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1. Introduction.

Attention has recently been drawn1 to the obscurity of the usual
presentations of Mayer's method of solution of the total differential
equation

(1) dz = P (x, y, z)dx + Q (x, y, z) dy.

This method has the practical advantage that only a single
integration is required, but its theoretical discussion is usually
based on the validity of some other method of solution.2 Mayer's
method gives a result even when the equation (1) is not integrable,
but this cannot of course be a solution. An examination of the
conditions under which the result is actually an integral of equation
(1) leads to a proof of the existence theorem for (1) which is related
to Mayer's method of solution in a natural way, and which moreover
appears to be novel and of value in the presentation of the subject.

The problem of the conditions under which the expression

(2) P{x,y)dx + Q(x,y)dy

is the total differential of a function of x and y can also be discussed
with advantage from the same point of view. The extension of the
calculus to complex variables is dependent on this problem, and
sufficient conditions for Cauchy's fundamental theorem are here
obtained. These conditions are the same as those which arise in the
proof of Cauchy's theorem by means of Green's theorem, but the
method may well be considered to be simpler and, in addition, it
affords a suitable approach to this subject for the many students who
are interested only in its most elementary aspect.

In order to facilitate the reading, the simpler argument leading
to Cauchy's theorem is first given and the discussion of Mayer's
method then follows.
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2. Total differentials and Gauchy's Theorem.

Cauchy's theorem may be considered as the extension to complex
variables of the fundamental theorem of calculus concerning the
relation between differentiation and integration. A very natural but
apparently new method of discussing this question is to follow closely
the method of the real variable which considers a certain definite
integral as a function of one of its limits.

Starting then from the differential expression

(2) P (x, y)dx + Q (x, y) dy,

we consider its integral taken along a straight line from a fixed
point, say the origin, to the point (x, y). That is to say we consider
the function3

(3) F (x, y) = \\xP (xt, yt) + yQ {xt, yt)} dt.

It is evident that if (2) is a total differential at all, then it is the
total differential of the function (3). It is easy to investigate this
question by calculating the partial derivatives of (3). For example,

Sufficient conditions for the validity of these calculations are that
P (z> y)> Q ix> y) a n ( i their partial derivatives of the first order are
continuous.4

If further

<«> d-P{x,y)=d-Q{x,y)

identically, then

(6) ~F(x,y) = P(x,y).

Similarly under the same conditions

(7) ^F(x,y)=Q(x,y).
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Thus are established the well known conditions under which (2) is a
total differential, for if F (x, y) has the continuous derivatives P (%, y)
and Q (x, y), then (2) is its total differential.

If f(z) = u + iv is a function of the complex variable z = x + iy
then from (5), (6) and (7),

f(z)dz=f(z)dx + if(z) dy

will be a total differential if

t

By 8x
and on equating real and imaginary parts in this equation we have
the Cauchy-Riemann equations

du __Bv 8u __ 8v
8x 8y 8y 8x'

For the validity of this argument we require6 the continuity of the
partial derivatives of u and v.

3. The equation dz = P (x, y, z)dx + Q (x, y, z) dy.

In this article we discuss Mayer's method of solution of the
equation (1) in a way that establishes the usual existence theorem
for the equation and requires reference only to the necessary parts
of the theory of ordinary differential equations.

02 z 02 2

We recall that condition (5) which expresses that —— = ——
v ' v 8x8y dydx

must now be replaced by8Q 8Qdz _8P dPte
8x 8z 8x~ dy ~8z ~8y

or PQZ - QPZ + Qx-Py = 0,

and this relation is generally termed the condition of integrability of
equation (1).

If z is a function of x and y which satisfies equation (1) and we
replace x and y by xt and yt and take t as a variable, x and y being
fixed, then z evidently satisfies

(8) dz = {xP (xt, yt, z) + yQ (xt, yt, z)} dt.

