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1. Introduction. The problem of determining the conditions under which a 
finite set of matrices AX1A2, . . . , Ak has the property that their characteristic 
roots Ax,-, \2i, . . . , \kj (j = 1 , 2 , . . . , n) may be so ordered that every poly­
nomial f(Alt A2J . . . , Ak) in these matrices has characteristic roots /(Ala-, Xajt 

• • • » A*/) (j = 1, 2, . . . , n) was first considered by Frobenius [4]. He showed 
that a sufficient condition for the (A {) to have this property is that they be com­
mutative. It may be shown by an example that this condition is not necessary. 

J. Williamson [9] considered this problem for two matrices under the restric­
tion that one of them be non-derogatory. He then showed that a necessary and 
sufficient condition that these two matrices have the above property is that they 
satisfy a certain finite set of matric equations. 

N. H. McCoy [7] showed that a necessary and sufficient condition that A x, Aa, 
. . . , Ak have the above property is that ArAa — AsAr (r, s = 1,2, . . . , k) 
belong to the radical of the algebra generated by the (Ai). It may be noted that 
while on the one hand McCoy's condition removes the restriction that one of the 
matrices be non-derogatory, it does not, on the other hand, give a criterion, 
such as the Williamson condition, which may be easily computed. 

In a part of the following investigation it is proved that if 21 is a matric algebra 
such that the sum of every two matrices of 21 has characteristic roots which are 
the sum of the characteristic roots of the two matrices, then every finite set of 
matrices of 21 has the above property. This is a small step forward in an 
attempt to recover the computability of the Williamson condition. 

The following mapping theorem, which is used in the proof of the above 
theorem, is also proved. Let 21 be an algebra over an algebraically closed field 
%. Let 33 be an algebra over %. Let $ be a mapping of 21 onto 33 which (1) 
maps the identity of 21, if any, onto the identity of S3, (2) is linear, and (3) maps 
zero divisors into zero divisors in a strong sense. Then $ is a homomorphism 
of 21 onto 93 modulo its radical. 

Also included in this investigation is a proof of the McCoy condition which is 
somewhat simpler and more direct than the one originally given by McCoy. 

The author wishes to thank the referee for his many helpful suggestions, and 
in particular for his suggested proofs of Lemma 3.1 and Theorems 4.2 and 5.1. 

2. Some known results on the structure of algebras. All the theorems of 
this section either appear in [1], or are immediate consequences of theorems 
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which appear there. Throughout the discussions of this and subsequent sections 
g shall denote an arbitrary algebraically closed field. 

THEOREM 2.1 [1, p. 14]. IfQ is a division algebra over g, then 33 = g. 

THEOREM 2.2 [1, p. 44]. If 31 is a semi-simple algebra over g-, then 31 is sepa­
rable over g\ 

THEOREM 2.3 [1, p. 39]. / / 21 is a simple algebra over g, then 31 is a total 
matric algebra over %. 

THEOREM 2.4 [1, p. 39]. If 21 is a semi-simple algebra over %, then either 31 is 
a total matric algebra over % or 31 is expressible as the direct sum of total matric 
algebras over %. 

THEOREM 2.5. If 21 is an algebra over %, then 

» = (2Rx e ^, e ... e aw*) + ft 
where the 3JÎ,- are total matric algebras over g and where 31 is the radical of 31. 
(The symbol © denotes direct sum and the symbol + denotes supplementary 
sum.) 

THEOREM 2.6 [1, p. 40]. A commutative semi-simple algebra is a direct sum 
of fields. 

THEOREM 2.7 [1, p. 44]. Let 31 be an algebra over $ . Then there exists an 
algebraic extension $' of $ such that 31^/ is a diagonal algebra if and only if 3Ï is a 
direct sum of separable fields. 

THEOREM 2.8. If 31 is a commutative semi-simple algebra over an algebraically 
closed field, then 31 is isomorphic to a diagonal algebra. 

