SOUS-MODULES PURS ET SOMMANTES DIRECTES

CLAUDE LEMAIRE

Introduction. Ce travail donne des conditions sous lesquelles un sousmodule pur de M est une sommante directe, non nécessairement de M luimême, mais d'un sous-module "proche" de celui-ci. (M est supposé sans torsion, dans un certain sens.) Ces conditions sont exprimées à partir d'un module M d'endomorphismes du mondule des fractions de M, étroitement lié à la notion d'"endomorphisme partiel" d'un module sans torsion, introduite par Fuchs M et que nous avons étudiée dans M est semi-simple est particulièrement intéressant et étudié.

Au § 1, nous construisons une injection F_H de l'ensemble des sous-modules de M dans l'ensemble des sous-modules de H. Nous montrons au § 2 que si $F_H(X)$ est une sommante directe, il en est de même de X et nous en tirons une conséquence immédiate si H est semi-simple.

La suite du travail consiste en cas particuliers de ces deux résultats généraux. Au § 3, nous étudions ceux cas où n'interviennent explicitement que des morphismes proprement dits, sans passage au module de fractions.

Le § 4 est consacré à deux situations plus classiques: celle où la proximité d'un sous-module N est définie comme la propriété que M/N est de torsion ou borné. Dans le deuxième cas, nous nous ramenons à une condition sur End M. Enfin, le § 5 fournit un critère de semi-simplicité dans un cas particulier.

1. Soit A un anneau commutatif unitaire, B son anneau total de fractions, U l'ensemble des éléments réguliers (= inversibles) de B, M un A-module, $P = B \otimes_A M$. Nous supposons toujours que l'application canonique de M dans P est injective ("M sans torsion") et nous identifions M à son image. Si \mathscr{F} est l'ensemble des idéaux réguliers de A (c'est-à-dire contenant un élément régulier), B est isomorphe à

$$\varinjlim \operatorname{Hom}_A(\alpha,A) \qquad (\alpha \in \mathscr{F})$$

et

$$P \simeq \varinjlim \operatorname{Hom}_{\mathbf{A}}(\alpha, M) \qquad (\alpha \in \mathscr{F})$$

(voir [1, Chapitre 2, #1, Exemple 21]). Un sous A-module X de M est dit pur si

pour tout
$$b \in B$$
, $x \in X$, $b \cdot x \in M \Rightarrow bx \in X$.

Reçu le 24 Avril, 1972. Cette recherche était soutenue par le Conseil national de recherches du Canada.

(Si B est un corps, cela correspond à une définition traditionnelle de la pureté dans un module sans torsion.) Soit $\mathscr S$ un filtre de sous A-modules de P, comprenant A. $\mathscr S$ définit une topologie linéaire sur P, dans laquelle A est ouvert. Nous notons $E(\mathscr S)$ l'anneau des endomorphismes de P continus pour cette topologie et

$$H(M, \mathcal{S}) = \{ h \in \operatorname{End}_B P | \text{il existe } S \in \mathcal{S}, h(S) \subset M \}.$$

 $H(M, \mathscr{S})$ est un $E(\mathscr{S})$ -module à droite; c'est toujours avec cette structure que nous le considérerons; il inclut $E(\mathscr{S})$. (Dans [5], nous avons étudié quelques rapports entre $E(\mathscr{S})$ et $H(M, \mathscr{S})$.) Pour tout sous $E(\mathscr{S})$ -module H de $H(M, \mathscr{S})$ et tout sous-A-module X de M, nous construisons le sous- $E(\mathscr{S})$ -module de H

$$F_H(X) = \{ h \in H | \text{il existe } S \in \mathcal{S}, h(S) \subset X \}.$$

Définition. Un resserrement dans H est un monomorphisme ρ de M dans H tel que:

- (i) $\rho(m)(p) \subset B \cdot m$ pour tout m dans M et tout p dans P;
- (ii) pour tout m dans M et tout $S \in \mathcal{S}: \rho(m)(S) \cap U \cdot m \neq \emptyset$.

