure convergence to the initial
data, u(t, x) → f(x) as t → 0, only for f in a proper subspace of L2(µ) [13,17]. In [5,9]
a technique for proving such results was introduced, which was based on analysis of the
maximal operators f �→ supt>0 |G(tL)f(x)|. Using the Mellin transform of G, one can
reduce the analysis of the maximal operator to the group Liv of imaginary powers of L.
Typically this defines a C0-group on Lp(µ) (1 < p < ∞), which is not uniformly bounded
for p �= 2 [18]. In this paper we achieve new maximal theorems for operator families
defined using such groups. To obtain estimates on various operators by transference
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28 G. Blower

methods, it is necessary to restrict attention to a special class of Banach spaces which
includes Lp(µ) (1 < p < ∞).

Definition 1.1. For E a complex Banach space, the Bochner–Lebesgue space Lp(µ; E)
consists of strongly measurable E-valued functions f on X for which the norm

‖f‖Lp(µ;E) =
(∫

X

‖f(s)‖p
Eµ(ds)

)1/p

is finite. And E is said to be a UMD space if the Hilbert transform

H(f)(t) = PV
∫ ∞

−∞
f(t − s)

ds

πs
(f ∈ Lp(R; E)) (1.1)

defines a bounded linear operator on Lp(R; E) for 1 < p < ∞. See [3,6,7] for examples.

When E is a UMD Banach space, one seeks to extend the definition of Liv to Liv ⊗ IdE

on Lp(µ; E) (where IdE denotes the identity operator on E) by using the functional
calculus of spectral integration [2,3]; for notational simplicity, one then writes Liv for
this extended operator. The domain of the generator i log L of the group Liu in Lp(µ; E)
has the usual graph norm

‖f‖D(log L) = ‖f‖Lp(µ;E) + ‖(log L)f‖Lp(µ;E).

Using a much improved version of the technique of [5], we obtain results for maximal
functions associated with operator families G(tL) on Lp(µ; E) in § 2. Our first application,
Theorem 3.1, relates to the maximal operator for the holomorphic extension of the heat
semigroup Ht = e−tL, when Liv is of exponential growth of rate less than π/2. In § 3
we also obtain, under stronger hypotheses, bounds on the solution operator for the wave
and Schrödinger equations. Our main result is the following theorem.

Theorem 1.2. Suppose that Liv (v ∈ R) defines a C0-group on Lp(µ; E) for some
1 < p < ∞ and UMD Banach space E, with

‖Liv‖B(Lp(µ;E)) � C(1 + |v|β) (v ∈ R), (1.2)

where β < 1
2 . Then

(a) the wave sine family sin(t
√

L)/t
√

L (t > 0) defines a uniformly bounded
family of linear operators on Lp(µ; E), and the sublinear maximal operator
W∗ : DLp(µ;E)(log L) → Lp(µ) is bounded, where

W∗ : f �→ sup
t>0

∥∥∥∥ sin(t
√

L)
t
√

L
f(x)

∥∥∥∥
E

(f ∈ DLp(µ;E)(log L)); (1.3)

and

(b) likewise, the family of Schrödinger sine operators sin(tL)/tL (t > 0) is uniformly
bounded on Lp(µ; E) and the sublinear maximal operator S∗ : DLp(µ;E)(log L) →
Lp(µ) is bounded, where

S∗ : f �→ sup
t>0

∥∥∥∥ sin(tL)
tL

f(x)
∥∥∥∥

E

(f ∈ DLp(µ;E)(log L)). (1.4)
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In § 4 we derive some consequences for the Euclidean Laplace operator.
We shall show that the maximal operator W∗ of (1.3) has similar properties to the

Hardy–Littlewood maximal operator. The relations between the various maximal opera-
tors are discussed in § 6.

Our main ‘Maximal Lemma’ 2.3 also has consequences for Cesàro summability of
orthogonal series. Let (ϕn) (n ∈ N) be an orthonormal basis of L2(µ) for some probability
measure on X, and for f ∈ L2(µ) write f ∼

∑
n anϕn for the orthogonal series generated

by f . For a real sequence of λn � 1 with λn → ∞ as n → ∞, we can introduce a self-
adjoint and positive operator in L2(µ) by setting Lϕn = λnϕn and extending linearly. In
§ 5 we prove results including the following theorem.

Theorem 1.3. Suppose δ > 0 and that f belongs to the domain of log L, so∑
n

(1 + log λn)2|an|2 < ∞.

Then
∑

n anϕn(x) is almost everywhere (C, δ) summable to f(x), so

∑
n:λn�N

(
1 − λn

N

)δ

anϕn(x) → f(x), (1.5)

µ-almost everywhere as N → ∞.

