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Abstract

A C-linear map 6 (not necessarily bounded) between two Hilbert C*-modules is said to be ‘orthogonality
preserving’ if (6(x), 6(y)) =0 whenever (x, y) =0. We prove that if  is an orthogonality preserving
map from a full Hilbert Cy(£2)-module E into another Hilbert Co(£2)-module F that satisfies a weaker
notion of Cp(£2)-linearity (called ‘localness’), then 6 is bounded and there exists ¢ € Cp,(£2)+ such that
Ox),0(y))=¢ - (x,y)forallx, ye E.
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1. Introduction

It is common knowledge that the inner product of a Hilbert space determines both
the norm and orthogonality; and conversely, the norm structure determines the inner
product structure. It may be slightly less well known that the orthogonality structure of
a Hilbert space also determines its norm structure. Indeed, if 6 is a linear map between
Hilbert spaces preserving orthogonality, then it is easy to see that 0 is a scalar multiple
of an isometry (see [5, 6]).

We are interested in the corresponding relations for Hilbert C*-modules. Note that,
in the case of a commutative C*-algebra Cy($2), Hilbert Cy(£2)-modules are the same
as Hilbert bundles, or equivalently, continuous fields of Hilbert spaces over 2. By
modifying the proof of [12, Theorem 6] (see also [9, 13, 16]), one may show that
any surjective isometry between two continuous fields of Hilbert spaces with nonzero
fibers over each point is given by a homeomorphism and a field of unitary operators.
Thus, the norm structure (and linearity) determines the unitary structure in this
situation.
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Our primary concern is the question of whether the orthogonality structure of
a Hilbert C*-module determines its unitary structure. More precisely, let A be
a C*-algebra, and E and F be two Hilbert A-modules. If 6:E — F is an
A-module homomorphism, not necessarily bounded, which preserves orthogonality,
thatis, (6(x), 8(y))a = 0 whenever (x, y)4 = 0, then we ask whether there is a central
positive multiplier # in M (A) such that

(B(e), 0(f))a=ule, f)a Ve, feE.

When A = C, this reduces to the case of Hilbert spaces. Recently, Ilisevi¢ and Turnsek
[10] gave a positive answer in the case where A is a standard C*-algebra, that is, when
K(H) € A< L(H).

In this paper, we will give a positive answer when A is a commutative C*-
algebra (actually, we prove a slightly stronger result that replaces A-linearity with
the ‘localness’ property; see Definition 2.1). On the other hand, we will also consider
bijective biorthogonality preserving maps between Hilbert C*-modules over different
commutative C*-algebras. We show that if such a map also satisfies a certain local-
type property (see Definition 3.12) but is not assumed to be bounded, then it is
given by a homeomorphism (between the base spaces) and a ‘continuous field of
unitary operators’. We remark that in this case of Hilbert C*-modules over different
commutative C*-algebras, one cannot define ‘A-linearity’, but has to consider the
localness property. This is one of the reasons for considering local maps. We remark
also that this case does not cover the case of Hilbert C*-modules over the same
commutative C*-algebra, because we need to assume that the map is both bijective
and biorthogonality preserving.

Note that if €2 is a locally compact Hausdorff space and H is a Hilbert space, then
Co(82, H) is a Hilbert Cy(£2)-module. As far as we know, even in this case our results
are new, and the techniques in the proofs are nonstandard and nontrivial, compared to
those in the literature [1, 4, 8, 11] on separating or zero-product preservers (although
some statements look similar). In a forthcoming paper, the authors will study the case
where the underlying C*-algebra is not commutative.

2. Terminology and notation

Recall that a (right) Hilbert C*-module E over a C*-algebra A is a right A-module
equipped with an A-valued inner product (-, -) : E x E — A such that the following
conditions hold for all x, y € E and all a € A:

@ (x, ya) ={x, y)a;

(i) (x, y)* =y, x);

@iii) (x, x) >0, and (x, x) = 0 exactly when x = 0.