Théorème 1.1. Si ρ est un resserrement de M dans H, $\rho^{-1}(F_H(X)) = X$ pour tout X pur. En particulier, F_H est une injection de l'ensemble des sous-modules purs de M dans l'ensemble des sous- $E(\mathcal{S})$ -modules de H.

Démonstration. $X \subset \rho^{-1}(F_H(X))$: soit $x \in X$; il faut montrer que $\rho(x) \in F_H(X)$. Or $\rho(x) \in H(M, \mathcal{S})$ puisque $H \subset H(M, \mathcal{S})$. Il existe donc un S dans \mathcal{S} tel que $\rho(x)(S) \subset M$. Pour tout $s \in S$, $\rho(x)(s) = bx$ pour un $b \in B(i)$; mais $bx \in M$ entraı̂ne $bx \in X$ puisque X est pur. Donc $\rho(x)(S) \subset X$ et $\rho(x) \in F_H(X)$.

 $\rho^{-1}(F_H(X)) \subset X$: soit $m \in \rho^{-1}(F_H(X))$. Alors il existe un $S \in \mathcal{S}$ tel que $\rho(m)(S) \subset X$. Donc pour un $u \in U$, u, m appartient à $\rho(m)(S)$ (ii), donc à X. Mais $u \in X \Rightarrow m \in u^{-1}$. $X \Rightarrow m \in X$ puisque X est pur.

COROLLAIRE 1.2. Si, en plus, des hypothèses du Théorème, H est simple, alors M n'a pas de sous-modules purs autres que $\{0\}$ et M.

2. Par la suite, nous ne considérons que des resserrements construits à partir d'un T dans $P^* = \operatorname{Hom}_B(B, P)$ par la formule:

$$\rho_T: M \to H(M, \mathcal{S}): p \mapsto T(p) \cdot m.$$

Pour que ρ_T soit un resserrement de M dans H, il faut et il suffit que $\rho_T(M) \subset H$ et que $T(S) \cap U \neq \emptyset$ pour tout $S \in \mathscr{S}$. (L'injection est alors assurée puisque $T(P) \cap U \neq \emptyset$.)

LEMME 2.1. Si $h \in H(M, \mathcal{S})$, il existe un $S \in \mathcal{S}$ tel que $h \circ \rho_T(S) \subset \rho(M)$.

En effet: Prenons S tel que $h(S) \subset M$, ce qui est possible puisque $h \in H(M, \mathcal{S})$. $(h \circ \rho_T(s))(p) = h(\rho_T(s)(p)) = h(T(p) \cdot s) = T(p) \cdot h(s)$ $h(s) \in M$, soit m = h(s), donc $T(p) \cdot h(s) = \rho_T(m)(p)$ et $h \circ \rho_T(s) = \rho_T(m)$.

Le resserrement ρ_T associé à T est dit adéquat s'il existe $S \in \mathcal{S}$, $S \subset A$ tel que $\rho_T(S) \subset E(\mathcal{S})$. Nous dirons que S est un pivot du resserrement.

Exemple élémentaire de resserrement adéquat. Si ρ_T induit une structure d'anneau (non nécessairement associatif) sur M (par exemple $T(M) \subset A$), pour que ρ_T soit un resserrement adéquat (dans le $E(\mathcal{S})$ -module $E(\mathcal{S})$), il suffit que \mathcal{S} aît un sous-ensemble cofinal formé d'idéaux à gauche de M, tels que chaque T(S) contienne un élément de U. En particulier, si B est un corps, et si $\operatorname{Hom}_A(M,A) \neq 0$, le prolongement naturel T de chaque t non nul de $\operatorname{Hom}_A(M,A)$ induit un resserrement adéquat dans $E(\mathcal{S})$ pour tout \mathcal{S} engendré par des idéaux à gauche I tels que M/I soit de torsion.

