LINEAR ORTHOGONALITY PRESERVERS OF HILBERT BUNDLES

CHI-WAI LEUNG ™, CHI-KEUNG NG and NGAI-CHING WONG

(Received 27 August 2009; accepted 14 September 2010)

Communicated by G. A. Willis

Abstract

A \mathbb{C} -linear map θ (not necessarily bounded) between two Hilbert C^* -modules is said to be 'orthogonality preserving' if $\langle \theta(x), \theta(y) \rangle = 0$ whenever $\langle x, y \rangle = 0$. We prove that if θ is an orthogonality preserving map from a full Hilbert $C_0(\Omega)$ -module E into another Hilbert $C_0(\Omega)$ -module E that satisfies a weaker notion of $C_0(\Omega)$ -linearity (called 'localness'), then θ is bounded and there exists $\phi \in C_b(\Omega)_+$ such that $\langle \theta(x), \theta(y) \rangle = \phi \cdot \langle x, y \rangle$ for all $x, y \in E$.

2010 *Mathematics subject classification*: primary 46L08; secondary 46M20, 46H40, 46E40. *Keywords and phrases*: automatic continuity, orthogonality preserving maps, module homomorphisms, local maps, Hilbert *C**-modules, Hilbert bundles.

1. Introduction

It is common knowledge that the inner product of a Hilbert space determines both the norm and orthogonality; and conversely, the norm structure determines the inner product structure. It may be slightly less well known that the orthogonality structure of a Hilbert space also determines its norm structure. Indeed, if θ is a linear map between Hilbert spaces preserving orthogonality, then it is easy to see that θ is a scalar multiple of an isometry (see [5, 6]).

We are interested in the corresponding relations for Hilbert C^* -modules. Note that, in the case of a commutative C^* -algebra $C_0(\Omega)$, Hilbert $C_0(\Omega)$ -modules are the same as Hilbert bundles, or equivalently, continuous fields of Hilbert spaces over Ω . By modifying the proof of [12, Theorem 6] (see also [9, 13, 16]), one may show that any surjective isometry between two continuous fields of Hilbert spaces with nonzero fibers over each point is given by a homeomorphism and a field of unitary operators. Thus, the norm structure (and linearity) determines the unitary structure in this situation.

The authors were supported by a Hong Kong RGC Research Grant (2160255), the National Natural Science Foundation of China (10771106), and a Taiwan NSC grant (NSC96-2115-M-110-004-MY3). © 2010 Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

Our primary concern is the question of whether the orthogonality structure of a Hilbert C^* -module determines its unitary structure. More precisely, let A be a C^* -algebra, and E and F be two Hilbert A-modules. If $\theta: E \to F$ is an A-module homomorphism, not necessarily bounded, which preserves orthogonality, that is, $\langle \theta(x), \theta(y) \rangle_A = 0$ whenever $\langle x, y \rangle_A = 0$, then we ask whether there is a central positive multiplier u in M(A) such that

$$\langle \theta(e), \theta(f) \rangle_A = u \langle e, f \rangle_A \quad \forall e, f \in E.$$

When $A = \mathbb{C}$, this reduces to the case of Hilbert spaces. Recently, Ilišević and Turnšek [10] gave a positive answer in the case where A is a standard C^* -algebra, that is, when $\mathcal{K}(H) \subseteq A \subseteq \mathcal{L}(H)$.

In this paper, we will give a positive answer when A is a commutative C^* -algebra (actually, we prove a slightly stronger result that replaces A-linearity with the 'localness' property; see Definition 2.1). On the other hand, we will also consider bijective biorthogonality preserving maps between Hilbert C^* -modules over different commutative C^* -algebras. We show that if such a map also satisfies a certain local-type property (see Definition 3.12) but is not assumed to be bounded, then it is given by a homeomorphism (between the base spaces) and a 'continuous field of unitary operators'. We remark that in this case of Hilbert C^* -modules over different commutative C^* -algebras, one cannot define 'A-linearity', but has to consider the localness property. This is one of the reasons for considering local maps. We remark also that this case does not cover the case of Hilbert C^* -modules over the same commutative C^* -algebra, because we need to assume that the map is both bijective and biorthogonality preserving.

Note that if Ω is a locally compact Hausdorff space and H is a Hilbert space, then $C_0(\Omega, H)$ is a Hilbert $C_0(\Omega)$ -module. As far as we know, even in this case our results are new, and the techniques in the proofs are nonstandard and nontrivial, compared to those in the literature [1, 4, 8, 11] on separating or zero-product preservers (although some statements look similar). In a forthcoming paper, the authors will study the case where the underlying C^* -algebra is not commutative.

2. Terminology and notation

Recall that a (right) *Hilbert C*-module E* over a C^* -algebra A is a right A-module equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \to A$ such that the following conditions hold for all $x, y \in E$ and all $a \in A$:

- (i) $\langle x, ya \rangle = \langle x, y \rangle a;$
- (ii) $\langle x, y \rangle^* = \langle y, x \rangle$;
- (iii) $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ exactly when x = 0.

