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Abstract. Low frequency observations at 330 and 74 MHz can provide
new insights into supernova remnants (SNR). We can test theoretical pre-
dictions for spectral index variations. Nonlinear models of shock acceler-
ation predict that the spectra from young SNR should be slightly concave
rather than power laws - flattening toward higher energies. However, few
SNR are bright and compact enough to be studied at millimeter wave-
lengths, restricting studies to the small range from 6 to 20 em (a factor
of 1.7 in electron energies). Observations at 330 MHz increase the elec-
tron energy baseline to a factor of 4, while providing sensitivity to larger
spatial scales that are resolved out by centimeter-wavelength interfer-
ometers. Such observations can also separate thermal from nonthermal
emission and detect excess free-free absorption associated with cool gas
in remnants. Wide field images also provide an efficient census of both
thermal .and nonthermal sources over a large region.

1. Introduction

In order to understand shocks in supernova remnants (SNR) we need to separate
three issues: intrinsic properties of the explosions themselves, the character
of the SNR environment, and observational constraints. In order to obtain
fundamental facts about the explosion such as the age and energy released we
must understand the structure of the circumstellar medium. In order to interpret
observations we must understand observational limits imposed by the nature of
single dish and interferometric observations.

Low frequency interferometric observations can help disentangle these three
overlapping issues and will have the opportunity to contribute to three multifre-
quency issues: finding X-ray synchrotron emission, measuring spectral curvature
predicted by particle theory, and clearing up uncertainties in observed spectral
index variations.
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2. Information from Total Flux Measurements

In order to understand supernovae (SN) and SNR, we must separate SNR from
their environs. Since SNR are found preferentially near star forming regions,
in the galactic plane, they are, not by chance, often in complex regions of the
sky (for a convincing example consult the galactic plane surveys by Effelsberg:
Reich, Reich, & Fuerst, 1990, 1997).

Even something as simple as measuring the total flux from a SNR requires
imaging to avoid confusing the emission from nearby sources. While interferom-
eters can over resolve the remnant, losing total flux information, fluxes obtained
from single dish measurements often confuse the SNR with nearby objects.

An individual electron of energy E radiates its peak synchrotron emission at
frequency v ex E 2 B. Since frequency is proportional to the energy squared, we
need the leverage of much wider frequency "baselines" to study subtle changes
in the electron spectrum. Comparing observations from 6 to 20 em is only a
range of 1.7 in energy, whereas 74 MHz to 4.6 GHz buys a factor in energy of 8.

Low frequencies also avoid a scale problem. For the VLA, many galactic
SNR are large enough they are over-resolved at wavelengths longer than 6 em.
Total flux is more reliably measured at at lower frequencies. While low-frequency
interferometric observations can be affected by absorption, even a lower limit to
the flux would help firm up the predictions.

3. X-ray Synchrotron Emission

X-ray emission in SNR is generally considered to be thermal; however, certain
SNR look suspiciously similar in the X-ray and radio (such as G41.1-0.2; see
Dyer & Reynolds 1999). Morphological similarity does not prove the X-rays are
synchrotron - but at the very least it suggests that X-rays are being excited at
the same location as the relativistic electrons that produce radio synchrotron
emission.

In fact, X-ray observations of some SNR like SN1006 (Koyama et al 1993)
and (Slane et al. 2000) show the spectra are dominated by' synchrotron emission.
A more serious threat to our understanding of shocks is the possibility that
other SNR could have a smaller synchrotron component confusing the thermal
emission - this would stymie thermal fits and prevent accurate measurements of
shock temperatures and elemental abundances.