In this context, it is natural to have maximal operators defined only on the domain of
log L, as illustrated by the theorem of Menshov [16]:

Given ε > 0, there exists an orthonormal basis (ϕn) (n ∈ N) of L2[0, 1] for
which the maximal partial sum operator

∑
n

anϕn �→ sup
N(x)

∣∣∣∣
N(x)∑
n=1

anϕn(x)
∣∣∣∣

is unbounded DL2((log L)1−ε) → L1[0, 1] where L is determined by λn = n+1
(n ∈ N).

The proof of the main ‘Maximal Lemma’ in § 2 involves a functional calculus argument,
which the reader may find more congenial when expressed in the language of Fourier
transforms. For κ, β > 0, let Aβ,κ be the space of holomorphic functions g(z) on the strip
Ωβ = {z : | Im z| < β} such that (a) eκzg(z) and (b) e−κzg′(z) are bounded on Ωβ . It is
easy to verify that any such g is itself bounded on Ωβ , and hence Aβ,κ forms a Banach
algebra under pointwise multiplication for the norm

‖g‖Aβ,κ
= sup

z∈Ωβ

{|g(z)|} + sup
z∈Ωβ

{|eκzg(z)|} + sup
z∈Ωβ

{|e−κzg′(z)|}. (1.6)

Theorem 1.4. Let E be a UMD Banach space, and Tt = eitA a C0-group of operators
on E, with ‖Tt‖B(E) � Meα|t| (t ∈ R). Then, for any β > α and κ > 0, there is a
bounded homomorphism Aβ,κ → B(E) : g �→ g(A) for any κ > 0.
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The main idea in the proof is that

ĝ(u + iv) =
∫ ∞

−∞
g(x + iy)e−i(x+iy)(u+iv) dx

is independent of −β < y < β by Cauchy’s Theorem, and defines a holomorphic function
on {u + iv : 0 < v < κ, −∞ < u < ∞}. Using (b) and an integration by parts argument,
one can extend ĝ to a meromorphic function on Ωκ for which the only possible singularity
is a simple pole at zero. Further, for any β′ < β and κ′ < κ, the extended function ĝ(u+iv)
decays at an exponential rate β′ uniformly on Ωκ′ as u → ±∞.

The functional calculus map is

g �→ lim
ε→0+

1
2π

(∫ −ε

−∞
+

∫ ∞

ε

)
ĝ(u)Tu du − 1

2 i Res(ĝ; 0) IdE , (1.7)

wherein the integrals converge at infinity on account of the exponential decay of the
Fourier transform, while the singularity at zero may be treated by transference methods.

This provides us with one particular way of defining g(A) when iA generates a bounded
C0-group of operators, and g lies in the proper subalgebra Aβ,κ of the usual Hardy
space H∞(Ωβ) of bounded holomorphic functions on some fixed Ωβ . For α, s, ε > 0 with
2αs > κ and αβ < π/2, the function mα,s(z) = (sech(αz))2s multiplies f ∈ H∞(Ωβ+ε)
pointwise to an element mα,sf of Aβ,κ. By introducing L = e−A one can work with
bounded holomorphic functions on sectors instead of strips. In [10] the authors develop
an H∞ functional calculus for operators L of type ω, such that ‖z(L − zI)−1‖ � Mθ

whenever | arg z| > θ > ω, for which the imaginary powers generate C0-groups with
‖Lis‖ � Mµeµ|s| (s ∈ R) for ω < µ < π. Their Convergence Lemma 2.1 shows that
the H∞ functional calculus on {z : z �= 0, | arg z| � µ} is unique under mild hypothe-
ses. This holds for general Banach spaces, and some of their arguments simplify in the
context of the present paper, namely UMD Banach spaces which are reflexive. Certain
functional calculus results of § 2 below are essentially contained in [10], wherein the
function zs/(1 + z)2s corresponds to m(1/2),s.

Nevertheless, Lemma 5.2 in [10] shows that on Lp(R) with p �= 2 one can con-
struct a densely defined operator L for which Liu defines a bounded C0-group, but for
which L does not admit a bounded functional calculus for H∞ functions on any sector
{z : z �= 0, |z| � φ} with 0 < φ < π. The functional calculus of [3, Theorem 5.6] provides
an alternative method for bounding functions of L, and the spectral family of projections
of [3, Theorem 5.1] is essentially unique.

2. Maximal Lemma for imaginary powers

Throughout this section, we suppose 1 < p < ∞, and E is a UMD Banach space. We also
suppose that the group of imaginary powers Liv (v ∈ R) defines a C0-group on Lp(µ; E)
which satisfies

‖Liv‖B(Lp(µ;E)) � MLeα|v| (v ∈ R). (2.1)
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Stein [18, p. 58] shows that the negative generator of any symmetric diffusion semigroup
e−tL satisfies (2.1) with α � π/2 when E = C; this gives us our main source of examples
(see also [4, 5.2]).