Théorème 2.2. Supposons que $1 \in H$ et que ρ_T est un resserrement adéquat. Si X est pur et $F_H(X)$ sommante directe de H, alors X est sommante directe d'un $S \in \mathcal{S}$, inclus dans M.

Démonstration. Soit $H = F_H(X) \oplus V$. $1 = e_1 + e_2$ où $e_1 \in F_H(X)$ et $e_2 \in V$. Puisque ρ_T (écrit simplement ρ par la suite) est adéquat et que e_1 et e_2 appartiennent à $H(M, \mathcal{S})$, il existe un pivot S' tel que $e_1(S') \subset M$ et $e_2(S') \subset M$. Soit $s \in S'$. $\rho(s) = 1 \circ \rho(s) = e_1 \circ \rho(s) + e_2 \circ \rho(s)$. Puisque S' est un pivot, $\rho(s) \in E(\mathcal{S})$ de sorte que $e_1 \circ \rho(s) \in F_H(X)$ et que $e_2 \circ \rho(s)$ appartient à V. D'autre part, en vertu du lemme, il existe $m_1, m_2 \in M$ tels que $e_1 \circ \rho(s) = \rho(m_1)$ et $e_2 \circ \rho(s) = \rho(m_2)$. Alors $s = \rho^{-1}\rho(s) = \rho^{-1}\rho(m_1) + \rho^{-1}\rho(m_2) = m_1 + m_2$ où $m_1 \in \rho^{-1}F_H(X)$ et $m_2 \in \rho^{-1}(V)$. Il en résulte que $S' \subset \rho^{-1}F_H(X) \oplus \rho^{-1}(V)$, cette somme directe appartient donc à \mathcal{S} , notons-la S. Puisque X est pur, $\rho^{-1}F_H(X) = X$ (Théorème 1.1) donc $S = X \oplus \rho^{-1}(V)$. S est évidemment inclus dans M.

COROLLAIRE 2.3. Si, en plus des hypothèses du Théorème, H est semi-simple, alors tout sous-module pur de M est sommante directe d'un $S \in \mathcal{S}$, $S \subset M$.

3. Un sous-module N de M est *plein* dans M si tout élément de M/N a pour ordre un idéal de \mathscr{F} . Pour simplifier les hypothèses, nous supposons dans ce numéro que A est un domaine d'intégrité.

Théorème 3.1. Si X est pur dans M et S libre, plein dans M, alors X est sommante directe d'un $S'(S+X\subset S'\subset M)$ si et seulement si $\operatorname{Hom}_A(S,X)$ est sommante directe d'un $\operatorname{Hom}_A(S,S'')(S+X\subset S''\subset M)$ comme $\operatorname{Hom}_A(S,S)$ -module.

Théorème 3.2. Si X est pur dans M et si $\operatorname{Hom}_A(M, A) \neq 0$, X est une sommante directe de M si et seulement si $\operatorname{Hom}_A(M, X)$ est sommante directe de $\operatorname{Hom}_A(M, M)$ comme idéal.

Démonstration. Les A-modules de morphismes sont identifiés naturellement aux sous-modules correspondants de End P. \mathscr{S} est pris, comme l'ensemble des

modules incluant S dans le premier cas, M dans le second. On prend pour T d'une part le morphisme défini par $T(e_1) = 1$ $T(e_i) = 0$ $(i \neq 1)$ pour une base $e_1 \ldots e_n$ de S et d'autre part le prolongement (unique) dans $\operatorname{Hom}_B(P, B)$ d'un élément non nul de $\operatorname{Hom}_A(M, A)$. Les "si" sont alors des conséquences du Théorème 2.2 tandis que les "seulement si" sont évidents.