3. Theorems of Frobenius and McCoy. 
THEOREM 3.1 [4]. Let A{ (i = 1, 2, . . . , k) be a set of commutative matrices. 

Let f(xiy x2, . . . , xk) be any polynomial with coefficients in $. The characteristic 
roots of Aif XH (j = 1, 2, . . . , n) may be so ordered that the characteristic roots of 
f(Alf A2, . . . ,Ak) aref(Xlh X2/, . . . , X*,-). This ordering is the same for every f. 

Every finite set of matrices (Ai), commutative or otherwise, which enjoys the 
property of the preceding theorem will be said to have the Frobenius Property. 

THEOREM 3.2 [7]. Let (Ai)k.=i be an arbitrary set of matrices all of the same 
order. Let 9? = dt[AlfAa, . . . ,^4*] denote the algebra of all polynomials in the Ai. 
Let %l denote the radical of 9?. A necessary and sufficient condition that (A t- ) have 
the Frobenius Property is that ArA8 —^4s^4r Ç SSi (r, s = 1, 2, . . . , &). 

Before proceeding to prove these theorems we shall indicate the mode of 
approach. If the set of matrices (A{) satisfies the Frobenius condition of com-
mutativity or the McCoy condition (i.e., that ^4^4* — A8Ar Ç 31) then by 
Theorem 2.8 and Wedderburn's Principal Theorem it follows that the algebra 
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9?[̂ 4X, A2, . . . , Ak] is homomorphic to a diagonal algebra, the kernel of the homo-
morphism being the radical of 9t. Every diagonal algebra clearly has the 
Frobenius Property. Therefore, if it is shown that the elements of the radical 
under the operation of addition do not affect the characteristic roots of the ele­
ments of the algebra, then both of the above theorems will followT readily. 

LEMMA 3.1. Let % be a matric algebra over %. Let 9Î be the radical of 21. 
Suppose that the identity matrix I £ SI. If A Ç 21 and N £ 5ft, then A and 
A + N have the same characteristic function. 

Let z be an indeterminate, and I = A0 the unit matrix. Following [3], define 
matrices A k and constants ck recursively as follows : 

Co = 1, ck = ( - 1/k) tr(AAk-J, Ak = AAk.x + ckL 

Then we have [3 ] : 

P{z,A) = i f Akz«-*-k, det(zI-A) = £ ckz
n~\ 

where P(z, A) is the adjoint polynomial of zl — A. 
Now if A is replaced by A + N, writh TV in the radical, the new (A + N)k 

differ from the old Ak by elements of the radical, whose trace is zero. Hence 
the constants ck are the same for both A and A + N, and 

detOetf - A) = det(sl - A - N). 

LEMMA 3.2. Let %be a semi-simple commutative algebra. Let (Ai)k
i==i be a set 

of matrices with A{ 6 21. Then {A t- )J=i has the Frobenius Property. 

By Theorem 2.8 21 is isomorphic to a diagonal algebra. But clearly any finite 
set of elements of a diagonal algebra has the Frobenius Property. Hence, be­
cause of the existing isomorphism, so does {Ai)k . 

The proof of the sufficiency part of Theorem 3.2, from which Theorem 3.1 
follows, may now be given. From Theorem 2.2 and Wedderburn's Principal 
Theorem it follows that 9Î = W + 9t where 9?r ^ 9? - 31. Since ArA8-A8Ar 

Ç 5Î, it follows that 9?r is a commutative semi-simple algebra. Thus 

A4 = A[ + Niy A\ a M7, Nt e m. 

By Lemma 3.1 the characteristic roots of A. are the same as those of A{. By 
Lemma 3.2 there exists a unique ordering of the roots, \i1f of the A. such that 
for every polynomial /^ , x2, . . . , xk) the characteristic roots off(Ait A2, . . ., Ak) 
are/(X17-, X2J-, . . . , \kj) (j = 1 , 2 , . . . , n). Note now that 

f(A[, A[, ...,A'k)= f{Ax -N19A,-Na,...,Ak- Nk) 
= f(A1,A2,...,Ak)+NJ Neïï. 