Using the Mellin transform, we shall show that G(L) ⊗ IdE may be extended from
C∞

c (X) ⊗ E to define a bounded linear operator G(L) on Lp(µ; E), provided G satisfies
various technical conditions. We first impose a strong hypothesis, to be weakened later:

(i) G(x)/x1+γ is integrable over x in (0,∞) for −δ < γ < δ, for some δ > 0.

The Mellin transform may then be defined by

G̃(s) =
∫ ∞

0
xs−1G(x) dx,

where the integral is absolutely convergent and is a holomorphic function of s on the
strip {s : −δ < Re s < δ}. The Mellin inversion formula [21, p. 46] gives

G(λ) = lim
R→∞

1
2πi

∫ γ+iR

γ−iR
G̃(s)λ−s ds (−δ < γ = Re s < δ) (2.2)

at all points of differentiability of G. Similarly, if G̃(γ+iv) is integrable over v ∈ (−∞,∞)
and differentiable at γ + it, then

G(x) =
1

2πi

∫ γ+i∞

γ−i∞
G̃(s)x−s ds

satisfies

G̃(γ + it) = lim
η→0+,
R→∞

∫ R

η

xγ+it−1G(x) dx.

For 0 < φ < π we introduce the sector Kφ = {z : z �= 0, | arg z| � φ} and consider the
complex functions G which are continuous on Kφ and holomorphic on its interior. These
assumptions will be in force throughout this section.

We recall the proof of a fundamental result [5,9], in which we further suppose that

(ii) G(z) → 0 as |z| → 0 and as |z| → ∞ in Kφ, uniformly in | arg z| � φ; and

(iii) r−1G(re±iφ) are integrable over r ∈ (0,∞).

Proposition 2.1. Suppose that G satisfies (i), (ii) and (iii) for some π > φ > α.
Then G(tL) (t > 0) defines a uniformly bounded family of operators on Lp(µ; E), and
the maximal operator f �→ supt>0 ‖G(tL)f(x)‖E defines a bounded sublinear operator
Lp(µ; E) → Lp(µ).

Proof. Using Cauchy’s Theorem and condition (ii), we can turn the line of integration
in the definition of the Mellin transform to arg z = sgn(v)φ = ψ and thereby achieve

G̃(iv) = e−|v|φ+iψ
∫ ∞

0
riv−1G(reiψ) dr (v ∈ R). (2.3)
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32 G. Blower

By the inversion formula, we can then write

G(tL)f =
1
2π

∫ ∞

−∞
G̃(iv)t−ivL−ivf dv (f ∈ Lp(µ; E), t > 0). (2.4)

For any x ∈ X, we have by the triangle inequality

sup
t>0

‖G(tL)f(x)‖E � 1
2π

∫ ∞

−∞
|G̃(iv)| ‖L−ivf(x)‖E dv, (2.5)

since |t−iv| = 1. Taking the Lp(µ) norm of both sides gives

∥∥∥ sup
t>0

‖G(tL)f‖E

∥∥∥
Lp(µ)

� 1
2π

∫ ∞

−∞
|G̃(iv)| ‖L−ivf‖Lp(µ;E) dv

� 1
2π

∫ ∞

−∞
|G̃(iv)| ‖L−iv‖B(Lp(µ;E)) dv × ‖f‖Lp(µ;E), (2.6)

for any f ∈ Lp(µ; E); and the latest integral is convergent, since the exponential decay
rate of the Mellin transform exceeds the growth rate of the group by (2.3) and (iii).

Unfortunately, neither condition (i) nor (ii) is satisfied in many cases of interest, such
as Theorems 1.2, 3.1 and parts (a) and (b) of Corollary 4.1, wherein the Mellin trans-
form G̃(s) has a simple pole at s = 0. Consequently, the constant C(p, α) of Cowling’s
fundamental inequality [9, p. 276] becomes infinite, and one cannot control (the maximal
function of) the family G(tL) (t > 0) by a simple application of the triangle inequal-
ity. The main technical contribution of the present paper is to use transference methods
to overcome this difficulty. This involves restricting the range of values of p, restricting
the class of Banach spaces and defining the maximal operator on a proper subspace of
Lp(µ; E). �

Lemma 2.2. Suppose that for some κ > 0 and 0 < φ < π:

(iv) G(z) is holomorphic with continuous derivative inside and on the boundary of Kφ,
including z = 0; and

(v) G(reiθ)rκ → 0 as r → ∞, uniformly for |θ| � φ.

Then G̃(s) extends to define a holomorphic function on the strip {s : −1 < Re s < κ},
apart, possibly, from a simple pole at s = 0. Furthermore, G̃(s) decays to zero at expo-
nential rate φ, uniformly for − 1

2 � Re s � 1
2κ as Im s → ±∞.