Moreover, E is a Banach space equipped with the norm ||x]| = ||{x, x)|| 172 We also
call E a Hilbert A-module in this case. A complex linear map 6 : E — F between
two Hilbert A-modules is called an A-module homomorphism if 0(xa) =0(x)a
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for all a € A and x € E. See, for example, [15] or [20] for a general introduction
to the theory of Hilbert C*-modules. In this paper, we are interested in the case
where the underlying C*-algebra A is abelian, that is, the space A = Cy(R2) of
all continuous complex-valued functions vanishing at infinity on a locally compact
Hausdorff space €.

DEFINITION 2.1. Let A be a C*-algebra. Suppose that E and F are Hilbert A-
modules. A C-linear map 0 : E — F is said to be local if 6(e)a = 0 whenever ea = 0
forany e € E and a € A.

The idea of local linear maps is often found in research in analysis. For example, a
theorem of Peetre [19] states that local linear maps of the space of smooth functions
defined on a manifold modeled on R" are exactly the linear differential operators
(see [18]). This was extended to the case of vector-valued differentiable functions
defined on a finite-dimensional manifold by Kantrowitz and Neumann [14] and Araujo
[3], and to the Banach C'[0, 1]-module setting by Alaminos et al. [2]. Note that
every A-module homomorphism is local. Conversely, every bounded local map is an
A-module homomorphism (see [17, Proposition A.1]). See Remark 3.4 below for
more information.

Throughout this paper, 2 and A are two locally compact Hausdorff spaces, and
Qoo is the one-point compactification of 2. Moreover, E and F are a (right) Hilbert
Co(£2)-module and a (right) Hilbert Cy(A)-module respectively, while 6 : E — F is
a C-linear map (not assumed to be bounded). We denote by B¢, ) (E, F) the set of
all bounded Cy(£2)-module homomorphisms from E into F. For any w € 2, we let
Na(w) be the set of all compact neighborhoods of w in Q. If S C Q, we denote by
Into (S) the interior of S in 2. Moreover, when U, V C Q and the closure of V is
a compact subset of Intq(U), we denote by Uq(V, U) the collection of all functions
A€ Cp(R2) suchthat0 <A <1,A=1on V and XA vanishes outside U.

Note that any Hilbert Cy(€2)-module £ may be regarded as a Hilbert C(Q2)-
module, and the results in [7] may be applied. In particular, E is the space of Cop-
sections (that is, continuous sections that vanish at infinity) of an (F)-Hilbert bundle
2F over Q4 (see [7, p- 49)).

We define the modulus function | f|(w) := || f(w)|| for all f € E and w € Q2. For
any closed subset S of Qs and w € R, We set

Kf:={feE:f(w)=0forsomeweS} and I,:= U Ky
VeNqy, (@)

(for simplicity, we also denote K {E)} by KE). Note that KE = E and the fiber EZ of
EF at w € Qoo is E/KE. Furthermore, K f is a Hilbert K SCO(Q)-module and

KE=E. KO,
We also define
Ag = {veA:Q(E)gKf}:{veA:@(e)(v);ﬁOforsomeeeE}.
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Then Ag is an open subset of A and we put
Qe ={weQ: 8, #0)}.

Let 29 € 2 be an open set. As in [7, p. 10], we denote by zE |, the restriction of
EF to Q) and by Eq, the set of Cp-sections on sf |o,- One may make the following
identifications: .

Co(R0) = KQQ(QO) and  Eq,=K§ o,

3. Orthogonality preserving maps between Hilbert Cy(£2)-modules

We first recall two technical lemmas from [17, Lemmas 3.1 and 3.3, and
Theorem 3.7] (see also [17, Remark 3.4]), which summarize, unify, and generalize
techniques used sporadically in the literature [4, 8, 11].

LEMMA 3.1. Ifo : Ag — Qo is a map satisfying 9(If(v)) C Kffor allv € Ay, then
o 1S continuous.