Again by Lemma 3.1 the characteristic roots of f(Ax, A2, . . . , Ak) are 
f (Xx/, X2J-,... , \kj). Hence the sufficiency of the stated condition has been shown. 
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The proof of the necessity of the condition of Theorem 3.2 is immediate. For 
if an ordering of the roots exists then clearly all the roots of 

f(Al9 Aa,...f Ak) • [ArAs - A8Ar] 

are zero for every f(AlyA2, . . . ,Ak) Ç 9? so that ArA8 — A8Ar is properly 
nilpotent in 9î and hence is in 91. 

I t may be interesting to state Theorem 3.2 in the following equivalent form: 

THEOREM 3.2a. A necessary and sufficient condition that a set of matrices 
(Ai)k

i==i have the Frobenius Property is that there exists a homomorphism of the 
algebra dt = ^[A^ A2J . . . , Ak], with kernel the radical of 9£, onto a diagonal 
algebra. 

4. Concerning characteristic vectors. Rademacher [8] proved Frobenius's 
Theorem, our Theorem 3.1, by first proving: 

THEOREM 4.1. Let (Ai)k
i==x be a set of commutative matrices. Then there exists 

a set of numbers (JJL{ )
k
i==i and a row vector \[/, such that 

Mi = Hit (i = 1 , 2 , . . . , h). 

A row vector $ ^ 0 which has the property that \f/A{ = ix^ (i = 1, 2, . . . , £) 
is called a characteristic row vector associated with the set (A »• )J==1. A character­
istic column vector associated with (Ai)k

i==i may be defined similarly. 
A more general form of the above theorem is given in: 

THEOREM 4.2. Suppose that A rAa — AsAr (r, s = 1, 2, . . . , k) is in the radical, 
9Î, of dt = SR^x, A2t . . . , Ak]. Let nc (nr) denote the nullity of the column 
(row) space of 9J. Then there are exactly nG (nr) linearly independent character­
istic row (column) vectors associated with (A {)^ss=i. 

As above, 9? = dl' + 5R where SK' ^ 9î — 5ft and where 9Î' is a commutative 
semi-simple algebra. By Theorem 2.8 it may be assumed without loss of 
generality that 9?' is a diagonal algebra. 

Since the nullity of the column space of 9? is nc1 there exists a matrix H of 
rank nc such that HN = 0, for every N G 9?. Clearly the row vectors of H 
form a basis for the complement of the column space of 9?; that is, if 0 is a row 
vector such that cf>N = 0 for every N Ç 91, then </> is a linear combination of the 
row vectors of H; for otherwise the nullity of the column space of 91 would be 
greater than nc. 

A matrix is in Hermite form if it is "triangular with zeros above the diagonal; 
with every diagonal element either zero or one; if the diagonal element in any 
row is zero, the entire row is zero; if the diagonal element in any column is one, 
every other element of the column is zero" [6, p. 35]. 

It may be assumed that H is in Hermite form ; for otherwise one may multiply 
H on the left by a non-singular matrix P which brings H into Hermite form [6, 
p. 35] and then (PH)N = H'N = 0 for every N Ç 9f. It will be shown that 
each of the nc non-zero row vectors of H is a characteristic row vector. 
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Now A{ = D{ + N{ (i = 1 , 2 , , . , , k), where Dt is diagonal and Nt Ç 9Î. 
Note also that since D{N £ $1 for every N € 5ft it follows that (HDt)N = 
H(D{N) = 0 for every iV G 9 ;̂ and hence it is true that every row vector of 
HD{ is a linear combination of the row vectors of H. We may therefore write 
HDi = LH. If zt is a number such that the diagonal matrix B4 = zj + D{ is 
non-singular, then 

HBi = {zJ + L)H, 
BTHBi = B7x(zJ+ L)H. 