Moreover, E is a Banach space equipped with the norm $||x|| = ||\langle x, x \rangle||^{1/2}$. We also call E a Hilbert A-module in this case. A complex linear map $\theta : E \to F$ between two Hilbert A-modules is called an A-module homomorphism if $\theta(xa) = \theta(x)a$

for all $a \in A$ and $x \in E$. See, for example, [15] or [20] for a general introduction to the theory of Hilbert C^* -modules. In this paper, we are interested in the case where the underlying C^* -algebra A is abelian, that is, the space $A = C_0(\Omega)$ of all continuous complex-valued functions vanishing at infinity on a locally compact Hausdorff space Ω .

DEFINITION 2.1. Let A be a C^* -algebra. Suppose that E and F are Hilbert A-modules. A \mathbb{C} -linear map $\theta: E \to F$ is said to be local if $\theta(e)a = 0$ whenever ea = 0 for any $e \in E$ and $a \in A$.

The idea of local linear maps is often found in research in analysis. For example, a theorem of Peetre [19] states that local linear maps of the space of smooth functions defined on a manifold modeled on \mathbb{R}^n are exactly the linear differential operators (see [18]). This was extended to the case of vector-valued differentiable functions defined on a finite-dimensional manifold by Kantrowitz and Neumann [14] and Araujo [3], and to the Banach $C^1[0, 1]$ -module setting by Alaminos *et al.* [2]. Note that every *A*-module homomorphism is local. Conversely, every *bounded* local map is an *A*-module homomorphism (see [17, Proposition A.1]). See Remark 3.4 below for more information.

Throughout this paper, Ω and Δ are two locally compact Hausdorff spaces, and Ω_{∞} is the one-point compactification of Ω . Moreover, E and F are a (right) Hilbert $C_0(\Omega)$ -module and a (right) Hilbert $C_0(\Delta)$ -module respectively, while $\theta: E \to F$ is a \mathbb{C} -linear map (not assumed to be bounded). We denote by $\mathcal{B}_{C_0(\Omega)}(E, F)$ the set of all bounded $C_0(\Omega)$ -module homomorphisms from E into F. For any $\omega \in \Omega$, we let $\mathcal{N}_{\Omega}(\omega)$ be the set of all compact neighborhoods of ω in Ω . If $S \subseteq \Omega$, we denote by $\mathrm{Int}_{\Omega}(S)$ the interior of S in Ω . Moreover, when $U, V \subseteq \Omega$ and the closure of V is a compact subset of $\mathrm{Int}_{\Omega}(U)$, we denote by $\mathcal{U}_{\Omega}(V, U)$ the collection of all functions $\lambda \in C_0(\Omega)$ such that $0 \le \lambda \le 1$, $\lambda \equiv 1$ on V and λ vanishes outside U.

Note that any Hilbert $C_0(\Omega)$ -module E may be regarded as a Hilbert $C(\Omega_{\infty})$ -module, and the results in [7] may be applied. In particular, E is the space of C_0 -sections (that is, continuous sections that vanish at infinity) of an (F)-Hilbert bundle Ξ^E over Ω_{∞} (see [7, p. 49]).

We define the modulus function $|f|(\omega) := ||f(\omega)||$ for all $f \in E$ and $\omega \in \Omega$. For any closed subset S of Ω_{∞} and $\omega \in \Omega_{\infty}$, we set

$$K_S^E := \{ f \in E : f(\omega) = 0 \text{ for some } \omega \in S \} \quad \text{and} \quad I_\omega := \bigcup_{V \in \mathcal{N}_{\Omega_\infty}(\omega)} K_V^E$$

(for simplicity, we also denote $K_{\{\omega\}}^E$ by K_{ω}^E). Note that $K_{\infty}^E=E$ and the fiber Ξ_{ω}^E of Ξ^E at $\omega\in\Omega_{\infty}$ is E/K_{ω}^E . Furthermore, K_S^E is a Hilbert $K_S^{C_0(\Omega)}$ -module and

$$K_S^E = \overline{E \cdot K_S^{C_0(\Omega)}}.$$

We also define

$$\Delta_{\theta} := \{ \nu \in \Delta : \theta(E) \nsubseteq K_{\nu}^{F} \} = \{ \nu \in \Delta : \theta(e)(\nu) \neq 0 \text{ for some } e \in E \}.$$

Then Δ_{θ} is an open subset of Δ and we put

$$\Omega_E := \{ \omega \in \Omega : \Xi_\omega^E \neq (0) \}.$$

Let $\Omega_0 \subseteq \Omega$ be an open set. As in [7, p. 10], we denote by $\Xi^E|_{\Omega_0}$ the restriction of Ξ^E to Ω_0 and by E_{Ω_0} the set of C_0 -sections on $\Xi^E|_{\Omega_0}$. One may make the following identifications:

$$C_0(\Omega_0) = K_{\Omega \setminus \Omega_0}^{C_0(\Omega)}$$
 and $E_{\Omega_0} = K_{\Omega \setminus \Omega_0}^E$.

