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A COMPARISON THEOREM ON MAGNETIC JACOBI FIELDS

by TOSHIAKI ADACHI

(Received 21st June 1995)

A scalar multiple of the Kahler form of a Kahler manifold is called a Kahler magnetic field. We are focused
on trajectories of charged particles under this action. As a variation of trajectories we define a magnetic
Jacobi field. In this paper we discuss a comparison theorem on magnetic Jacobi fields, which corresponds to
the Rauch's comparison theorem.

1991 Mathematics subject classification: 53C22.53C55.

Introduction

A static magnetic field in the Euclidean space R3 is a vector field IB = (B,, B2, B3) which
satisfies the Gauss formula div(B) = 9B,/3x, + dB2/dx2 + 3B3/3x3 = 0. On a charged
particle with charge q and velocity vector v = (u,, v2, u3), this yields the Lorentz force

¥ = q-\ xE- <j(u2B3 - u3B2, u3B, - u,B3, u,B2 - v2Bx).

The Newton equation is hence given by m(dv/dt) = q • v x B, where m is the mass of
this particle. In order to get rid of the choice of the orientation of R3 it is natural to
identify IB with the 2-form

B = Btdx2 A dxj + B2<fx3 A dxx + B3dxt A dx2.

Under this identification the Gauss formula is equivalent to dB = 0, and the Newton
equation turns to m(d\/dt) = q • fiB(v) with the skew symmetric matrix

/ 0 B3 -
n B = - B 3 o B ,

V B2 - B , 0

With this observation we call a closed 2-form IB on a Riemannian manifold (M, (,))
a magnetic field. Let fi = fiB : TM -> TM denote the skew symmetric operator
satisfying B(u, v) = (u, Q(v)) for every u, v e TM. A smooth curve y on M is called a
trajectory for B if it satisfies the equation V̂ y = Q(y). In terms of physics a B-
trajectory is a trajectory of a unit charged particle of unit mass under the action of
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294 TOSHIAKIADACHI

B. For the trivial magnetic field E — 0, trajectories are geodesies. Needless to say,
Rauch's comparison theorem plays a very important role in the study of geodesies.
The aim of this paper is to prepare a corresponding comparison theorem.

An important class of magnetic fields is the class of uniform magnetic fields on a
complete Riemannian manifold. A magnetic field B is called uniform if the associated
skew symmetric operator is parallel; VQ = 0. Typical examples for uniform magnetic
fields are scalar multiples k • Bj of the Kahler form B_, on a Kahler manifold, and
scalar multiples k • Vol of the volume form Vol on a Riemann surface. We shall call
them Kahler magnetic fields. In the study of geodesies, real space forms, spheres,
Euclidean spaces, and hyperbolic spaces, play as model spaces. For the study of
(uniform) magnetic fields, since we have no nontrivial uniform magnetic fields on
non-flat real space form of dimension greater than 2, the author thinks that complex
space forms, complex projective spaces, complex Euclidean spaces, and complex
hyperbolic spaces, play as model spaces. In the preceeding papers [1] and [2] we
studied trajectories for Kahler magnetic fields on complex space forms, and pointed
out that the feature of trajectories depends on the curvature condition of the base
manifold and on the strength of a uniform magnetic field. In this context it is quite
natural to study comparison theorems associated to uniform magnetic fields.

Let IB be a uniform magnetic field on a complete Riemannian manifold M. A vector
field V along a IB-trajectory y is called a magnetic Jacobi field for B (or simply called
B-Jacobi field) if it satisfies the following magnetic Jacobi equation:

V,V>V - Q(V>V) + R(V,y)y = 0, (M J)

where R denotes the curvature tensor on M. When B is the trivial magnetic field,
magnetic Jacobi fields are usual Jacobi fields. Like Jacobi fields every magnetic Jacobi
field is obtained by a variation of trajectories. An important thing in our study is that
we should pay attention to the speed of trajectories. In general, since we have
d/dt(\\y(t)f) = (fi(y(0). K0> + (J(t),Cl(y(t))) = 0, we see that every IB-trajectory y has a
constant speed. But once we change the speed of y and consider the curve ex(£) = y(Xt)
with a constant X, then a turns to a trajectory for ?M. This is a different point from
geodesies. We call a trajectory normal if it is parametrized by its arc length. In
Section 1, we define a normal magnetic Jacobi field as a variation of normal
trajectories and summarize some fundamental results. In Section 2, modifying the lines
for the proof of Rauch's comparison theorem we define a magnetic index and show
comparison theorems for Kahler magnetic Jacobi fields. As a consequence of this
generalization we investigate in the final section some asymptotic behaviour of
trajectories for uniform magnetic fields on a Hadamard surface.

1. Magnetic exponential maps and magnetic Jacobi fields

Let IB be a uniform magnetic field on a complete Riemannian manifold M. Let y
be a trajectory for B. Generally, on a complete Riemannian manifold every trajectory
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y(t) is defined for — oo < t < oo. It is clear that the derivative y of y is a magnetic
Jacobi field;

V,V>y - Q(V>y) + R(y, y)y = V>Q(y) - Q(V>y) = 0.

Since the magnetic Jacobi equation (MJ) is linear, magnetic Jacobi fields along y form
a 2dim(A/)-dimensional vector space. We first point out that magnetic Jacobi fields
are obtained by variations of trajectories. The proof is just similar as for usual Jacobi
fields.

Lemma 1.1. Let <p : (—£, e) x [a, b] ->• M be a smooth map such that for each s the
curve cp(s, •) : [a, b] -*• M is a trajectory segment for a uniform magnetic field B on M.
Then the vector field V(t) = 3(p/ds(0, t) is a magnetic Jacobi field for 1 along the B-
trajectory <p(0, ()•

Unfortunately, for a magnetic Jacobi field V along a trajectory y, the second
derivative of the function (V, y) does not necessarily vanish along y. But we have by a
direct computation the following.

Lemma 1.2. Let V and W be B-Jacobi fields along a ^-trajectory y. Then
(Vj,K, W) - {V, VyW) + (V, Q(W)) is constant along y. In particular {VyV, y) is constant
along y.

We shall call a magnetic Jacobi field V along a trajectory y normal if it satisfies
(VyV,y) = 0. Normal magnetic Jacobi fields are obtained naturally by variations of
normal trajectories.

Lemma 1.3. Let cp : (—e, e) x [a, b] -*• M be a smooth map such that for each s the
curve <p(s, •) : [a, b] -» M is a normal trajectory segment for a uniform magnetic field1 on
M. Then the vector field V(t) = dcp/ds(O, t) is a normal magnetic Jacobi field for B along
the ^-trajectory <p(0, t).

It is clear that normal magnetic Jacobi fields form a (2dim(M) — l)-vector space.
Given a point p e M we define the E-exponential map B exp,,: TpM - > M o f the tangent
space at p into M by

op,

Here v0 denotes the unit vector v/\\v\\ e UpM^^ denotes the B-trajectory with
ŷ CO) = v0, and op e TPM is the origin. The reader should note that yo(l) ^ y^dMQ in
general. We first compute the differential map DBexpp of Bexpp at the origin
o. e TM. For v e T M\{op) we have
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(DBexp,(o,))» = -Bexp,( r») | t = 0= \\v\\ • yJO) = v,

hence DM expp(op) is the identity map. Therefore, for some positive e, the map
Bexpp |Bi(o ) is a diffeomorphism onto some open neighbourhood of p. Similarly consider
the map 'F : TM -+ M x M defined by F(v) = (T(I>), M expl(o)(t>)), where x : TM ->• M
denotes the projection. We find DF{pp) is not singular at each point p e M. We have

Lemma 1.4. For each p0 e M we can find a neighbourhood U of p0 and positive e so
that the following conditions hold.