The matrix B~lHBi on the left is in Hermite form, since this form is still retained 
after transforming H by a non-singular diagonal matrix. Since the Hermite 
form is unique, the right member, which is a left multiple of H} can be in Hermite 
form only if it is equal to H. Hence B{ and, consequently, D{ are commutative 
with H. From the equation 

HAi = HDi = DiH 

it follows, that if \l/k is a non-vanishing row vector occupying the &th row of H 
and \ik is the &th diagonal element of Diy then 

\pkAi = \ik\pk. 

Thus the nc linearly independent vectors \[/k are characteristic vectors of each 
of the matrices A{, 

Suppose now that \f/ is any characteristic row vector associated with (^4.)J=1 ; 
x/zAi = X^. Let N be any element of 9Î. Since N € $l[Alt A2J . . . , Ak] it is 
true that N = f(A19 A2i . . . , Ak). Thus 

*N = #( i4 l f i l , , . . . , il») = /(Xlf X„. . . , X*)*. 

But since N G 91, N has only zero as a characteristic root, and hence 
/(Xlf X2, . . . , Xjfc) = 0. Therefore \p annihilates every element of 9Î. But this 
means that \p is a linear combination of the wc vectors \f/k considered above. This 
completes the proof of the theorem. 

In the example given below nc ^ nr. This indicates that one cannot in 
general expect to get an expression for nc or nr in terms of the Weyr or Segre 
characteristics of the matrices involved; for the latter invariants do not differ­
entiate between the structure of the row spaces and the column spaces of the 
matrices. 

Example : 
1 0 0 

Ax = 1 1 0 
_0 0 IJ 

"0 0 Ol 
N, = 1 0 0 

_o o oj 

1 0 0 ] 
A2 = 0 1 0 

_1 0 I J 

"0 0 0*1 
N,= 0 0 0 

1 0 oj 
9? = SR[JV„ Nm], 

I + N,. 
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Thus nc = 1, nT = 2. Also note that 

[1, 0, 0]-A> = 1 • [1, 0, 0] 

Ai-
0 0 0 0 
1 = 1 • 1 , At. 0 = 1 • 0 j 
0 0 1 1 

a = i, 2), 

(*'= 1,2). 

5. A mapping theorem. 3Ê is said to be a module over fÇ if 36 is a linear subset 
of an algebra over %. 

Let ï and §) be modules over %. Let $ be a mapping of H onto §) which satis­
fies the following conditions: 

(1) If ï has a unit €, then g) has a unit e', and $(e) = ef. 

C: (2) $ is linear, i.e., if Xi G ï and a{ G g, then $ ( £ at-X,) = £ ^ * ( Z t . ) . 

(3) If Z , € 1 and if 1*1 X, = 0, then 1*1 $(X.) = 0. 

THEOREM 5.1. Let 9ft be a total matric algebra over %, g) a module over §, and 
$ a mapping of 9ft 0W/0 g) wfe/z satisfies conditions C. / / ^4, .4' G 9ft £Aew 
<£(̂ 4 • A') = $(A)&(A'). Thus g) is an algebra and $ maps 9ft homomorphi-
cally onto g). 

9ft has a basis E{]- (i,j= 1 , 2 , . . . , w) where EijEkm = ô]kEim and where 8ik 

is Kronecker's delta. 
Since $ is linear it will be sufficient to show that 

*(EuEkm) = $(Eti)*(Ekm) = ô,-^(£*w). 

If I is the unit matrix, each of the following products vanishes: 

EuEkm = 0 for j j* k, 

(En — /)£<* = EuEik — / E ^ = 0, 

{Eu - E<j)(Eik + Eik) = EuEik + EuEjk ~ EuEik - E{jEjk = 0. 