LEMMA 3.2. Let o : A — Q be a map (not necessarily continuous) with the property

that Q(va)) - Kffor every v € A.

(a) IfUg:={veA: supy <1 16 (e)(W)|| = oo}, then o (Uy) is a finite set.

b)) IfNs:={veA :O(Kf(v)) ¢ Kf}, then Ny« C Uy and o (Ng,») consists of
nonisolated points in Q.

(c) If o is injective and sends isolated points in A to isolated points in 2, then
No.o =0 and there exist a finite set T consisting of isolated points of A, a
bounded linear map 0y : Kf(T) — K; as well as linear maps 6, : Ef(v) — Ef
forallv eT, such that E = Kf(T) DD, cr Ef(v),

F=kfo@@el ad 0=000P0.

veT veT

For any v € A \ 9y, one may define 6, : Ef(v) — Bl by

Ou(e+KE,)=0(e)+ K] VeeE, (3.1

or equivalently, 8, (e(o (v))) = (6(e))(v) foralle € E.

LEMMA 3.3. Let o and Uy be as in Lemma 3.2. Suppose, in addition, that o is

injective and 6 is orthogonality preserving. Then there exists a bounded function
¥ A\ Ug — Ry such that

(B(e), 0())(v) =Y (v)*(e, g)(o(v)) Ve, g€ E,Vve A\ . (3.2)

. . . =E —F
Moreover, for each v € Ay, there is an isometry t,, : S0~ 8 such that

0(e)(v) =y (W) (e(a(v))) Vee E,Yve Ay \ Ug.
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PROOF. Fix any v € Ag \ {ly. By Lemma 3.2(b), the map 6,, as in (3.1), is well
defined. Suppose that 11 and n, are orthogonal elements in Ef(v) and 11 # 0 (this

is possible because Ag \ g » < o1 (QE)), and that g1, € E and g;j(o(v)) =n;

wheni=1,2. If V € Nqg(o(v)) and g; does not vanish on V, then by replacing g»

with
(g2, &1)
82— 581 A,
lg1l

where A € Uq({o(V)}, V), we see that there are orthogonal elements e, e; € E such
that ¢;(o(v)) =n; when i =1,2. Hence 6, is nonzero, because v € Ay, and is
an orthogonality preserving C-linear map between Hilbert spaces. Consequently,
there exist an isometry ¢, : Ef 0 Ef and a unique scalar {(v) > 0 such that
6, = ¥ (v),. For any v € A\ Ag, we set ¥ (v) = 0. Then clearly (3.2) holds. Next,
we show that i is a bounded function on A \ ily. Suppose that this is not the case.
Then there exist distinct points v, € Ag \ Llg such that ¢ (v,) > n3. If e, € E such that

llex |l = 1 and its modulus function satisfies

lenl (o (vn)) = v/ {en, en) (o (vy)) = (n = 1)/n
(note that v, € 0 1 (QE)), then in light of (3.2),

16(en)|(v) = ¥ (W)lenl (0 (va)) > n*(n — 1).

As {o(vy)} is a set of distinct points (note that o is injective), by passing to a
subsequence if necessary, we may assume that there are U, € Nq(o(v,)) such that
U, NU,, =¥ when m # n. Now pick any V,, € Nq(o (v,)) such that V,, C Intq(U,)
and choose a function A,, € Uq(V,, U,) for all n € N. Define e := Z,fil ek)\i/k2 eE.
Asn?e —eqphy € K[ and e, — eyhy =€, (1 — A7) € K foralln €N,

0 (en) 0
01> 16E ) = eI _ 0@l
n n
by the relation between 6 and o, which is a contradiction. O

3.1. Hilbert bundles over the same base space.

REMARK 3.4. For any e € E, we define

suppg € :={w € Q: e(w) # 0}.