(1) For each p,q€U(p^q) there exists a unique normal M-trajectory ypq and
lM (0 < tpq < e) such that yp ,(0) = p and yM(/M) = q.

(2) yp,,,(0) e UM and lpq depend smoothly on p, q.

(3) For each peU the map Bexp p | B t ( o ) is a diffeomorphism onto some open set
containing U.

Let y be a normal IB-trajectory. For a vector field W along y we put
W\t) = Proj,(W(0). where

Proj, : Ty{t)M -+ «y(r))>x = {v € TmM \ {v, y(0) = 0}

denotes the projection. When we treat normal magnetic Jacobi fields their vertical
component is important. We call a point y(t0) a M-conjugate point for y(0) along y if
there exists a nontrivial normal 1-Jacobi field V such that K"(0) = 0 and FB(t0) = 0.
When y(t0) is a IB-conjugate point of y(0), the value t0 is called a M-conjugate value of
y(0) along y. We call the minimum positive IB-conjugate value tc(y(O)) the first
IB-conjugate value of y(0) along y. Similarly, we call y(t,) a B-focal point for y(0) along y
if there exists nontrivial normal 1-Jacobi field V such that (VyV\0)f - 0 and
Vn(t{) = 0. The minimum positive value tf(y(O)) with this property is called the first IB-
focal value.

Proposition 1. Let y be a normal ^-trajectory with y(0) — ue UpM. The map
Pro]t0 o D(mexpp(tou)): T,0U(t0-UpM)^ ((y(to)))

L is singular if and only if y(t0) is a
M-conjugate point of p.

Proof. Let u(s): (-e, e) -*• UpM be a smooth curve with u(0) = « ,
M(0) = C e TU(UPM). Set oc(s, t) — M expp(tu(s)). Then <x(s, •) is a normal IB-trajectory for
each s, hence V(i) = 3a/3s(0, t) is a normal B-Jacobi field along y. Since we have
V{t) = t(DM expp(tu))C. We get the conclusion.

We here notice that if y is a normal IB-trajectory with y(0) = u e UPM then
(DM expp(tu))u = y(t). Since a magnetic Jacobi field V is determined by the initial
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condition V(0) and VK(0), the proof of Proposition 1 guarantees the following.

Lemma 1.5. Every normal magnetic Jacobi field is obtained by a variation of normal
B-trajectories.

We can also conclude the following.

Lemma 1.6. Let y be a normal B-trajectory. Suppose y(t0) is not a B-conjugate point
for y(0) along y. Then for any v e T^M and w e ((y(to)))1 we can find a unique normal
B- Jacobi field V along with 7(0) = v and Proj,0(K(t0)) = w.

2. A comparison theorem for magnetic Jacobi fields

We now discuss a comparison theorem for magnetic Jacobi fields along normal
trajectories for Kahler magnetic fields on Kahler manifolds. For a Kahler manifold
(M, J) with a complex structure J we denote by B} the Kahler form. One of our main
results is the following.

Theorem 1. Let y and y be a normal trajectory for Kahler magnetic fields k • Bj and
k-Bj on Kahler manifolds (JVf, J) and (M, J) respectively. Assume

(a) min{{R(v, y(O)y(O, v) \ \\v\\ = 1, {v, y(t)} = 0}

> m a x { ( K ( i > , y ( t ) ) k O . v) \ \\v\\ = 1, (v, ftt)) = 0 } for 0 < t < t c ( y ( O ) ) ,

( b ) the dimension dim{M) of M is not smaller than dim(M).

We then have the following.

(l) tc(y(O)) < rc(

(2) If normal magnetic Jacobi fields V, V for k-BJtk-B} along y , y satisfy 7 B ( 0 ) = 0 ,
V\0) = 0, HVF'CO)!! = ||VK°(0)||, then

far 0 < t < tc(y(O)).