Hence the image under the mapping <£ of each of these products vanishes. We 
obtain successively: 

$(£„)$(£*m ) = 0 fori * k, 

*(£„)*(£„) = *(/)*(£,*) = W 0 , 
$(£„•)*(£,•*) = *(E«)*(Eik) + *(Eit)$(Eik) - * ( £ „ ) $ ( £ „ ) = * (£„ ) • 

THEOREM 5.2. Ze/ 2Ï awd S3 fo algebras over g- m//z radicals 9? and 9Î' respective­
ly. Let $ be a mapping of 2Ï 0wfo 53 which satisfies conditions C. If A, A' Ç. 21 
/fcew $C4 • .40 = $W)$G4') mod 9?'. 

By Theorem 2.5, SI = © + m where © = 9ft, 0 9ft2 0 . . . 0 9ft*. Thus if 
4̂ G §1 then A is uniquely expressible as A = S + TV, where 5 G © and iV G 91. 
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(1) If N G % then $(N) G 31'. For suppose that N G 5R. It is sufficient 
to show that if B G 33, then [J3$(iV)]z = 0 for some positive integer I. Since 
$ maps SI onto 33 it follows that if B G 53 then there exists an A G 21 such that 
B = $(A). Since iV G 9Î it is true that there exists an I such that 

[AN]1 = ^iV^iV . . . ,47V = 0. 

By C3, #(i4)$(i\0 . . . Q(A)$(N) = 0, or [$(,4)$(iV)]z = [S^iV)]1 = 0. 
Therefore <£(iV) G 5R'. 

(2) With the use of Theorem 5.1 it may be shown quite easily that if 5, S' G ©, 
then $(5) $(50 = $(5-50. 

(3) Suppose now that A, A' G SI. Then 

A = S + N, A' = S' + N', S,S' G ©, N,N' G 5ft, 

i 4 4 , = 5 / / + i V / / = ( i 4 - J V ) ( i 4 / - ^ / ) + ^ / / , ^" . ( i l - iNO.Ol ' - iVOe©, N" G 5». 

Using (1) and (2) we may write 

$(AA') = $(A-N)$(A'-N') + $(N")t 

$(A)$(A') = [$(A-JS0 + Hty][$(A'-N') + $(N')], 

-$(N)$(N') = 0 m o d ^ ' . 

In the preceeding theorem it has been assumed that the field g was algebraic­
ally closed. The following example shows that Theorem 5.2 is not necessarily 
true if the field is not algebraically closed. Thus some condition on g is neces­
sary. It may be proved that the theorem still holds if the condition of algebraic 
closure is replaced by the somewhat weaker condition that the characteristic 
roots of every element of SI all lie in g\ 

Let Ra denote the rational field and let SI be an algebra over Ra with basis 
elements I and A, where / is the identity and A2 = —I. Define a mapping <ï> 
of St onto 31 as follows: 

$(al + bA) = (a + 6)/ + bAt afi G Ra. 

Clearly <£(/) = I; $ is linear; and since A has no proper zero divisors, $ satis­
fies C.a vacuously. The radical of SI is zero. Note however that 

$(A2) = $ ( - I) = - I 9* $(A)$(A) = 2A. 

Note also that if the complex field were used instead of the rational field, and <ï> 
defined similarly, then condition C3 would not be satisfied. For 

(il + A)(il - A) = 0 (i2 = - 1), 

whereas 

$(il + A)*(il - A) = [ (*+ l)I + A][(i- 1)1 - A] = - J. 
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6. The assignment of a common order to the characteristic roots of certain 
sets of matrices. Let 21 be a subalgebra of a total matric algebra 5DÎ of order n2 

over an algebraically closed field %. Suppose that the identity matrix / is in St. 
Let \ij (j = 1, 2, . . . , n) denote the characteristic roots of A{ 6 SI. 

31 is said to have property PG if the characteristic roots of every pair of matrices 
A,, A 2 Ç St may be so ordered that the characteristic roots of A x + A 3 are 
Kj + Xa/ (j = 1, 2, . . . ,» ) . 