Proof. For 0 < Re s < κ, the Mellin transform integral is absolutely convergent
and defines a holomorphic function on this strip by Morera’s Theorem. By applying
Cauchy’s Theorem to zs−1G(z) on the contour made up of the straight line segments
[δ, R], [δeiθ, Reiθ] and the circular arcs joining δ to δeiθ and R to Reiθ, respectively, we
can turn the line of integration to arg z = θ for any −φ � θ � φ. Letting δ → 0+ and
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R → ∞, we derive the identity

G̃(s) = eiθs

(
G(eiθ)

s
− 1

s

∫ 1

0
rsG′(reiθ) dr +

∫ ∞

1
rs−1G(reiθ) dr

)

(|θ| � φ, 0 < Re s < κ) (2.7)

by splitting the range of integration and integrating by parts.
One can use the right-hand side of (2.7) to continue G̃(s) across the imaginary axis to

a meromorphic function on {s : −1 < Re s < κ}, for which the only possible singularity
is a simple pole at s = 0. On account of the initial exponential factor, it also follows that
|G̃(u + iv)| � CGe−φ|v| for − 1

2 � u � 1
2κ and |v| � 1 for some CG < ∞. �

Lemma 2.3 (Maximal Lemma). Let G be as in Lemma 2.2, and suppose that
Liu satisfies (2.1), for some π > φ > α. Then G(tL) (t > 0) defines a uniformly
bounded family of linear operators on Lp(µ; E); furthermore, the maximal operator
f �→ supt>0 ‖G(tL)f‖E defines a bounded sublinear operator DLp(µ;E)(log L) → Lp(µ).

Proof. For η > 0 sufficiently small, the Mellin inversion formula may be applied to
G̃(s + η), the Mellin transform of xηG(x). One can then use Cauchy’s theorem to deform
the line of integration into a curve avoiding s = 0. On letting η → 0, this contour may
in turn be replaced by the sum of a principal-value integral and the contribution of the
pole at zero. Consequently, for f ∈ Lp(µ; E) and t > 0 we can use the Mellin inversion
formula to write

G(tL)f =
1
2π

(∫ ∞

1
+

∫ 1

−∞

)
G̃(iv)t−ivL−ivf dv

+ PV
1
2π

∫ 1

−1
G̃(iv)t−ivL−ivf dv + 2−1 Res(G̃; 0)f. (2.8)

The integrals over (1,∞) and (−∞,−1) may be bounded by the argument of Propo-
sition 2.1, whereas the final integral in (2.8) requires a more subtle argument: starting
with the decomposition G̃(iv) = b/iv + h(v), where b is a constant and h(v) is continuous
near to the simple pole at v = 0, we have an identity of principal-value integrals

∫ 1

−1
G̃(iv)t−ivL−ivf dv =

∫ 1

−1
h(v)t−ivL−ivf dv + b

∫ 1

−1
(tL)−ivf

dv

iv
. (2.9)

The first of these integrals is clearly bounded with bound independent of t, as in Propo-
sition 2.1. The last is the transferred finite Hilbert transform for the representation
v �→ (tL)−iv of R on Lp(µ; E), and by [3] and [4, Theorem 4.1] this operator is bounded
with bound independent of t. Together these estimates show that G(tL) (t > 0) defines
a uniformly bounded family of linear operators.
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To control the associated maximal operator, we take f ∈ DLp(µ;E)(log L) and write the
last integral in (2.8) as a sum of principal-value integrals

∫ 1

−1
G̃(iv)t−ivL−ivf dv =

∫ 1

−1
h(v)t−ivL−ivf dv +

∫ 1

−1

t−iv − 1
iv

(L−iv − I)f dv

+
∫ 1

−1

t−iv

iv
f dv +

∫ 1

−1
L−ivf

dv

iv
−

∫ 1

−1

dv

iv
f. (2.10)

The first of these integrals may be treated as in Proposition 2.1. The latest integral is zero;
the second last is independent of t > 0 and is the transferred finite Hilbert transform,
hence may be controlled as in (2.9); the third last involves

∫ 1
0 sin(v log t) dv/v, which is

bounded independently of t > 0. It remains to control the second integral, which may be
written as ∫ 1

−1
(t−iv − 1)

1
iv

∫ v

0
L−iw dw(−i log L)f dv (2.11)

by definition of the group generator, wherein |t−iv − 1| � 2 and

∥∥∥∥ 1
iv

∫ v

0
L−iw dw

∥∥∥∥
B(Lp(µ;E))

� ML

|v|

∫ |v|

0
ewα dw � MLeα (|v| � 1) (2.12)

by (2.1). Consequently, we can take the supremum over t > 0, and then the Lp(µ) norm,
to obtain

∥∥∥∥∥sup
t>0

∥∥∥∥
∫ 1

−1

t−iv − 1
iv

(L−iv − I)f dv

∥∥∥∥
E

∥∥∥∥∥
Lp(µ)

� 2MLeα‖(log L)f‖Lp(µ;E). (2.13)

Combining all of these estimates gives the required bound on the maximal function. �

3. Heat, wave and Schrödinger maximal theorems

Our first application of the Maximal Lemma is to the holomorphic semigroup e−wL.
This is associated with the heat equation, in the sense that U(w, x) = e−wLf(x) satisfies
∂U/∂w = −LU for w in a sector surrounding the semi-axis Re w > 0.