Let y be a normal trajectory for a Kahler magnetic field B = k-Bj on a Kahler
manifold M of complex dimension n. For a vector field X — hJy + Xx, where h
is a function and Xs- is C-perpendicular to y, that is, Xx(t) e ((y(0»c =
{v e TMM\{v, y(r)> = (v, Jy(t)) = 0}, we define the index JT by

JT(X) =\ {h12- k2h2 + {^X1 - UXX, V ^ x > - (R(X, y)y, X)}dt.
Jo

Here we should note that (V"XL, y) = ( V " ^ , Jy) = 0 for every positive integer m.
When V is a normal magnetic Jacobi field along y, the index of Vs- is given as
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follows;

(2.1)

To see this we denote V =fy + gjy + V1. We find that V is a normal magnetic Jacobi
field for k • Mj if and only if the following equations hold:

(2.2)
/ + k2g)Jy + VyVyV1 - kJV9V

x + R(V\ y)y = 0.

We therefore have=r
\ V1) - (R(V\y)y, V*)\dt

- f
Jo

((9" + k2g)Jy + V>V> 7X - kJV^ Vx +R(V\ y)y, V)dt

y ) , V\T)),

and get (2.1). Using this we obtain the following modified index lemma.

Lemma 2.1. Let V be a normal magnetic Jacobi field with V(0) = 0 along a normal
trajectory y for a Kahler magnetic field. If T < tc(y(O)) and a vector field X along y
satisfies X(0) = 0, X(T) = V\T) and X1 = X, then it satisfies JT(V") < / r W The
equality holds if and only if X = Vn.

Proof. Choose linearly independent normal magnetic Jacobi fields Vu..., V2n_x

along y so that Vj(0) = 0. Since T < tc(y(O)), we have that V\(t),..., V\n_x(t) are also
linearly independent for 0 < t < T. Hence we can represent X — X ^ ' ^ ) by using
smooth functions £ , , . . . , Cm-i- Denoting V] = gjjy + Vj±, we have

^+CiW - kvv"' E W + w A
I / 2/1-1 \ 2n-l ii

\R{ E Wy+v")> v jv. E ^ ^ y + v^)\dt
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2 II 2 n - l

f ( E
Jo \j,i=\

- k(Vj\ jvt)))dt
/

j=\

R( E
By Lemma 1.2, we see that

^) . v)v. E

- WyVl, Vf) - (Vt\ Vrf) + (K/, UV*)

is constant along y, hence equals to 0. Since £;"7' C;(T)^(0) = 0 and ^ 7 ' C/^)^(T) =
X(T)=V(T), we have V = ^ 7 ' C y ( T ) ^ . We get by using (2.1) and

2n- l 2n-l I | I=T .T || 2n- l II 2

f)-Ew^+d +j EW *
*=1 / lt=O JO II J = i II

- f ( E ̂  W>
JO » ;=1 V

2/1-1

j=\

2 n - l

2n-l

+
1=0

jJy + vs
L, y)y), £ C«tô v + ^

/ 1=1

f7" II 2 " - ' | | 2

E ^ 8 \\dt
JO II y=) II

>=l

Since the last inequality holds if and only if all (j vanish along y, we obtain the
conclusion.

Proof of Theorem 1. In the case VK3(0) = 0, we have Vs = 0 by the assumption
V(0) = 0, hence we may suppose VK°(0) / 0. Since
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l i m l l ^ ^ L = l im^>' " ' = h m ^ T > r ' r '
uo ||K3(t)|| ao (Vj,K3, 7s) no (V-VK3, F«

we shall show

d ( \\V\t)\\2\ = \\V\t)\\2 / (V^8, Ka) (

dt\\\V^t)\\2) ||V«(t)||2V ||K»(0ll2

is not negative. For a positive T < min{te(y(0)), tc(y(O))) w e Pu t

XT(t) — , XT(t) — —z , and XT(t) — Py o / o

where

y : TKo)M ->• T^M, Py : TK0M ^- TmM

are parallel transformation along y and y respectively, and / : Ti{l)M -*• TmM is an
injective inner product preserving holomorphic linear map which satisfies
XT(0) = P'y • I • P'y(XT(0)). Denoting XT=hJy + Xr, XT = hJy + X± we have by the
assumption (a) that