St is said to have property Px if the characteristic roots of every finite set of 
k 

matrices (A{ )JŒI G St may be so ordered that the characteristic roots of J^ a{Ai 

are £ a,-X</ (j = 1 , 2 , . . . , » ) for all a< Ç g. 
t = i 

The ordering of the roots in property P0 is not assumed to be unique. It is 
conceivable, a priori, that the 7th characteristic root of Ax + A2 is X17- + X2/ 

but that for some a £ % the j th characteristic root of Ax + aA2 is X13; + aX2&; 
thus it seems possible that the j th root of Ax may associate with the 7th root of 
A2 but that for some a Ç $ the j th root of ylx will associate with the &th root 
of aA2. That this is not so is proved in 

LEMMA 6.1. Suppose tliattyL has property P0. Suppose that the jth character­
istic root of Ax + A2 is \X] + X2/(j = 1, 2, . . . , n). Then the jth characteristic 
root of aAx + bA2 is d\xj + b\2]- for all a,b Ç F (j = 1, 2, . . . , n). 

Denote the j th characteristic root of 

cAx + [(a — c)Ax + bA2], (a — c)Ax + bA2, and aAx + bA2 

by 
c\xi + (a — c)Xxl + b\2m, (a — c)\xl + b\2m, and a\xp + b\2Q 

respectively. It would seem that the subscripts l,m, p, and a depend on the 
values of j , a, b, and c; that is, I = l(j, a, b, c), m = m(j, a, b, c), p = p(j, a, b, c), 
Q = y(j> ai b, c), where the functions involved are integral valued and assume 
values only between 1 and n inclusive. Since 

cA, + [(a — c)Ax + bA2] = aAx + bA2, 
it is true that 

(6,1) c\X]- + {a c)\1i^<a<biC) + b\2m(jtatbtC) = #XlP(/i0>6fC) + &X2g(7iai&iC). 

Now let j , b, and c be arbitrary but fixed. Consider the quadruplet of integers 
[1(a), m (a), p(a), q(a)]. Since 1(a), m (a), p(a), and q(a) are integers between 1 
and n it follows that at most n* distinct quadruplets can be obtained by letting 
a run over %. Since % is algebraically closed it is an infinite field and hence there 
exist an infinite number of distinct a{ £ S s u c n that [l(a{)r m(a^)r p(a{), q(a{)] 
= [h, m<>, Po, q0] for some fixed l0} m0, p0, and q0. Thus for an infinite number 
of distinct a» Ç % 

(6.2) cX1(- + (a,- — c)X,,0 + b\emt> = a\1M + &X2| 
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From (6.2) it follows immediately that 

(6.3) \llo = XlPo. 

Furthermore, XlZ(a) may be taken equal to XlZo, and Xlp(a) may be taken equal to 
X1P0 for all a £ %• For 

det(cAx + (x — c)Ax + bA9 — c\xiI — (x — c)\xlJ — b\2mJ) 
= det(x^41 + bA2 — x\iPQI — b\2QQI) = 0 

for an infinite number of distinct x G 3r. Hence the above determinants are 
identically zero, and thus cAx + (ax —c)A1 + bA2 and a f i , + bA2 have respec­
tively the characteristic roots c\xi + (a{ — c)Xxh + b\2mo and a,-XiP0+ b\2Q0 for all 
a Ç gf. Consequently one may, without loss of generality, redefine the functions 
/, m, p, and q so that [/(a,-), w(a,-)» />(#<) t 2(a»-)] = &, w0, A» g„] for all a< 6 g. 
From this and the fact that the choice of j , b> and c was arbitrary it follows from 
(6.3) that 

Km,a,b,c) = Xi„(/a.&.c> for all a, b, c G S (i = 1 , 2 , . . . , «). 

Similarly if j , a, and £ are kept fixed it can be shown that 

XaW(/.«f6tC>=Xa<I(,-tai6fC) for all a, b, c £ % (j = 1, 2, . . . , n). 