Theorem 3.1. Let Liv (v ∈ R) be a C0-group on Lp(µ; E) for some UMD Banach space
E and 1 < p < ∞, that satisfies (2.1) with α < π/2; and let 0 < ψ < π/2−α. Then (−L)
generates a holomorphic semigroup on Lp(µ; E), bounded in the sector {w : | arg w| � ψ};
and there exists C = C(E, p, ψ, α) < ∞ such that the associated maximal operator
satisfies

∥∥∥ sup
w:| arg w|�ψ

‖e−wLf‖E

∥∥∥
Lp(µ)

� CML(‖f‖Lp(µ;E) + ‖(log L)f‖Lp(µ;E)) (3.1)

for all f in the domain of the group’s generator i log L.
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Proof. The existence of such a semigroup was established in [4, Corollary 4.2]. Let
ω have |ω| < ψ < π/2 − α, and set Gω(z) = exp(−eiωz). One can verify (v) with any
φ < π/2−ψ, or calculate the Mellin transform explicitly. Indeed G̃ω(s) equals Γ (s)e−isω,
which satisfies the asymptotic relation

|G̃ω(iv)| 

(

2π

|v|

)1/2

eωve−π|v|/2 (v → ±∞) (3.2)

by Stirling’s formula [20, 4.4.1]; hence G̃ω(iv) decays exponentially with rate at least
π/2 − ψ > α as v → ±∞. Further, G̃ω(s) is holomorphic on a strip surrounding the
imaginary axis, apart from a simple pole at zero with residue one.

By Lemma 2.3, exp(−eiωtL) (t > 0, |ω| � ψ) defines a uniformly bounded family of
linear operators on Lp(µ; E), and the associated maximal operator is bounded from the
domain of log L to Lp(µ). �

3.1. Proof of Theorem 1.2

(a) The function G(x) = sin(
√

x)/
√

x (x > 0) has Mellin transform

G̃(s) = −2Γ (2s − 1) cos(πs),

with poles at s = −n, with n � 0 an integer [21, p. 204]. Further, by Stirling’s formula [20,
4.41], we have the asymptotic relation

G̃(iv) 
 −
√

π

|v|3/2 exp
(

−π|v| + 2iv log
2|v|
e

− 3πi sgn(v)
4

)
cosh(πv) (v → ±∞), (3.3)

which is of the order of |v|−3/2 as v → ±∞. The result follows as in Lemma 2.3.
(b) The proof of Theorem 1.2 (b) is similar. �

4. Maximal operators for Euclidean waves and Schrödinger operators

The Laplace operator

∆ = −
d∑

j=1

∂2

∂x2
j

is essentially self-adjoint on C∞
c (Rd; dx) and extends naturally to a closed linear operator

in Lp(Rd; dx) for 1 � p < ∞.
For this operator, d’Alembert’s solution of the wave equation gives a representation of

the cosine family as averages over the unit sphere with respect to normalized Lebesgue
measure, namely

cos(t
√

∆)f(x) =
∫

[|y|=1]
f(x + ty)σd(dy) (f ∈ C∞

c (Rd)). (4.1)
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Corollary 4.1. Let 4d/(2d + 1) < p < 4d/(2d − 1). Then

(a) the maximal operator W∗ : DLp(log ∆) → Lp(Rd) is bounded, where

W∗ : f �→ sup
t>0

∣∣∣∣ sin(t
√

∆)
t
√

∆
f(x)

∣∣∣∣; (4.2)

(b) similarly, the maximal operator S∗ : DLp(log ∆) → Lp(Rd) is bounded, where

S∗ : f �→ sup
t>0

∣∣∣∣ sin(t∆)
t∆

f(x)
∣∣∣∣; (4.3)

and

(c) for 1 > γ > max{(p + 2pd − 4d)/2p, (p + 4d − 2pd)/2p}, the maximal operator

f �→ sup
t>0

∣∣∣∣cos(t
√

∆) − I

(t
√

∆)γ
f(x)

∣∣∣∣ (4.4)

is bounded Lp(Rd) → Lp(Rd).

Proof. (a), (b) Using the Marcinkiewicz Multiplier Theorem and interpolation as
in [5, Lemma 3.1], one can achieve the bound ‖∆iv‖B(Lp(Rd)) � Cp,d(1 + |v|)β with β < 1

2
for such p and d. Hence the hypotheses of Theorem 1.2 are satisfied.