3. Orthogonality preserving maps between Hilbert $C_0(\Omega)$ -modules

We first recall two technical lemmas from [17, Lemmas 3.1 and 3.3, and Theorem 3.7] (see also [17, Remark 3.4]), which summarize, unify, and generalize techniques used sporadically in the literature [4, 8, 11].

LEMMA 3.1. If $\sigma : \Delta_{\theta} \to \Omega_{\infty}$ is a map satisfying $\theta(I_{\sigma(v)}^E) \subseteq K_v^F$ for all $v \in \Delta_{\theta}$, then σ is continuous.

LEMMA 3.2. Let $\sigma: \Delta \to \Omega$ be a map (not necessarily continuous) with the property that $\theta(I_{\sigma(v)}^E) \subseteq K_v^F$ for every $v \in \Delta$.

- (a) If $\mathfrak{U}_{\theta} := \{ \nu \in \Delta : \sup_{\|e\| \le 1} \|\theta(e)(\nu)\| = \infty \}$, then $\sigma(\mathfrak{U}_{\theta})$ is a finite set.
- (b) If $\mathfrak{N}_{\theta,\sigma} := \{ \nu \in \Delta : \theta(K_{\sigma(\nu)}^E) \nsubseteq K_{\nu}^F \}$, then $\mathfrak{N}_{\theta,\sigma} \subseteq \mathfrak{U}_{\theta}$ and $\sigma(\mathfrak{N}_{\theta,\sigma})$ consists of nonisolated points in Ω .
- (c) If σ is injective and sends isolated points in Δ to isolated points in Ω , then $\mathfrak{N}_{\theta,\sigma} = \emptyset$ and there exist a finite set T consisting of isolated points of Δ , a bounded linear map $\theta_0 : K_{\sigma(T)}^E \to K_T^F$ as well as linear maps $\theta_v : \Xi_{\sigma(v)}^E \to \Xi_v^F$ for all $v \in T$, such that $E = K_{\sigma(T)}^E \oplus \bigoplus_{v \in T} \Xi_{\sigma(v)}^E$,

$$F = K_T^F \oplus \bigoplus_{\nu \in T} \Xi_{\nu}^F$$
 and $\theta = \theta_0 \oplus \bigoplus_{\nu \in T} \theta_{\nu}$.

For any $\nu \in \Delta \setminus \mathfrak{N}_{\theta,\sigma}$, one may define $\theta_{\nu} : \Xi_{\sigma(\nu)}^{E} \to \Xi_{\nu}^{F}$ by

$$\theta_{\nu}(e + K_{\sigma(\nu)}^{E}) = \theta(e) + K_{\nu}^{F} \quad \forall e \in E, \tag{3.1}$$

or equivalently, $\theta_{\nu}(e(\sigma(\nu))) = (\theta(e))(\nu)$ for all $e \in E$.

LEMMA 3.3. Let σ and \mathfrak{U}_{θ} be as in Lemma 3.2. Suppose, in addition, that σ is injective and θ is orthogonality preserving. Then there exists a bounded function $\psi: \Delta \setminus \mathfrak{U}_{\theta} \to \mathbb{R}_+$ such that

$$\langle \theta(e), \theta(g) \rangle(v) = \psi(v)^2 \langle e, g \rangle(\sigma(v)) \quad \forall e, g \in E, \forall v \in \Delta \setminus \mathfrak{U}_{\theta}.$$
 (3.2)

Moreover, for each $v \in \Delta_{\theta}$, there is an isometry $\iota_{v} : \Xi_{\sigma(v)}^{E} \to \Xi_{v}^{F}$ such that

$$\theta(e)(v) = \psi(v)\iota_v(e(\sigma(v))) \quad \forall e \in E, \forall v \in \Delta_\theta \setminus \mathfrak{U}_\theta.$$

PROOF. Fix any $\nu \in \Delta_{\theta} \setminus \mathfrak{U}_{\theta}$. By Lemma 3.2(b), the map θ_{ν} , as in (3.1), is well defined. Suppose that η_1 and η_2 are orthogonal elements in $\Xi^E_{\sigma(\nu)}$ and $\eta_1 \neq 0$ (this is possible because $\Delta_{\theta} \setminus \mathfrak{N}_{\theta,\sigma} \subseteq \sigma^{-1}(\Omega_E)$), and that $g_1, g_2 \in E$ and $g_i(\sigma(\nu)) = \eta_i$ when i = 1, 2. If $V \in \mathcal{N}_{\Omega}(\sigma(\nu))$ and g_1 does not vanish on V, then by replacing g_2 with