4. Soit \mathscr{F}' un sous-ensemble topologisant et idempotent [1] de \mathscr{F} . La classe \mathscr{T} des A-modules N tels que l'ordre de tout élément de N appartient à \mathscr{F} et la classe $\mathscr{T}_b'(\mathscr{T}_b$ pour $\mathscr{F}'=\mathscr{F}$) des A-modules N tels que $\alpha \cdot N=0$ pour un α dans \mathscr{F}' sont des classes de Serre (stables pour le passage aux sous-modules, aux quotients et aux extensions). Notons $\mathscr{S}(\mathscr{T})[\mathscr{S}(\mathscr{T}_b')]$ l'ensemble des sous-modules S de P tels que $S \supset S'$ avec $M/S' \in \mathscr{T}[\mathscr{T}_b']$. Dans la suite, nous prenons pour T un B-épimorphisme de P sur B. Si B est un corps, il en existe toujours un. Il est clair que si $S \in \mathscr{S}(\mathscr{T})$, T(S) contient un élément de U car $B/T(S) \simeq P/T^{-1}T(S)$, quotient de P/S qui appartient à \mathscr{T} donc $B/T(S) \in \mathscr{F}$ et il existe un a régulier de A ($a \in U$) tel que $a \cdot 1 \in T(S)$.

Théorème 4.1. Si A est noethérien sans éléments nilpotents autres que 0 et si P est de longueur finie sur B, alors tout sous-module pur de A est sommante directe d'un sous-module plein de A.

Démonstration. Puisque A est noethérien sans éléments nilpotents autres que 0, B est semi-simple (théorème de Goldie). P est un module semi-simple de longueur finie, donc End P est semi-simple. Puisque $P/M \in \mathcal{T}$, $S \in \mathcal{S}(\mathcal{T}) \Leftrightarrow P/S \in \mathcal{T}$. Si $h \in \text{End } P$ et si $S \in \mathcal{S}(\mathcal{T})$, $P/h^{-1}(S) \simeq h(P) + S/S \subset P/S$ de sorte que $h^{-1}(S) \in \mathcal{S}(\mathcal{T})$. Il en résulte que $E(\mathcal{S}(\mathcal{T})) = \text{End } P$, donc est semi-simple. Par la remarque précédant ce théorème, chaque T(S) contient un élément de U, donc ρ_T est adéquat pour $E(\mathcal{S}(\mathcal{T}))$. On peut donc appliquer le Corollaire 2.3.

Si X et Y sont des sous-A-modules de B, nous écrirons $X \leq Y$ si et seulement si il existe un $\alpha \in \mathscr{F}'$ tel que $\alpha X \subset Y$ (dans le cas des groupes abéliens, l'interprétation en termes de types est immédiate). Notons $(M:m) = \{b \in B | bm \in M\}$.

PROPOSITION 4.2. Si pour tout $m \in M$, $T(M) \leq (M:m)$, alors ρ_T est un resserrement adéquat pour $\mathscr{S}(\mathscr{T}_b')$ dans $E(\mathscr{S}(\mathscr{T}_b'))$.

Démonstration. Nous savons déjà que tout $T(S)(S \in \mathcal{S}(\mathcal{F}_b'))$ contient un inversible. Reste à prouver que pour tout $m \in M$ et tout $S \in \mathcal{S}(\mathcal{F}_b')$ il existe un $\alpha \in \mathcal{F}'$ tel que $T(\alpha M) \cdot m \subset S$. Si S = M, nous prenons pour α l'idéal, qui existe par hypothèse, tel que

$$\alpha T(M) \subset (M:m).$$

Si $S \neq M$, nous savons que S contient un $\beta M(\beta \in \mathcal{F}')$. Prenons $\gamma = \beta \cdot \alpha$. (α comme ci-dessus). Puisque \mathcal{F}' est topologisant et idempotent, il est multi-

plicatif [1], de sorte que $\gamma \in \mathscr{F}'$, $T(\gamma M) \cdot m = \beta \alpha T(M) \cdot m \subset \beta \cdot (M : m)$ $m \subset \beta M \subset M$.