It has been proved that if the j th root of (a — c)Ax + bA2 is (a — c)XlZ+ b\2m 

then the j th root of aAx + &4a is a \xi + 6X27n. But the j th root of 

[a-(a-l)]Ax+A2 

is Xl; + X2J, and hence the j th root of aAx + A2 is aXx/ + X2/. Applying 
the same process to [b — (b — 1)]AX + aA2 one obtains the desired result 
that the j th root of aAx+ bA2 is aXl;-+ b\2j for all a, b Ç % (j = 1, 2, . . . , n). 

LEMMA 6.2. Suppose that 21 /̂ as property P0. Suppose that the jth charac­
teristic root of aAx-\- bA2 is aX17+ b\2]- and that the jth characteristic root of aA2 

+ bA 3 is a\2i + b\3i for all a, b Ç g (j = 1, 2, . . . , n). Then the jth charac­
teristic root of aAx+ bA2+ cA3 is aX l f+ b\2i-\- c\3j,for all a,b, c £ %-

Note that aAx+bA2+cA2 = [aAx+bA2]+cA3 = aAx + [bA2+cA3]. Then as 
in Lemma 6.1, aXx,-+ frX2J + c\3iUta<btC) = a\lP(mtaibtC)-{- b\2m(tiiajb>C)-\- c\3m(JtatbfC). 
Now keep j , a, and & fixed and consider the triplet [1(c), m(c), p(m, c)]. 
Proceeding as in Lemma 6.1, one obtains that X3j(/,a>6>c) = X3m(J-,a)6iC) for all 
a, b, c G S 0 = 1> 2, . . . , n). Similarly keeping^, a, and c fixed gives the result 
that X2/ = X2m(Ji0>6,c). From these facts the desired result follows readily. 

THEOREM 6.1. Properties P0 and Px are equivalent. 

Clearly Px implies P0. The fact that P0 implies Px follows from a simple in­
duction on the number of matrices in Lemma 6.2. 
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THEOREM 6.2. Property Px and the Frobenius Property are equivalent. 

Obviously the Frobenius Property implies property P,. Suppose that 21 has 
property P t . If it is shown that there exists a mapping <£> which 

(a) maps 21 onto an algebra 33 which is semi-simple and has the Frobenius 
Property, 

(b) preserves characteristic roots, i.e., A and ${A) have the same character­
istic roots, and 

(c) satisfies conditions C, 

then it will follow from Theorem 5.2 that 21 has the Frobenius Property. 

A mapping $ satisfying these conditions will now be shown to exist. 
Let Ei (i = 1 , 2 , . . . , k) be a basis for 21. Let p{i (j = 1, 2, . . . , n) denote 

the characteristic roots of E{. Define 

*(£«) 

Pa 0 0 . . . 0 
0 P t 2 0 . . . 0 
0 0 Pi* • . . 0 

0 0 0 . . . p 

where the pl7- are so ordered that $(]£ CLiEi) = ^ #,-$(£,•) for all a{ G S- Since 

A satisfies P t this is possible. Let 33 be the set of all matrices ($(A)) with 
A e 2i. 

(a) S is a semi-simple algebra with the Frobenius Property. 

To prove that 33 is an algebra it will be sufficient to show that if A,, A2 Ç 21, 
then there exists an A% £ 21 such that $(A3) = ^(A^^ÇA^y i.e., that 33 is 
closed under multiplication. Now if AX,A2 f 21, then since 2Ï has property 
Pi it is true that the j th characteristic root of 

a{Ax + A2y + b(Ax + A2) + c(A^ + A*) 

is a(XXJ- + X2/)
2 + b(\1;i + X2,-) + ^(X^2 + X2/

2). Letting a = | , b = 0, and 
c = —| one obtains the result that ^(^[AXA9 + A^A,]) = $(AX) $(A2). 
Thus 33 is an algebra. Furthermore, since 33 consists of diagonal matrices 
only, it is semi-simple and has the Frobenius Property, 

(b) <ï>, by construction, preserves characteristic roots. 