$$\left(g_2-\frac{\langle g_2,g_1\rangle}{|g_1|^2}g_1\right)\lambda,$$

where $\lambda \in \mathcal{U}_{\Omega}(\{\sigma(\nu)\}, V)$, we see that there are orthogonal elements $e_1, e_2 \in E$ such that $e_i(\sigma(\nu)) = \eta_i$ when i = 1, 2. Hence θ_{ν} is nonzero, because $\nu \in \Delta_{\theta}$, and is an orthogonality preserving \mathbb{C} -linear map between Hilbert spaces. Consequently, there exist an isometry $\iota_{\nu} : \Xi_{\sigma(\nu)}^E \to \Xi_{\nu}^F$ and a unique scalar $\psi(\nu) > 0$ such that $\theta_{\nu} = \psi(\nu)\iota_{\nu}$. For any $\nu \in \Delta \setminus \Delta_{\theta}$, we set $\psi(\nu) = 0$. Then clearly (3.2) holds. Next, we show that ψ is a bounded function on $\Delta \setminus \mathfrak{U}_{\theta}$. Suppose that this is not the case. Then there exist distinct points $\nu_n \in \Delta_{\theta} \setminus \mathfrak{U}_{\theta}$ such that $\psi(\nu_n) > n^3$. If $e_n \in E$ such that $\|e_n\| = 1$ and its modulus function satisfies

$$|e_n|(\sigma(v_n)) = \sqrt{\langle e_n, e_n \rangle}(\sigma(v_n)) \ge (n-1)/n$$

(note that $v_n \in \sigma^{-1}(\Omega_E)$), then in light of (3.2),

$$|\theta(e_n)|(\nu_n) = \psi(\nu_n)|e_n|(\sigma(\nu_n)) > n^2(n-1).$$

As $\{\sigma(\nu_n)\}$ is a set of distinct points (note that σ is injective), by passing to a subsequence if necessary, we may assume that there are $U_n \in \mathcal{N}_{\Omega}(\sigma(\nu_n))$ such that $U_n \cap U_m = \emptyset$ when $m \neq n$. Now pick any $V_n \in \mathcal{N}_{\Omega}(\sigma(\nu_n))$ such that $V_n \subseteq \operatorname{Int}_{\Omega}(U_n)$ and choose a function $\lambda_n \in \mathcal{U}_{\Omega}(V_n, U_n)$ for all $n \in \mathbb{N}$. Define $e := \sum_{k=1}^{\infty} e_k \lambda_k^2 / k^2 \in E$. As $n^2 e - e_n \lambda_n^2 \in K_{U_n}^E$ and $e_n - e_n \lambda_n^2 = e_n (1 - \lambda_n^2) \in K_{V_n}^E$ for all $n \in \mathbb{N}$,

$$\|\theta(e)\| \ge \|\theta(e)(\nu_n)\| = \frac{\|\theta(e_n\lambda_n^2)(\nu_n)\|}{n^2} = \frac{\|\theta(e_n)(\nu_n)\|}{n^2} > n-1,$$

by the relation between θ and σ , which is a contradiction.

3.1. Hilbert bundles over the same base space.

REMARK 3.4. For any $e \in E$, we define

$$\operatorname{supp}_{\Omega} e := \overline{\{\omega \in \Omega : e(\omega) \neq 0\}}.$$

It is not hard to check that the following statements are equivalent (and this tells us that local maps are the same as *support shrinking maps* [8]):

- (i) θ is local (see Definition 2.1);
- (ii) $\theta(K_V^E) \subseteq K_V^F$ for all nonempty open set V;
- (iii) $\operatorname{supp}_{\Omega} \theta(e) \subseteq \operatorname{supp}_{\Omega} e \text{ for all } e \in E;$
- (iv) $\operatorname{supp}_{\Omega} \theta(e)\lambda \subseteq \operatorname{supp}_{\Omega} e$ for all $e \in E$ and $\lambda \in C_0(\Omega)$.

THEOREM 3.5. Let Ω be a locally compact Hausdorff space, and let E and F be two Hilbert $C_0(\Omega)$ -modules. Suppose that $\theta: E \to F$ is an orthogonality preserving local \mathbb{C} -linear map. The following assertions hold.

- (a) $\theta \in \mathcal{B}_{C_0(\Omega)}(E, F)$.
- (b) There is a bounded nonnegative function φ on Ω , continuous on Ω_E , such that

$$\langle \theta(e), \theta(g) \rangle = \varphi \cdot \langle e, g \rangle \quad \forall e, g \in E.$$

(c) There exist a strictly positive element $\psi_0 \in C_b(\Omega_\theta)_+$ and $J \in \mathcal{B}_{C_0(\Omega_\theta)}(E_{\Omega_\theta}, F_{\Omega_\theta})$ such that the fiber map J_ω is an isometry for all $\omega \in \Omega_\theta$ and

$$\theta(e)(\omega) = \psi_0(\omega)J(e)(\omega) \quad \forall e \in E, \forall \omega \in \Omega_\theta.$$

PROOF. Note that the conclusions of Lemmas 3.2 and 3.3 hold when $\Omega = \Delta$ and $\sigma = \text{Int}_{\Omega}$.

We prove (a). By Remark 3.4 and Lemma 3.2(c), θ is a $C_0(\Omega)$ -module homomorphism. Further, as θ_{ν} (as in Lemma 3.2(c)) is an orthogonality preserving, hence bounded, linear map between Hilbert spaces for all $\nu \in T$ (where T is as in Lemma 3.2(c) and $\sigma = \operatorname{Int}_{\Omega}$), we know from Lemma 3.2(c) that θ is bounded (note that T is finite).