It is not hard to check that the following statements are equivalent (and this tells us
that local maps are the same as support shrinking maps [8]):

(i) 6 1is local (see Definition 2.1);

(i) 6(K 5) CcK 5 for all nonempty open set V;

(iii) suppg €(e) Csuppg e forall e € E;

(iv) suppg @(e)A C suppg e forall e € E and A € Cp(£2).
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THEOREM 3.5. Let Q2 be a locally compact Hausdorff space, and let E and F be two
Hilbert Co(S2)-modules. Suppose that 6 : E — F is an orthogonality preserving local
C-linear map. The following assertions hold.

(a) He BCO(Q)(E, F).
(b) There is a bounded nonnegative function ¢ on 2, continuous on Qg, such that

(B(e), 0(g))=¢-(e,g) Ve, g€E.

(c) There exist a strictly positive element Yy € Cp(29)+ and J € Beyy) (Eq, Fay)
such that the fiber map J,, is an isometry for all w € Qp and

f(e)(w) = Yo(w)J(e)(w) Vee E,Vw e Q.

PROOF. Note that the conclusions of Lemmas 3.2 and 3.3 hold when 2 = A and
o = Intg.

We prove (a). By Remark 3.4 and Lemma 3.2(c), 6 is a Cp(£2)-module
homomorphism. Further, as 6, (as in Lemma 3.2(c)) is an orthogonality preserving,
hence bounded, linear map between Hilbert spaces for all v € T (where T is as in
Lemma 3.2(c) and o = Intg), we know from Lemma 3.2(c) that 6 is bounded (note
that T is finite).

Now we consider (b). By part (a), 4l =@. Thus, Lemma 3.3 tells us that there
exists a bounded nonnegative function v on €2 such that (8(e), 0(f)) = |1//|2 - (e, f).
Let w € Qg and pick any e € E for which there exists U,, € Nq(w) such that e(v) # 0
for all v € U,. Then ¢ (w) = |0(e)|(w)/|e|(w) for all w € U,,. Hence ¢ is continuous
on Qg, and ¢ = V2 is the required function.

It remains to prove (c). Note that Qg C Qp, by part (a). Since ¢(w) > 0 for all w €
Qg, we know from part (b) that i = ¢'/? is a strictly positive element v/ in Cp, (£29) ..
The equivalence in [7, (2.2)] (consider E and F as Hilbert C(2)-bundles) tells us
that the restriction of 6 induces a bounded Banach bundle map, again denoted by 6,
from Ef|q, into EF|q,. For each n € EE|q,, we define J (1) := ¥o(m(n)~'0(n),
where 7 : 28 — Qs the canonical projection. Then J : Ef|q, — EF|q, is a Banach
bundle map, as n — Yo((n))~! is continuous, which is an isometry on each fiber
(hence J is bounded) such that 6(n) = ¥ (w(n))J (). This map J induces a map,
again denoted by J, in B¢y (Eq,, Fq,) that satisfies the requirement of part (c). O

It is natural to ask if one can find ¢ € Cp(2) such that the conclusion of
Theorem 3.5(b) holds. Unfortunately, the following example tells us that this is not
the case in general.

EXAMPLE 3.6. Let 2 = Ry, the one-point compactification of the real line R. Let
E and F be the Hilbert C(£2)-module Cy(R), and define 6( f)(t) = f(t) cos t for all
feEandreR. Then Q\ Qf = {00} and ¢(t) =cos ¢ for all t e R = Q. Thus ¢
does not extend to a continuous function on 2.

We can now obtain the following commutative analog of [10, Proposition 2.3].
This, together with Corollary 3.11, asserts that the orthogonality structure of a Hilbert
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bundle essentially determines its unitary structure, as we claimed in the introduction.
Note also that a large portion of Lemma 3.2 was used to deal with the possibility of
0(K f(v)) ¢ K f (this situation does not arise for Cy(£2)-module homomorphism), and
this corollary actually has a much easier proof.