(c) The Mellin transform of G(x) = (cos
√

x − 1)/xγ/2 is found to be G̃(s) =
2Γ (2s − γ) cos( 1

2π(2s − γ)), which is holomorphic on the strip − 1
2 < Re s < 1

4 . This iden-
tity may be deduced from the Mellin transform formula for the sine function [21, p. 204]
by integration by parts. Furthermore, by Stirling’s formula and the bound on the growth
of the group, the integral ∫ ∞

−∞
|G̃(iv)|‖∆−iv‖B(Lp) dv

is convergent; and so we can argue as with (2.6). This may be compared with [5, Theo-
rems 5.1, 5.2] and [9, Corollary 4]. �

Remarks 4.2. (a) With d = 1 and L = ∆, it follows from (4.1) that

sin(t
√

∆)
t
√

∆
f(x) =

1
2t

∫ t

−t

f(x + u) du

and the maximal operator W∗ of (4.2) is simply the Hardy–Littlewood maximal operator
[15, p. 237], so Corollary 4.1 (a) may be improved to the statement that W∗ is bounded
on Lp(R) for 1 < p < ∞. However, Theorem 1.2 does not extend to the case of p = 1.
For it is easy to check that

f(x) =
1√
2π

∫ 1

−1
e−(x−y)2/2 dy
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is integrable and belongs to D(log ∆) (defined via the Fourier transform) in L1(R); but
the maximal function of f is not integrable.

(b) The maximal operator f �→ supt>0 |eit∆f | is unbounded Lp(R) → Lp
loc(R) for

1 � p < 2 [13, Theorem 2].

The following results improve upon the cases d = 1 and d � 3 of Corollary 4.1 (b),
respectively. Possibly they are known, but I have not been able to locate a reference.

Proposition 4.3. Let ∆ be the Laplacian over the real line. Then the maximal oper-
ator S∗ for the sine family sin(t∆)/t∆ defines a bounded sublinear operator Lp(R) →
Lp(R) for 1 < p < ∞. Likewise, for the Laplacian over the circle, S∗ is bounded
Lp(T) → Lp(T) for 1 < p < ∞.

Proof. We can represent ∆ by the Fourier multiplier ∆eiξx = ξ2eiξx, so S∗ may be
viewed as the maximal convolution operator for the kernels Kt(x − y) which represent
the multipliers sin(tξ2)/tξ2. Indeed, we have Kt(x − y) = F ((x − y)/

√
t)/

√
t, where, by

Fourier inversion,

F (u) =
∫ ∞

−∞

sin(ξ2)
ξ2 eiξu dξ

2π
(u ∈ R). (4.5)

By considering the Fresnel integral F ′′(u), one can derive an asymptotic formula for
F which implies |F (u)| � C/(1 + u2) (u ∈ R) for some C < ∞. It follows that the sine
family satisfies

sin(t∆)
t∆

f(x) =
1√
t

∫ ∞

−∞
F

(
x − y√

t

)
f(y) dy

� C

∫ ∞

−∞

√
t

t + (x − y)2
|f(y)| dy

= CP√
t|f |(x), (4.6)

where Pt = e−t
√

∆ is the Poisson semigroup for the upper half-plane [15, p. 142]. By
the Hardy–Littlewood Maximal Theorem [15, p. 237], the maximal operator P∗ : f �→
supt>0 |Ptf(x)| defines a bounded sublinear operator Lp(R) → Lp(R) for 1 < p < ∞; and
hence, by (4.6), S∗ is likewise bounded on Lp(R) for all such p.

To show that S∗ is bounded on Lp(T) for 1 < p < ∞, one uses the Poisson summation
formula and the previous estimate to show that

∣∣∣∣
′∑
n

sin(n2t)
n2t

ein(θ−φ)
∣∣∣∣ � C

√
t

t + (θ − φ)2
+ C (0 � θ, φ � 2π) (4.7)

for 0 < t < 1. The proof then proceeds as before. �

Proposition 4.4. For dimension d � 3 and d/(d − 1) < p � ∞ there exists Cp,d < ∞
such that all f ∈ C∞

c (Rd) satisfy ‖S∗(f)‖Lp � Cp,d‖f‖Lp .
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Proof. We can use the spectral theorem and the Fourier inversion formula with (4.5)
to obtain

sin(t∆)
t∆

f(x) =
∫ ∞

−∞
F (u) cos(u

√
t∆)f(x) du (4.8)

for smooth functions of compact support. Since F is integrable, the inequality

S∗f(x) � C sup
t>0

| cos(t
√

∆)f(x)|

follows by convexity. Stein [19, p. 518] has shown that the maximal spherical averaging
operator f �→ supt>0 | cos(t

√
∆)f(x)| defines a strongly (p, p) bounded sublinear operator

for this restricted range of p and d; his proof depends upon Fourier transform restriction
phenomena (see also [17]). �

5. Almost everywhere Cesàro summability of orthogonal series

Throughout this section we let µ be a probability measure on X, and let (ϕn) (n ∈ N)
be an orthonormal basis for L2(µ). For f ∈ L2(µ) we let f ∼

∑
n anϕn be the orthogonal

series generated by f . For a real sequence (µn) (n ∈ N) with λn = |µn| � 1 and λn → ∞
as n → ∞, we introduce a self-adjoint operator A in L2(µ) by setting Aϕn = µnϕn

and extending linearly. Then Ut = eitA defines a C0 unitary group on L2(µ). We also
introduce the positive self-adjoint operator L by Lϕn = λnϕn, so Liu is a C0 unitary
group on L2(µ).