Now we consider (b). By part (a), $\mathfrak{U}_{\theta} = \emptyset$. Thus, Lemma 3.3 tells us that there exists a bounded nonnegative function ψ on Ω such that $\langle \theta(e), \theta(f) \rangle = |\psi|^2 \cdot \langle e, f \rangle$. Let $\omega \in \Omega_E$ and pick any $e \in E$ for which there exists $U_{\omega} \in \mathcal{N}_{\Omega}(\omega)$ such that $e(v) \neq 0$ for all $v \in U_{\omega}$. Then $\psi(\omega) = |\theta(e)|(\omega)/|e|(\omega)$ for all $\omega \in U_{\omega}$. Hence ψ is continuous on Ω_E , and $\varphi = \psi^2$ is the required function.

It remains to prove (c). Note that $\Omega_{\theta} \subseteq \Omega_{E}$, by part (a). Since $\varphi(\omega) > 0$ for all $\omega \in \Omega_{\theta}$, we know from part (b) that $\psi = \varphi^{1/2}$ is a strictly positive element ψ_{0} in $C_{b}(\Omega_{\theta})_{+}$. The equivalence in [7, (2.2)] (consider E and F as Hilbert $C(\Omega_{\infty})$ -bundles) tells us that the restriction of θ induces a bounded Banach bundle map, again denoted by θ , from $\Xi^{E}|_{\Omega_{\theta}}$ into $\Xi^{F}|_{\Omega_{\theta}}$. For each $\eta \in \Xi^{E}|_{\Omega_{\theta}}$, we define $J(\eta) := \psi_{0}(\pi(\eta))^{-1}\theta(\eta)$, where $\pi : \Xi^{E} \to \Omega$ is the canonical projection. Then $J : \Xi^{E}|_{\Omega_{\theta}} \to \Xi^{F}|_{\Omega_{\theta}}$ is a Banach bundle map, as $\eta \mapsto \psi_{0}(\pi(\eta))^{-1}$ is continuous, which is an isometry on each fiber (hence J is bounded) such that $\theta(\eta) = \psi(\pi(\eta))J(\eta)$. This map J induces a map, again denoted by J, in $\mathcal{B}_{C_{0}(\Omega_{\theta})}(E_{\Omega_{\theta}}, F_{\Omega_{\theta}})$ that satisfies the requirement of part (c). \square

It is natural to ask if one can find $\varphi \in C_b(\Omega)$ such that the conclusion of Theorem 3.5(b) holds. Unfortunately, the following example tells us that this is not the case in general.

EXAMPLE 3.6. Let $\Omega = \mathbb{R}_{\infty}$, the one-point compactification of the real line \mathbb{R} . Let E and F be the Hilbert $C(\Omega)$ -module $C_0(\mathbb{R})$, and define $\theta(f)(t) = f(t) \cos t$ for all $f \in E$ and $t \in \mathbb{R}$. Then $\Omega \setminus \Omega_E = \{\infty\}$ and $\varphi(t) = \cos t$ for all $t \in \mathbb{R} = \Omega_E$. Thus φ does not extend to a continuous function on Ω .

We can now obtain the following commutative analog of [10, Proposition 2.3]. This, together with Corollary 3.11, asserts that the orthogonality structure of a Hilbert

bundle essentially determines its unitary structure, as we claimed in the introduction. Note also that a large portion of Lemma 3.2 was used to deal with the possibility of $\theta(K_{\sigma(\nu)}^E) \nsubseteq K_{\nu}^F$ (this situation does not arise for $C_0(\Omega)$ -module homomorphism), and this corollary actually has a much easier proof.

COROLLARY 3.7. Let Ω be a locally compact Hausdorff space, and E and F be Hilbert $C_0(\Omega)$ -modules. Suppose that $\theta: E \to F$ is a $C_0(\Omega)$ -module homomorphism that preserves orthogonality. Then θ is bounded and there exists a bounded nonnegative function φ on Ω that is continuous on Ω_E and satisfies $\langle \theta(e), \theta(f) \rangle = \varphi \cdot \langle e, f \rangle$ for all $e, f \in E$.

Recall that a Hilbert $C_0(\Omega)$ -module E is full if the \mathbb{C} -linear span $\langle E, E \rangle$ of the set

$$\{\langle e, f \rangle : e, f \in E\}$$

is dense in $C_0(\Omega)$.

REMARK 3.8. A Hilbert $C_0(\Omega)$ -module E is full if and only if $E \nsubseteq K_\omega^E$ for all $\omega \in \Omega$ (or equivalently, $\Omega_E = \Omega$). In fact, if $E \subseteq K_\omega^E$, then $f(\omega) = 0$ for all $f \in \langle E, E \rangle$ and E is not full. Conversely, if E is not full, then there exists $\omega \in \Omega$ such that $f(\omega) = 0$ for all $f \in \langle E, E \rangle$, because the closure of $\langle E, E \rangle$ is an ideal of $C_0(\Omega)$, and $E \subseteq K_\omega^E$.