COROLLARY 3.7. Let Q be a locally compact Hausdorff space, and E and F be
Hilbert Cy(2)-modules. Suppose that 0 : E — F is a Cy(2)-module homomorphism
that preserves orthogonality. Then 0 is bounded and there exists a bounded
nonnegative function ¢ on 2 that is continuous on Qg and satisfies (0(e), 0(f)) =

@-le, f)foralle, f € E.
Recall that a Hilbert C¢(€2)-module E is full if the C-linear span (E, E) of the set

{{e, f):e, f€E}
is dense in Cp(£2).

REMARK 3.8. A Hilbert Co(£2)-module E is full if and only if E ¢ Kf for all w € Q2
(or equivalently, Qg = Q). In fact, if £ C Ka’f, then f(w) =0 forall f € (E, E) and
E is not full. Conversely, if E is not full, then there exists w € €2 such that f(w) =0
for all f € (E, E), because the closure of (E, E) is an ideal of Co(2), and E C Kf.

REMARK 3.9. If E is full, then by the previous remark, the function ¢ in
Theorem 3.5(b) (and Corollary 3.7) is an element of C,(£2). However, there is no
guarantee that this function is strictly positive.

REMARK 3.10. Suppose that F is full and 6 is a surjective orthogonality preserving
local C-linear map. If there exists w € Q\ Qy, then F =60(F) C Kg, which

contradicts the fullness of F (see Remark 3.8). Consequently, Qyp =Q. As 6 €
Bcy) (E, F) by Theorem 3.5(a), we see that Q = Qg € Qp and E is full.

COROLLARY 3.11. Let Q2 be a locally compact Hausdorff space, and let E and F be
two Hilbert Co(S2)-modules. Suppose that F is full and 0 : E — F is an orthogonality
preserving surjective local C-linear map. Then 6 € Bcyo)(E, F). Moreover, there
exist a strictly positive element W € Cp(Q2)+ and a unitary map U € Bcy)(E, F)
such that0 = - U.

PROOF. Remark 3.10 tells us that 2y = Q2. By the surjectivity of 9, the bounded
Banach bundle map J in Theorem 3.5 is unitary on each fiber. Therefore, the element
U € Bcy) (E, F) corresponding to J, as in [7, (2.2)], is unitary. d

3.2. Hilbert bundles over different base spaces.

DEFINITION 3.12. The map 6 is said to be quasilocal if it is bijective and, for all
ec€ Eand A € Cp(A),
suppg, 01 (0 (e)1) C suppg e. (3.3)
Note that if A = 2 and 6 is both local and bijective (hence 61 is also local), then
6 is quasilocal by Remark 3.4.
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LEMMA 3.13. Suppose that 0 is bijective and quasilocal and that 6 and 0~ both
preserve orthogonality. Then |0(e)||60(g)| =0 ife, g € E and suppg e N suppg g = 9.

PROOF. Suppose, on the contrary, that there exist ej,e; € E and ve A such
that suppg e; Nsuppg e2 =9 but ||6(e1)(V)][]|6(e2) (V)| #O. As 6 preserves
orthogonality, we may assume that 6(e1)(v) and 0 (ez)(v) are orthogonal unit vectors
in 2F. Take U, W € Na(v) such that W C Inta(U) and ||6(e;)(w)| > 1/2 for all

v

u € U. Pick any L e Upn(W; U), and define h; € F \ {0} (wheni =1, 2) by

0w — it e nia ()
hi() = 16(en] (1)

0 if ¢ Inta(U)

and set el’. :=0"1(h;). The orthogonality of & and h; (recall that ¢; and e; are
orthogonal), together with that of hy + hy and k| — hy (as |h1| = A = |h3]), ensures
the orthogonality of ¢} and €}, as well as that of €| + ¢} and e] — ¢}. It follows that
le} | = |e5] # 0, which contradicts the fact that |e] ||e}| = 0, as 6 is quasilocal. O

THEOREM 3.14. Let Q and A be locally compact Hausdorff spaces. Suppose that E
is a full Hilbert Co(2)-module and F is a full Hilbert Co(A)-module. If 6 : E — F
is a bijective C-linear map such that both 6 and 0" are quasilocal and orthogonality
preserving, then 0 is bounded and

Oe)(v)=yv(w)Jy(e(oc(v))) Vee E,VveA, 3.4

where o : A — Q is a homeomorphism,  is a strictly positive element of Cp(A)+,
and J, is a unitary operator from Ef(v) onto Ef such that the map v — J,(f (o (v)))
is continuous for all fixed f € E.