This is an ordinary differential equation of the first order and will
have a solution reducing to z0 for t = 0 defined for the range
0 £S t <S 1, for x and y in some neighbourhood of the origin, provided
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that P and Q are continuous functions of their arguments and satisfy
a Lipschitz condition with respect to z for (x, y, z) in some neighbour-
hood6 of (0, 0, z0).

This solution depends on the parameters of x, y, z0 and will be
denoted by
(9) z = F (x, y, z0, t).
For ( = l w e write
(10) z = F(x,y,z0, l)=>P(x, y,zQ).

The whole question turns on establishing the relations

(11) ^{x,y,zo)=P{x,y,z), — ifi(x,y,zo) = Q(x,y,z).

Since F (x, y, z0, t) satisfies (8) we have formally7

(12) = P (xt, yt, z) + xt8P &>*> z^ + xdP I* *> * A (x, y, z0, t)

where we write

(13) X(x,y,zo,t)=£F

from (9). Hence from (12) and (8),

8 Mx v zt) - 8 UPlxt vt z)\ + t- A (x, y, z, t) --{tf (xt, yt, z)} +

giving
(14, 8- (X-tP^X-tP) {xPz+ yQz)+yt (PQ.- QP, + ^

Hence if the condition of integrability

P(x,y,z)Ql{x,y, z)-Q{x,y, z)Pz(x,y, z) + Qx(x,y,z)—Py(x,y,z) = 0

is satisfied, then A (x, y, z0, t) — tP (xt, yt, z) satisfies the differential
equation

(15) J- (A - tP) = (\- tP) (xPz + yQz).
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Now when t = 0, F (x, y, z0, t) = z0 and is independent of x and y, so
that from (12) A (x, y, z0, 0) = 0, and hence A (x, y, z0, t) — tP (xt, yt, z) is
identically zero since there is only one solution of (15) with the
required properties,8 and in particular from (10) and (13),

(16) — iff (x, y, z0) = A (x, y, z0, 1) = P (x, y, z).
ox

A similar argument will show that under the same conditions

(17) ^-if,(x,y,zo) = Q(x,y,z).

Hence z = ip (x, y, z0) is a solution of (2) and is the only solution of
(2) which reduces to z0 when x and y vanish.

We have thus proved the existence theorem:

THEOREM. / / P (x, y, z) and Q (x, y, z) are continuous and have
continuous partial derivatives of the first order, and if

in some neighbourhood of (0, 0, z0), then the total differential equation

dz = P (x, y, z)dx •+ Q (x, y, z) dy

has one and only one solution

z = <£ (x, y)
for which

4, (0, 0) = z0

defined in some neighbourhood9 of (0, 0).
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' f(z, t) = xP(xt, yt, z) + yQ(xt, yt, z)

is continuous for these values of x, y, z, and for | t | < 1, and is bounded by
M ( | x | + | y | ). f(z, t) also satisfies the Lipschitz condition with respect to z. The
solution of the differential equation

/M>
cc

which reduces to z0 for t = t0 hence exists if | t | < 1 and | t \ < ilf ( | x I + I v—)'
M

hence certainly for | t \ < 1 if | x \ and | y I are both less than -~- •

7. That F(x, y, z0, t) has continuous partial derivatives and that the following formal
transformations are valid follows from the theory of ordinary differential
equations involving parameters. See de la Valle'e Poussin, Gov/rs d' Analyse,
5th ed. (1925), Vol. II, Ch. 5, §5, 133°, pp. 147-149, and in particular
p. 148, 2°. The conditions required are that P(x, y, z) and Q(x, y, z) have
continuous derivatives of the first order.

8. Or we may observe that the general solution of (15) is

(A. -tP) = c exp | f (xPz + yQz )dA,

where c is an arbitrary constant and X — tP must vanish identically or not
at all.

9. The Lipschitz condition required for the solution of equation (8) (see Note 6 above)
is satisfied on account of the conditions that Pz and Qz are continuous.
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