REMARK 3.9. If E is full, then by the previous remark, the function φ in Theorem 3.5(b) (and Corollary 3.7) is an element of $C_b(\Omega)$. However, there is no guarantee that this function is strictly positive.

REMARK 3.10. Suppose that F is full and θ is a surjective orthogonality preserving local \mathbb{C} -linear map. If there exists $\omega \in \Omega \setminus \Omega_{\theta}$, then $F = \theta(E) \subseteq K_{\omega}^{F}$, which contradicts the fullness of F (see Remark 3.8). Consequently, $\Omega_{\theta} = \Omega$. As $\theta \in \mathcal{B}_{C_0(\Omega)}(E, F)$ by Theorem 3.5(a), we see that $\Omega = \Omega_{\theta} \subseteq \Omega_E$ and E is full.

COROLLARY 3.11. Let Ω be a locally compact Hausdorff space, and let E and F be two Hilbert $C_0(\Omega)$ -modules. Suppose that F is full and $\theta: E \to F$ is an orthogonality preserving surjective local \mathbb{C} -linear map. Then $\theta \in \mathcal{B}_{C_0(\Omega)}(E, F)$. Moreover, there exist a strictly positive element $\psi \in C_b(\Omega)_+$ and a unitary map $U \in \mathcal{B}_{C_0(\Omega)}(E, F)$ such that $\theta = \psi \cdot U$.

PROOF. Remark 3.10 tells us that $\Omega_{\theta} = \Omega$. By the surjectivity of θ , the bounded Banach bundle map J in Theorem 3.5 is unitary on each fiber. Therefore, the element $U \in \mathcal{B}_{C_0(\Omega)}(E, F)$ corresponding to J, as in [7, (2.2)], is unitary.

3.2. Hilbert bundles over different base spaces.

DEFINITION 3.12. The map θ is said to be *quasilocal* if it is bijective and, for all $e \in E$ and $\lambda \in C_0(\Delta)$,

$$\operatorname{supp}_{\Omega} \theta^{-1}(\theta(e)\lambda) \subseteq \operatorname{supp}_{\Omega} e. \tag{3.3}$$

Note that if $\Delta = \Omega$ and θ is both local and bijective (hence θ^{-1} is also local), then θ is quasilocal by Remark 3.4.

LEMMA 3.13. Suppose that θ is bijective and quasilocal and that θ and θ^{-1} both preserve orthogonality. Then $|\theta(e)||\theta(g)| = 0$ if $e, g \in E$ and $\sup_{\Omega} e \cap \sup_{\Omega} g = \emptyset$.

PROOF. Suppose, on the contrary, that there exist $e_1, e_2 \in E$ and $v \in \Delta$ such that $\operatorname{supp}_{\Omega} e_1 \cap \operatorname{supp}_{\Omega} e_2 = \emptyset$ but $\|\theta(e_1)(v)\| \|\theta(e_2)(v)\| \neq 0$. As θ preserves orthogonality, we may assume that $\theta(e_1)(v)$ and $\theta(e_2)(v)$ are orthogonal unit vectors in Ξ_v^F . Take $U, W \in \mathcal{N}_{\Delta}(v)$ such that $W \subseteq \operatorname{Int}_{\Delta}(U)$ and $\|\theta(e_i)(\mu)\| > 1/2$ for all $\mu \in U$. Pick any $\lambda \in \mathcal{U}_{\Delta}(W; U)$, and define $h_i \in F \setminus \{0\}$ (when i = 1, 2) by

$$h_i(\mu) := \begin{cases} \theta(e_i)(\mu) \frac{\lambda(\mu)}{|\theta(e_i)|(\mu)} & \text{if } \mu \in \operatorname{Int}_{\Delta}(U) \\ 0 & \text{if } \mu \notin \operatorname{Int}_{\Delta}(U) \end{cases}$$

and set $e_i' := \theta^{-1}(h_i)$. The orthogonality of h_1 and h_2 (recall that e_1 and e_2 are orthogonal), together with that of $h_1 + h_2$ and $h_1 - h_2$ (as $|h_1| = \lambda = |h_2|$), ensures the orthogonality of e_1' and e_2' , as well as that of $e_1' + e_2'$ and $e_1' - e_2'$. It follows that $|e_1'| = |e_2'| \neq 0$, which contradicts the fact that $|e_1'| |e_2'| = 0$, as θ is quasilocal.

THEOREM 3.14. Let Ω and Δ be locally compact Hausdorff spaces. Suppose that E is a full Hilbert $C_0(\Omega)$ -module and F is a full Hilbert $C_0(\Delta)$ -module. If $\theta: E \to F$ is a bijective \mathbb{C} -linear map such that both θ and θ^{-1} are quasilocal and orthogonality preserving, then θ is bounded and

$$\theta(e)(v) = \psi(v)J_{v}(e(\sigma(v))) \quad \forall e \in E, \forall v \in \Delta, \tag{3.4}$$

where $\sigma: \Delta \to \Omega$ is a homeomorphism, ψ is a strictly positive element of $C_b(\Delta)_+$, and J_v is a unitary operator from $\Xi^E_{\sigma(v)}$ onto Ξ^F_v such that the map $v \mapsto J_v(f(\sigma(v)))$ is continuous for all fixed $f \in E$.