'—^ = (VyXT(T), XT(T)) = fT(XT)

= fj/l'2 - k2h2 + IIV^H2 - k(JX$, VyX$) - (Rfy&r, 9)1 XT))dt
Jo

> [ {/i'2 - k2h2 + IIV^^I2 - k(J%$, VjX >̂ - (RM(XT, y)y, XT)}dt = JT(XT)
Jo

Since K/H^T)!! is a normal magnetic Jacobi field,

JT{XT)>JT{XT) = {yyXT{T),XT{T))=^—>'h K })

We therefore have ||KB(t)|| > \\V\t)\\ for 0 < t < min{tc(y(0)), tc(y(O))}. This yields
a n d leads us to the conclusion.

By the same argument we have

Lemma 2.2. Let V be a normal magnetic Jacobi field with (VjV"1)"^) = 0 along a
normal trajectory y for a Kdhler magnetic field. If T < t/(y(O)) and a vector field X along
y satisfies (yyXf(0) = 0, X(T) = ^(T) and X* = X, then it satisfies ^ ( F 0 ) < JT(X).

https://doi.org/10.1017/S0013091500023737 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023737


A COMPARISON THEOREM ON MAGNETIC JACOBI FIELDS 301

The equality holds if and only ifX- V".

Theorem 2. Let y and y be normal trajectories for Kdhler magnetic fields k • By and
k -3} on Kdhler manifolds (M, J) and (M, J) respectively. Assume

(a) min{(K(», y(0)K0, »> I IMI = 1. <». y(0) = 0}

> max{<U(5, y(O)y(O, ») I II&II = 1, {v, y(0) - 0}/or 0 < t < tf(y(O)),

(b) dim(M) > dim(M).

We then have the following.

(1) t/(y(O)) < 1,(7(0)).

(2) / / normal magnetic Jacobi fields V, V for k • Mj, k • Mj along y, y satisfy
\\V\0)\\ = \\V\0)\\, (WT'(O) = 0, (VKB)a(0) = 0, then

\W'(t)\\ < || V\t)\\ for 0 < t < te(y(O)).

When we compare Kahler magnetic Jacobi fields on Riemann sufaces, we can relax
the assumption a bit.

Proposition 2. Let y and y be normal trajectories for the uniform magnetic fields
k • volM and k • volg, on Riemann surface M and M respectively. Assume for each t e [0, £]
that RiemM(t) + k2 > Riem^(0 + k2. Here RiemM(t) and Riem^(0 denote the sectional
curvature at y(t) and y(t) respectively.

(I) Let V, V be normal magnetic Jacobi fields for k • volM, k • vol^ along y, y such that
(7(0), .WO)) = (V(0), JKO)) = 0 andd/dt{V(t), Jy(t)) |I=p = d/dt(V(t). J%t)) |,=0 •

(1) If t < tc(y(O)), we have \(V(t), Jy(t))\ < \(V(t), Jy(t))\ for all t e [0,£], and hence
have tc(y(O)) < tc(y(O))-

(2) If we further assume \k\ < \k\ and (V(0),y(0)) = (K(0),y(0)> = 0 , then we have
I(n0.7(0)1 < \{Ht),Kt))\forallte [0,4

(II) Let V, V be normal magnetic Jacobi fields for k • volM, k • vol^ along y, y such that
(K(0), Jy(O)) = <fr(0), Jy(O)) ^ 0, and d/dt{V(t), 7y(0> l,=o = d/dt(V(t), jfo)) |,=O = 0.