PROOF. We consider E as a Hilbert C(£24)-module. For each v € A, let
Sy = {w € Qoo : O(K§_\w) L Ky YW € No, ()}

We first show that S, is a singleton. Indeed, assume that S, = (. Then for all w € Q,
there is W, € Nq_ (w) such that O(Kgoo\ww) C KUF. Consider oy, ..., w,; € Qoo
such that

n
| Inta,, (Way) = 2,
k=1
and take a partition of unity {gx};_, that is subordinate to {Intg (Wy,)};_,. Then
ey € KgEzoc\ka for all e € E, and so O(e) € Kf. As 6 is surjective, this shows

that F =K f , and contradicts the fullness of F (see Remark 3.8). Now, assume
that there are distinct elements w;, wy € S,. Take V| € Ng_ (w1) and V2 € Ng_ (@2)
such that V1 NV, =0@. By the definition of S,, there exist ej, ex € E such that

suppg €; € V; \ {oo} and 8(e;)(v) # 0 when i = 1, 2, which contradicts Lemma 3.13.
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Thus, there is a unique element o (V) € Q such that S, = {o (v)}. Next, we claim that

o(1F

o(v)

)yCIF YveA. (3.5)

Consider any V € Ng_(o(v)) and e € K“?. Pick U € Ng_ (o(v)) such that U C
Intg_ (V). By the definition of o, there exists g € Kgoo\U such that 6(g)(v) # 0.
Hence, there is W € Ma (v) such that 6(g)(u) # 0 for all w € W, and Lemma 3.13
implies that 0(e) € K P as claimed. If there exists v € A \ Ay, then f(v) =0 for all
f € F, because 0 is surjective, which contradicts the fullness of F. Thus, Ay = A
and o : A — Qo is continuous, by Lemma 3.1. As 67! is also quasilocal and
orthogonality preserving, a similar argument to the above gives a continuous map
T:Q2 — A satisfying 9_1(1F ) C If for all w € Q2. Now, the argument of [17,

T(w)
Theorem 5.3] tells us that o is a homeomorphism from A to €2 such that

O(e-p)=06(e)-poo Vee E,Vp e Cpy(L2),

and by Lemma 3.2(c), there exists a finite set 7 consisting of isolated points of A
such that 6 restricts to a bounded map from K f(T) to Kf . Since any v € T is an
isolated point, 8 induces an orthogonality preserving, hence bounded, map 6, from
the Hilbert space & f(v) onto the Hilbert space Ef . This shows that 6 is bounded, by
Lemma 3.2(c) and the fact that 7 is finite. By Lemma 3.3, there is a surjective isometry
Jv: B, — B such that

Be)(v) =y ()Jy(e(o(v))) Vee E,VveA.

Now the fullness of E implies that ¥ (v) >0 for all ve€ A, and the map v
0(e)(v)/¥(v) is evidently continuous. |

The following example shows the necessity of the assumption in Theorem 3.14 that
6! preserves orthogonality.

EXAMPLE 3.15. Let Q2 be a nonempty locally compact Hausdorff space, €2, be the
topological disjoint sum of two copies of €2, and ji, j : 2 — €2, be the embeddings
into the first and the second copies of €2 in €2, respectively. Let H be a nonzero
Hilbert space, and let H> be the Hilbert space direct sum of two copies of H. Then the
map 0 : Co(22, H) — Co(S2, H;), defined by

0(f) @) = (f(j1(@)), f(j2(®))),

is a bijective C-linear map preserving orthogonality satisfying condition (3.3).
However, 6 is not of the expected form. Note that 6~ does not preserve orthogonality.
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