For δ > 0, we say that
∑

n anϕn is Cesàro (C, δ) summable to f at x, if

∑
n:λn<N

(
1 − λn

N

)δ

anϕn(x) → f(x) (N → ∞) (5.1)

(see [12]). Note that each sum on the left-hand side is finite. We write Cδ
t f = (I − tL)δ

+f

for the expression on the left-hand side, and Cδ
∗f(x) = supt>0 |Cδ

t f(x)| for the associated
maximal function.

5.1. Proof of Theorem 1.3

We shall show that Cδ
∗ is a bounded sublinear operator DL2(log L) → L2(µ). Almost

everywhere convergence of the (C, δ) Cesàro sums follows by standard and classical argu-
ments. The Mellin transform of G(x) = (1 − x)δ

+ is

G̃(s) =
∫ 1

0
(1 − x)δxs−1 dx =

Γ (δ + 1)Γ (s)
Γ (δ + 1 + s)

, (5.2)

which defines a holomorphic function on the strip R = {s : −1 < Re s < 1}, apart from a
simple pole at s = 0. Further, Stirling’s formula leads to the estimate G̃(s) = O(|s|−1−δ)
uniformly for s ∈ R as |s| → ∞. Arguing as in the proof of Lemma 2.3, we deduce that
the associated maximal operator Cδ

∗f = supt>0 |G(tL)f | is bounded DL2(log L) → L2(µ).
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Definition 5.1. A bounded linear operator U on L2(µ) is said to be separation pre-
serving if, for any f and g in L2(µ) with fg = 0 µ-almost everywhere, (Uf)(Ug) = 0
also holds µ-almost everywhere. A bounded linear operator U is said to be positivity
preserving if Uf � 0, whenever f � 0. Any C0-group Ut (t ∈ R) of positivity preserving
operators is also separation preserving (see [1, p. 55]).

Proposition 5.2. Suppose that the unitary group Ut = eitA has Ut separation pre-
serving for each t ∈ R. Then for any f ∈ L2(µ) and δ > 0, the series

∑
n anϕn(x) is (C, δ)

summable to f(x) for µ-almost all x.

Proof. The proof is based upon a transference technique, where we pass from the
translation group τu : f(x) �→ f(x + u) on the line to the unitary group Ut on L2(µ). By
the spectral theorem, we can write, for any f ∈ L2(µ),

(I − tL)δ
+f(x) =

1
2π

∫ ∞

−∞
hδ(u)Utuf(x) du (x ∈ X), (5.3)

where hδ is the Fourier transform of (1 − |x|)δ
+. One can show that |hδ(u)| �

κδ(1 + u2)−(1+δ)/2 (u ∈ R) for some κδ < ∞. The operator (I − tL)δ
+ may thus be

obtained by transferring to L2(µ) the bounded convolution operator
∫ ∞

−∞
hδ(u)τtu du

on L2(R); further, by Theorem 2.3 in [1], the maximal operator for the family (I − tL)δ
+

may be obtained by transference of the corresponding maximal convolution operator. To
check that the latter is strongly (2, 2) bounded, we note that for any g ∈ L2(R) we have

sup
t>0

∣∣∣∣
∫ ∞

−∞
hδ(u)τtug(x) du

∣∣∣∣ � sup
t>0

κδ

∫ ∞

−∞

1
(1 + u2)(1+δ)/2 |g(x + tu)| du

� sup
t>0

(1 + δ)κδ

∫ ∞

0

u2

(1 + u2)(δ+3)/2

1
u

∫ u

−u

|g(x + tv)| dv du,

(5.4)

where the last step follows from Fubini’s Theorem. The latest integral is a convex com-
bination of averages of |g|, and so is strongly (2, 2) bounded by the Hardy–Littlewood
maximal averages theorem [15, p. 237]. By the transference theorem for maximal oper-
ators, supt>0(I − tL)δ

+ is likewise strongly (2, 2) bounded, as required. �

This proof of Proposition 5.2 ultimately reduced to the following observation.