Exemple 1. $\mathscr{F}' = \mathscr{F}$, A est un anneau de valuation discrète, d'uniformisante π . Si pour un T surjectif M + ker $T \neq P$, alors ρ_T est un resserrement adéquat. En effet, l'hypothèse assure que $\{0\} \subsetneq T(M) \subsetneq B$; de sorte que $T(M) \subset \pi^z A (z \in \mathbf{Z})$ et $T(M) \leq A$ donc $\leq \lambda$ tout M:m.

Exemple 2. Si $T(M) \leq A$ pour un T surjectif, ρ_T est un resserrement adéquat. (si A est de Dedekind, il est facile de voir qu'une condition nécessaire et suffisante pour réaliser la condition est que M possède une sommante directe isomorphe à un idéal de A).

Exemple 3. Supposons que B est un corps et M homogène, dans le sens que pour tous m, m' non nuls dans M, $(M:m) \leq (M:m')$ (généralisation des groupes abéliens sans torsion homogènes [2]). S'il existe dans $E(\mathcal{S})$ une projection de rang 1, alors il existe un resserrement adéquat. En effet, soit π la projection, et im $\pi = B \cdot m$ pour un m non nul de M. Si $\pi(p) = b \cdot m$, prenons T(p) = b. Puisque $\pi \in E(\mathcal{S})$, pour un $\alpha \in \mathcal{F}'$, $\pi(\alpha M) \subset M$, de sorte que $T(\alpha M) \subset (M:m)$ donc $T(\alpha M) \leq (M:m')$, pour tout $m' \in M$, par homogénéité.

Théorème 4.3. S'il existe un resserrement adéquat, si M est plat et End P artinien comme B-module, alors $E(\mathcal{S}(\mathcal{F}_b))$ est semi-simple si et seulement si End M n'a pas d'idéaux nilpotents non nuls.

Remarquons que si A est principal, M est plat puisque sans torsion. Si A est noethérien sans idéaux nilpotents non nuls et P de longueur fine sur B, End P est artinien (voir 4.1).

Démonstration. Posons $\mathscr{S} = \mathscr{S}(\mathscr{T}_b)$. Il est clair que

$$H(M, \mathcal{S}) \simeq \underset{\longrightarrow}{\underline{\lim}} \operatorname{Hom}_{A}(S, M) \qquad (S \in \mathcal{S})$$

(voir [6]). D'autre part, puisque \mathcal{F}_b est une classe de Serre, $H(M, \mathcal{S}) = E(\mathcal{S})$ [5].

$$E(\mathscr{S}) = H(M,\mathscr{S}) \simeq \underline{\lim} \operatorname{Hom}_{A}(\alpha \cdot M, M) \quad (\text{pour } \alpha \in \mathscr{F})$$

est isomorphe à

$$\xrightarrow{\lim} \operatorname{Hom}_{A}(\alpha, \operatorname{End} M)$$

qui est $B \otimes_A \text{End } M$.

On vérifie que $B \otimes_A$ End M est isomorphe à un sous-B-module de End P donc est artinien conne B-module et a fortiori comme B-algèbre. Si N est le radical de $B \otimes_A$ End M (radical de Jacobson, donc ici le plus grand idéal nilpotent) $N \cap$ End M est un idéal nilpotent de End M et

 $N/N \cap \operatorname{End} M \simeq N + \operatorname{End} M/\operatorname{End} M \subset B \otimes_A \operatorname{End} M/\operatorname{End} M \in \mathscr{T}$ de sorte que $N \cap \operatorname{End} M = 0$ entraîne $N = \{0\}$. La condition sur $\operatorname{End} M$ est

donc suffisante. Elle est aussi nécessaire car si N' est un idéal nilpotent de End M, $B \otimes_A N'$ est un idéal nilpotent de $B \otimes_A \operatorname{End} M$.