PROOF. We consider E as a Hilbert $C(\Omega_{\infty})$ -module. For each $\nu \in \Delta$, let

$$S_{\boldsymbol{\nu}} := \{ \boldsymbol{\omega} \in \Omega_{\infty} : \theta(K_{\Omega_{\infty} \setminus W}^{E}) \nsubseteq K_{\boldsymbol{\nu}}^{F} \ \forall W \in \mathcal{N}_{\Omega_{\infty}}(\boldsymbol{\omega}) \}.$$

We first show that S_{ν} is a singleton. Indeed, assume that $S_{\nu} = \emptyset$. Then for all $\omega \in \Omega_{\infty}$, there is $W_{\omega} \in \mathcal{N}_{\Omega_{\infty}}(\omega)$ such that $\theta(K_{\Omega_{\infty} \setminus W_{\omega}}^{E}) \subseteq K_{\nu}^{F}$. Consider $\omega_{1}, \ldots, \omega_{n} \in \Omega_{\infty}$ such that

$$\bigcup_{k=1}^n \operatorname{Int}_{\Omega_{\infty}}(W_{\omega_k}) = \Omega_{\infty},$$

and take a partition of unity $\{\varphi_k\}_{k=1}^n$ that is subordinate to $\{\operatorname{Int}_{\Omega_\infty}(W_{\omega_k})\}_{k=1}^n$. Then $e\varphi_k \in K_{\Omega_\infty \setminus W_{\omega_k}}^E$ for all $e \in E$, and so $\theta(e) \in K_{\nu}^F$. As θ is surjective, this shows that $F = K_{\nu}^F$, and contradicts the fullness of F (see Remark 3.8). Now, assume that there are distinct elements $\omega_1, \, \omega_2 \in S_{\nu}$. Take $V_1 \in \mathcal{N}_{\Omega_\infty}(\omega_1)$ and $V_2 \in \mathcal{N}_{\Omega_\infty}(\omega_2)$ such that $V_1 \cap V_2 = \emptyset$. By the definition of S_{ν} , there exist $e_1, e_2 \in E$ such that $\sup_{\Omega} e_i \subseteq V_i \setminus \{\infty\}$ and $\theta(e_i)(\nu) \neq 0$ when i = 1, 2, which contradicts Lemma 3.13.

Thus, there is a unique element $\sigma(\nu) \in \Omega_{\infty}$ such that $S_{\nu} = {\sigma(\nu)}$. Next, we claim that

$$\theta(I_{\sigma(\nu)}^E) \subseteq I_{\nu}^F \quad \forall \nu \in \Delta.$$
 (3.5)

Consider any $V \in \mathcal{N}_{\Omega_{\infty}}(\sigma(\nu))$ and $e \in K_V^E$. Pick $U \in \mathcal{N}_{\Omega_{\infty}}(\sigma(\nu))$ such that $U \subseteq \operatorname{Int}_{\Omega_{\infty}}(V)$. By the definition of σ , there exists $g \in K_{\Omega_{\infty} \setminus U}^E$ such that $\theta(g)(\nu) \neq 0$. Hence, there is $W \in \mathcal{N}_{\Delta}(\nu)$ such that $\theta(g)(\mu) \neq 0$ for all $\mu \in W$, and Lemma 3.13 implies that $\theta(e) \in K_W^F$, as claimed. If there exists $\nu \in \Delta \setminus \Delta_{\theta}$, then $f(\nu) = 0$ for all $f \in F$, because θ is surjective, which contradicts the fullness of F. Thus, $\Delta_{\theta} = \Delta$ and $\sigma : \Delta \to \Omega_{\infty}$ is continuous, by Lemma 3.1. As θ^{-1} is also quasilocal and orthogonality preserving, a similar argument to the above gives a continuous map $\tau : \Omega \to \Delta_{\infty}$ satisfying $\theta^{-1}(I_{\tau(\omega)}^F) \subseteq I_{\omega}^E$ for all $\omega \in \Omega$. Now, the argument of [17, Theorem 5.3] tells us that σ is a homeomorphism from Δ to Ω such that

$$\theta(e \cdot \varphi) = \theta(e) \cdot \varphi \circ \sigma \quad \forall e \in E, \forall \varphi \in C_0(\Omega),$$

and by Lemma 3.2(c), there exists a finite set T consisting of isolated points of Δ such that θ restricts to a bounded map from $K_{\sigma(T)}^E$ to K_T^F . Since any $\nu \in T$ is an isolated point, θ induces an orthogonality preserving, hence bounded, map θ_{ν} from the Hilbert space $\Xi_{\sigma(\nu)}^E$ onto the Hilbert space Ξ_{ν}^F . This shows that θ is bounded, by Lemma 3.2(c) and the fact that T is finite. By Lemma 3.3, there is a surjective isometry $J_{\nu}:\Xi_{\sigma(\nu)}^E\to\Xi_{\nu}^F$ such that

$$\theta(e)(v) = \psi(v)J_v(e(\sigma(v))) \quad \forall e \in E, \forall v \in \Delta.$$

Now the fullness of *E* implies that $\psi(v) > 0$ for all $v \in \Delta$, and the map $v \mapsto \theta(e)(v)/\psi(v)$ is evidently continuous.