(c) $ satisfies conditions C. 
(1) I e 21 and $ ( / ) = 7, so that $ satisfies Q . 
(2) <£>, by construction is linear. Hence <ï> satisfies C2. 

(3) It is required to show that if Û A{ = 0, then U $(4,-) = 0; by the 
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construction of $ it is thus required to prove that if I I A t = 0, then I I Xt/ = 0 

h 

(j = 1, 2, . . . , n), where the At-, are so ordered that 5 â,--4,- has characteristic 
h t = i 

roots S di^a- This shall be proved by an induction on h. 
t = i 

Let h = 2 and suppose that A XA 2 = 0. Consider A 2A x = N. N is nilpotent ; 
for N2 = 0. Furthermore, if f(AltAa) <E $t[A19Aa] then since AXA2 = 0, 
f(i4lf A,) • [i49i4J = I f l ^ ; ^ , , where r< > 0 for all i. But d X ^ ^ ) 2 = 0. 

* » 
Therefore iV = A2AX is the radical of $t[A1} AX Then ^ 4 ^ - AXA2 = N is 
in the radical of 9î[-4x, A2] and by Theorem 3.2, A^A^ = 0 (j = 1, 2, . . . , n), 
where the Xt/ are so ordered that the characteristic roots of axAx + a2A2 are 
ax\xi + a2A2/ for all ax1 a2 G 3r-

h h 

Assume now that if I I A { = 0, then IT A,-,- = 0 (j = 1, 2, . . . , n). Suppose 
i=x i=*i 

/i + i h+i 

that I I A { = 0. Then (AxA2)UAi = 0. By the induction assumption 
h + i 

fij I I XtJ = 0 where /*,- is the characteristic root of AXA2 associated with Xiy 
i==3 h+i 

(i = 1, 2, . . . , A + 1). Suppose that for some j , I I Xi3 ^ 0. Then JU, = 0. 

It must be shown that either X13 or A2/ (or both) equals zero. 

Consider the matrix 

Ba = AXA2 - a/(a - 1) • X,,-^ - a\xiA2 + a2/(a - 1) • A13A2/7 
= [Ax — a\xjI][A2 — a/(a — 1) • Xa,-J], a ^ l . 

Since /x, = 0 and since 2Ï has property Px, 5 a has for each a Ç ï , a ^ l , a 
characteristic root equal to zero. Thus for every a ^ 1 there exists a vector 
<£a ^ 0 such that i3a<£a = 0. Thus 

[4, - ahxjI][A2 - a I {a - 1) • A23/]</>0 = 0. 

Let [A2 - a/(a — I) - \2J]4>a = 'Aa. Now clearly if ^a ^ 0, then 

[il, - a\xJ] *a = 0. 

Thus either [̂ 42 — a/(a — 1) • X2//]0a = 0 , </>a ^ 0 for an infinite number 
of distinct a Ç g, or [ ^ — a\xjI]\pa = 0, ^a ^ 0 for an infinite number 
of distinct a £ gf (o r both). Suppose, say, that [̂ 42 — a/(a — 1) • 
A2/i]<£0 = 0, 0a T̂  0 for an infinite number of distinct a £ g. Then ^42 has 
characteristic roots a/(a — 1) - A2/ for an infinite number of distinct a Ç §. 
But i42 has only a finite number of distinct characteristic roots. Therefore, for 
someax, a2, ax ^ a2 it is true that ax/(ax — 1) • A2J = a2/(a2 — 1) • A2/. From 
this it follows that A2J- = 0. 

By induction it follows that <ï> satisfies C3. Hence the theorem. 
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As a corollary to the two preceeding theorems we have : 

THEOREM 6.3. P0, P t , and the Frobenius Property are equivalent. 
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