Proposition 5.3. Suppose that t �→ eitA is a bounded and strongly continuous repre-
sentation of R on Lp(µ), for some 1 < p < ∞, with each eitA separation preserving; and
let δ > 0. Then there exists κδ < ∞ such that Cδ

∗f � κδS∗f for all f ; and S∗ is bounded
Lp(µ) → Lp(µ).
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6. Subordination of maximal functions

Let X be a complete Riemannian manifold with metric ρ and measure µ. We let L be
the Laplace operator in L2(µ), which is positive and self-adjoint. The wave operator
cos(t

√
L) has a distributional kernel cos(t

√
L)(x, y) supported on the strip {(x, y) ∈ X2 :

ρ(x, y) � t} surrounding the diagonal x = y; thus, the solutions to the wave equation
are of finite propagation speed [8]. In view of Remark 4.2 (a), it is natural to regard
the maximal function W∗ for the wave sine family sin(t

√
L)/t

√
L as the analogue of the

Hardy–Littlewood maximal function.
The Poisson semigroup may be defined by

Ptf(x) = e−t
√

Lf(x) =
1
π

∫ ∞

−∞

t

t2 + u2 cos(u
√

L)f(x) du (6.1)

for f ∈ L2(µ), and it extends to define a symmetric diffusion semigroup on Lp(µ) for
1 � p � ∞ [8, 18]. Here V (t, x) = Ptf(x) defines a harmonic function, in the sense
that (∂2/∂t2 − L)V (t, x) = 0 on (0,∞) × X. The maximal functions for the Poisson and
heat semigroups are denoted P∗f(x) = supt>0 |Ptf(x)| and H∗f(x) = supt>0 |Htf(x)|,
respectively. These may be compared pointwise in the following result.

Proposition 6.1. The maximal functions satisfy

(a) P∗f(x) � H∗f(x) � W∗f(x) for all f ∈ C∞
c (X) and x ∈ X;

(b) Cδ
∗f(x) � κδS∗f(x) for some constant κδ where 1 < δ < 2; and

(c) S∗f(x) � κP∗f(x), whenever cos(t
√

L) (t > 0) is positivity preserving.

Proof. The Poisson and heat semigroups Ht = e−tL are related by the Bochner
subordination formula [18, p. 47]

Ptf(x) =
∫ ∞

0

Ht2/vf(x)e−v

√
vπ

dv; (6.2)

whereas one can obtain the relation

Htf(x) =

√
2
π

∫ ∞

0
s2e−s2/2 sin(s

√
2tL)

s
√

2tL
f(x) ds (6.3)

by integration by parts and Fourier inversion [8]. And so by convexity the maximal
functions satisfy (a).

(b) We take 1 < δ < 2 and introduce hδ(u) =
∫ 1

−1(1 − |x|)δ cos(ux) dx, which is a
continuously differentiable and integrable function on R. Using repeated partial integra-
tion, one shows that σδ(u) = −uh′

δ(u) is integrable over R. By Fourier inversion and
integration by parts, one obtains

(1 − tL)δ
+ =

1
2π

∫ ∞

−∞

sin(utL)
utL

σδ(u) du (6.4)
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from the spectral theorem. Now (b) follows by convexity, with

κδ =
1
2π

∫ ∞

−∞
|σδ(u)| du.

(c) This follows from (4.8) and (6.1), since F (u) � C/(1 + u2). �

Remarks 6.2. (1) On account of (4.1), the hypothesis of Proposition 6.1 (b) is satisfied
by the Euclidean Laplace operator.

(2) The inequality Proposition 6.1 (b) is the basis for Hardy’s theorem on the almost
everywhere summability of classical Fourier series [12, Theorem 3] over T; the method of
Kolmogorov–Seliverstov is rather different in that it involves detailed analysis of kernel
functions [14].

(3) Results concerning spherical sums of classical Fourier series over T
d with p �= 2

are sensitive to dimension. Carleson and Sjölin showed that the operators (I − t∆)δ
+

are bounded Lp(R2) → Lp(R2) for 4
3 � p � 4 for t, δ > 0. Using our method with [5,

Lemma 3.1] and (5.2), one obtains the weaker result that the (I − t∆)δ
+ (t > 0) are

uniformly bounded Lp(R2) → Lp(R2) for 4/(2 + δ) < p < 4/(2 − δ). By contrast, δ = 0
gives the multiplier for the disc, which is famously unbounded on Lp(R2) for p �= 2 [11].

(4) In the analysis of harmonic functions on the disc, the non-tangential maximal
function is often used in conjunction with square functions such as the Littlewood–
Paley g-function. In [10] it is shown that an operator with a bounded H∞ functional
calculus on Lp satisfies square function estimates. It would be interesting to determine
how such bounds are related to maximal-operator bounds, and whether the maximal-
operator bounds can be dualized.

Acknowledgements. I thank G. J. O. Jameson, T. A. Gillespie and E. B. Davies
for helpful remarks, and the referee for pointing out reference [10].
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