The following example shows the necessity of the assumption in Theorem 3.14 that θ^{-1} preserves orthogonality.

EXAMPLE 3.15. Let Ω be a nonempty locally compact Hausdorff space, Ω_2 be the topological disjoint sum of two copies of Ω , and $j_1, j_2 : \Omega \to \Omega_2$ be the embeddings into the first and the second copies of Ω in Ω_2 , respectively. Let H be a nonzero Hilbert space, and let H_2 be the Hilbert space direct sum of two copies of H. Then the map $\theta : C_0(\Omega_2, H) \to C_0(\Omega, H_2)$, defined by

$$\theta(f)(\omega) = (f(j_1(\omega)), f(j_2(\omega))),$$

is a bijective \mathbb{C} -linear map preserving orthogonality satisfying condition (3.3). However, θ is not of the expected form. Note that θ^{-1} does not preserve orthogonality.

References

- [1] Y. A. Abramovich, E. L. Arenson and A. K. Kitover, *Banach C(K)-Modules and Operators Preserving Disjointness*, Pitman Research Notes in Mathematics, 277 (John Wiley & Sons, Inc., New York, 1992).
- [2] J. Alaminos, M. Brešar, M. Černe, J. Extremera and A. R. Villena, 'Zero product preserving maps on C¹[0, 1]', J. Math. Anal. Appl. 347 (2008), 472–481.

- [3] J. Araujo, 'Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity', *Adv. Math.* **187** (2004), 488–520.
- [4] J. Araujo and K. Jarosz, 'Automatic continuity of biseparating maps', Studia Math. 155 (2003), 231–239.
- [5] A. Blanco and A. Turnšek, 'On maps that preserve orthogonality in normed spaces', Proc. R. Soc. Edinburgh A 136 (2006), 709–716.
- [6] J. Chmieliński, 'Linear mappings approximately preserving orthogonality', J. Math. Anal. Appl. 304 (2005), 158–169.
- [7] M. J. Dupré and R. M. Gillette, Banach Bundles, Banach Modules and Automorphisms of C*-Algebras, Pitman Research Notes in Mathematics, 92 (John Wiley & Sons, Inc., New York, 1983).
- [8] H. L. Gau, J. S. Jeang and N. C. Wong, 'Biseparating linear maps between continuous vector-valued function spaces', J. Aust. Math. Soc. (Series A) 74 (2003), 101–111.
- [9] M. H. Hsu and N. C. Wong, 'Isometric embeddings of Banach bundles', *Taiwanese J. Math.*, to appear.
- [10] D. Ilišević and A. Turnšek, 'Approximately orthogonality preserving mappings on C*-modules', J. Math. Anal. Appl. 341 (2008), 298–308.
- [11] K. Jarosz, 'Automatic continuity of separating linear isomorphisms', Canad. Math. Bull. 33 (1990), 139–144.
- [12] J. S. Jeang and N. C. Wong, 'On the Banach–Stone problem', Studia Math. 155 (2003), 95–105.
- [13] M. Jerison, 'The space of bounded maps into a Banach space', Ann. of Math. (2) 52 (1950), 309–327.
- [14] R. Kantrowitz and M. M. Neumann, 'Disjointness preserving and local operators on algebras of differentiable functions', *Glasg. Math. J.* 43 (2001), 295–309.
- [15] E. C. Lance, *Hilbert C*-Modules. A Toolkit for Operator Algebraists*, London Mathematical Society Lecture Note Series, 210 (Cambridge University Press, Cambridge, 1995).
- [16] K. S. Lau, 'A representation theorem for isometries of C(X, E)', Pacific J. Math. 60 (1975), 229–233.
- [17] C. W. Leung, C. K. Ng and N. C. Wong, 'Automatic continuity and $C_0(\Omega)$ -linearity of linear maps between $C_0(\Omega)$ -modules', *J. Operator Theory*, to appear.
- [18] R. Narasimhan, *Analysis on Real and Complex Manifolds*, Advanced Studies in Pure Mathematics, 1 (North-Holland, Amsterdam, 1968).
- [19] J. Peetre, 'Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels", Math. Scand. 8 (1960), 116–120.
- [20] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, Mathematical Surveys and Monographs, 60 (American Mathematical Society, Providence, RI, 1998).

CHI-WAI LEUNG, Department of Mathematics, The Chinese University of Hong Kong, Hong Kong e-mail: cwleung@math.cuhk.edu.hk

CHI-KEUNG NG, Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, PR China e-mail: ckng@nankai.edu.cn

NGAI-CHING WONG, Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan e-mail: wong@math.nsysu.edu.tw