Models have been developed by Reynolds (1993, 1996) to describe this emis-
sion. Two simple models, SRCUT and SRESC, are available in XSPEC 11.0.
These models rely on the radio flux and spectral index as reported by Green
(1998). The models differ subtly - the precise shape of the X-ray synchrotron
spectrum can be used to determine properties of the SNR, including the age
of the shock, magnetic fields and electron energies and synchrotron losses. The
models depend on accurate extrapolations of the radio synchrotron spectrum
over eight orders of magnitude of frequency. The current state of this knowledge
is very poor, as can be seen from examining collections of flux measurements
[Truskin 1999, see G041.1-0.2 for example). Reported fluxes can vary by a factor
of 1/3 to 2, sometimes even between measurements made by the same instru-
ment. Most single dish instruments do not have the resolution to separate SNR
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from nearby sources and absolute fluxes are not well calibrated from one instru-
ment to another. The uncertainties reported in the literature are often absent or
optimistic underestimates. Low frequency interferometric observations can con-
tribute reliable measurements with (most importantly) accurate uncertainties,
allowing us to separate thermal and non-thermal X-rays.

4. Spectral Curvature

Non-linear first-order Fermi shock acceleration has been shown to be the leading
model describing particle acceleration in SNR shocks. Since protons determine
the shock structure, in the past particle codes studying shocks have ignored
electrons. However it is commonly held that higher energy electrons have longer
scattering lengths across the shock. If this is true, electrons interact differently
with the shock. Highly energetic electrons see a shock with a higher compression
ratio than low energy electrons, and therefore gain more energy than their low
energy counterparts. Tests with particle codes including electrons by Ellison &
Reynolds (1991, 1992) showed the synchrotron spectrum, while very close, is not
exactly a powerlaw - it deviates very slightly - concave upwards or flattening to
higher energies. This subtle curvature had already been found observationally
in single dish measurement of well studied remnants such as Tycho and Kepler.

This is one of the few methods by which limits can be set on the magnetic
field independent of the electron energy, putting us closer to to the goal of
finding intrinsic properties of the SNR. In some cases a single accurate measure-
ments at low frequency can discriminate between models with different magnetic
fields.

5. Spectral Index Variations and Inherent Problems

It is worth noting that the spectral index variations theorists look for, to obtain
insight on shock mechanisms, should be very small. SNR look very similar from
one frequency to the next. In addition, if parts of the remnant varied widely it
would be unlikely that the spatial average would come as close as it does to a
power law over three orders of magnitude in frequency.

Studies of spectral index variations across the face of the remnant bring
out the worst in interferometric measurements. There are two serious problems
underlying spectral index fluctuations reported in the li.terature. First, even with
scaled arrays, interferometric observations at different frequencies have slightly
different UV coverage. This difference is compounded by processing with non-
linear deconvolution methods. Second, if we are to believe the small effects we
are looking for, we must be able quantify the noise accurately - and the noise on
extended sources, processed through CLEAN or MEM, is not well understood. A
3a effect is meaningful only if a is well known. We have found that re-observing
a SNR with the VLA with slightly better UV coverage found spectral index
variations on the same scale as previous observations: however these variations
were in different locations with different signs (Dyer & Reynolds 1999). This
was true even when linear regression algorithms were used, designed to take into
account an offset due to lack of short-spacing information.
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However some SNR do show statically significant variations (O'Sullivan &
Green 1999). The situation can be improved by adding single dish data, deriving
indices from observations at three or four frequencies rather than two (including
lower frequencies), and by testing algorithms designed to avoid the zero spacing
problem and finally by better understanding of the statistical noise across diffuse
CLEANed emission.

The last two issues could be addressed by a Small but critical project -
The techniques used to find spectral index variations (regression methods, T-T
plots and spectral tomography) in SNR could be used to look for spectral index
variations where we know there should be none - in thermal H II regions such as
the Orion nebula. A thermal nebula should have a flat spectrum (v-a.l ) with no
spectral index variations beyond statistical fluctuations, therefore the variations
found would tell us something about the noise in our spectral index maps of
SNR. A thermal nebula also provides extended emission where the unknown
effects of CLEAN on source noise could be checked.
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