5. Une condition de semi-simplicité. Nous supposons que A est un domaine, M de rang fini et que \mathcal{S} a un pivot plein (§ 2).

Théorème. Si $S \in \mathcal{S}$ entraîne $a \cdot S \in \mathcal{S}$ pour tout $a \neq 0$ dans A, si ρ_T est un resserrement adéquat et si pour tout $m \in M$, $m \neq 0$, il existe un $g \in E(\mathcal{S})$ tel que $T(g(m)) \neq 0$, alors $E(\mathcal{S})$ est semi-simple.

Démonstration. End P est un B-module artinien. Si $h \in E(\mathscr{S})$ et $a/a_1 \in B$, $ah/a_1 \in E(\mathscr{S})$ car si $h(S') \subset S$, $((ah)/a_1)(a_1 \cdot S') \subset S$ et $a_1S' \in \mathscr{S}$ par hypothèse. Donc $E(\mathscr{S})$ est un sous-B-module de End P et est donc un anneau artinien. D'autre part, si $t \in \operatorname{rad} E(\mathscr{S})$, pour tous $g, h \in E(\mathscr{S})$, $1-g \circ t \circ h$ est inversible [4] donc $(1-g \circ t \circ h)(p)=0$ entraîne p=0 ou encore $p=(g \circ t \circ h)(p)$ entraîne p=0.

Si $t \in E(\mathcal{S})$, $t \neq 0$ et S_0 un pivot plein, il existe un $s \in s_0$ tel que t(s) appartient à M et est différent de 0. $(S_0$ est plein) et $\rho_T(s) \in E(\mathcal{S})$ $(S_0$ est un pivot). Prenons $h = \rho_T(s)$. $t \circ h = \rho_T(m)$ (cf. démonstration du Lemme 2.1) où $m = t(s) \neq 0$.

Pour tout $f \in E(\mathcal{S})(f \circ t \circ h)(p) = f(\rho_T(m)) = T(p) \cdot f(m)$. Il existe un $g' \in E(\mathcal{S})$ tel que $T(g'(m)) \neq 0$. Quitte à multiplier par un $b \in B$ $(E(\mathcal{S})$ étant un B-module), on peut trouver $g \in E(\mathcal{S})$ tel que T(g(m)) = 1 $(E(\mathcal{S})$ est un B-module).

Finalement, prenons p = g(m) (évidemment $\neq 0$), $(g \circ t \circ h)(p) = T(g(m)) \cdot g(m) = p$ donc $t \notin \text{rad } E(\mathcal{S})$ est semi-simple.

Remarques. La condition: "pour tout $m \neq 0$, il existe un $g \in E(\mathcal{S})$ tel que $T(g(m)) \neq 0$ " peut être traduite facilement en termes de matrices (compte tenu qu'elle doit être vraie pour tout $p \neq 0$).

Si A est un domaine, M de rang fini, qu'il existe un T surjectif tel que pour tout $m \neq 0$: $T(M) \leq (M:m)$ (4.2) et il existe un g dans $E(\mathcal{S}(\mathcal{F}_b))$ avec $T(g(m)) \neq 0$, alors $E(\mathcal{S}(\mathcal{F}_b))$ est semi-simple.

BIBLIOGRAPHIE

- 1. Bourbaki, Algèbre commutative, Chap. 2, fasc. 27 (Hermann, Paris, 1961).
- 2. L. Fuchs, Abelian groups (Pergamon Press, Elmsford, 1960).
- Recent results and problems in Abelian groups, Topics on Abelian groups (Scott, Foresman and Cy, 1963), 9-40.
- 4. N. Jacobson, Structure of rings (American Mathematical Society, Providence, 1964).
- 5. C. Lemaire, Endomorphismes partiels d'un module sans torsion, Bull. Soc. Math. Belg. 22 (1970), 155-186.
- 6. Morphismes partiels et semi-localisations, Bull. Soc. Math. Belg. 23 (1971), 181-193.

Université Laval, Québec, Québec