( 1 ) 7 / t < t / (y (O)) , we have \{V(t), Jy(t))\ < \{V(t), Jy(t))\ f o r a l l t e [ O , £ ] a n d
t/(y(O)) < tr(y(O)).

(2) If we further assume \k\ < \k\ and (K(0), y(0)> = (7(0), y(0)) = 0 , then we have
1(7(0, y(0)l < I < n 0 , 7(0) I/or all t e [0,1).

3. Kahler magnetic Jacobi fields on complex space forms

In our study of magnetic fields, complex space forms with Kahler magnetic fields seem
to play the role of model spaces. Here we study magnetic Jacobi fields on these spaces.
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Example 1. (Complex Euclidean space C) . On a complex Euclidean space C",
magnetic Jacobi fields for k • By along a normal trajectory y are expressed as

for some A, B e C". In particular, a normal k • By-Jacobi field V with V(0) — 0 is given by

V{t) = a{(\ - cos kt)y{t) + sin kt • Jy(t)) + (y(t), C(l - «*")),

with some constant a, € R and C e «y(0)))£. We therefore find out that
nj/k,j = ±1, ± 2 , . . . , are k • By-conjugate values of y(0) along y.

Let y be a fc • By-trajectory on a complex space form. A vector field
V = /y + #Jy + Kx along y is a fe • By-Jacobi field if and only if

/"(t) = kg\i)

kf'(t)

1 - k • J(VjKx) 4- j •

(3.1)

= 0

where a denotes the holomorphic sectional curvature of the base space. Solving these
equations we get the following.

Example 2. (Complex projective space CP"(a)). On a complex projective space
CP"(a) of holomorphic sectional curvature a, k • IB,-Jacobi fields V =fy + gjy + Vx

along a normal k • By-trajectory y are expressed as

f{t) — a + k(b • cos

g(t) = -kd +

+<x t + c • sin y/k2 + a 0 + ctdt

-fc • sin Vfe2 + a t + c • cos Vfc2 + a t)

a t + B • ^ V F

with some constants a, b, c, d e R and some /I, B e C"+l satisfying ((X, y(0)» =
({A, y(0))) = ({B, y(0))) = ((B, y(0))) = 0. Here ((, )> denotes the natural Hermitian inner
product on C"+l, n : S2"*1 ->• CP" is the Hopf fibration and y is a horizontal lift of y into
S2"+. c Cn+1 (cf. [1]).

In view of (2.2), normal k • By-Jacobi fields V along y with K(0) = 0 are hence given
by

V{t) = b{k(l - cos
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Therefore nj/y/k2 + a,j = ± 1 , ± 2 , . . . , are k • By-conjugate values of y(0) along y.

Example 3. (Complex hyperbolic space CH"(-<x)). On a complex hyperbolic space
CH"(—a.) of holomorphic sectional curvature - a the feature of k • By-Jacobi fields
V =fy + gjy + V1 depends on \k\. Along a normal k • By-trajectory y they are
expressed as follows:

a + k(b • cosh y/a - k2 t + c- sinh y/<x-k2 t) + adt,

a + (ad- 2c)t + <x(-12 + -

a + k(b- cos y/k2 -a t + c • sin y/k2 -xt) + adt

i f |fc| <

if fe =

if |fc|

kd + Va - fe2 (fc • sinhy/cc- k2 t + c- cosh Va - /c2 0

Jfe(rf + ftt + ct2)

Zed + y/k2 — a (—fc • sin Vfc2 — a t + c • cos V/c2 — a t)

if |fc

if k

if |fc

Here a, 6, c, d e R, and X, B € Cn+1 satisfy <(/4, y(0)» = ((A, y(0)» = |B , y(O))) =
((B, y(0)» = 0. Here ((,)) denotes the Hermitian form on C + l defined by
((z,w})= -zowo + J™=i ZjWj> n • H\"+x -> CH" is the standard S'-fibration with
f/f+l ={ze C + l | «z, z» = - 1 } , and y is a horizontal lift of y into / / j " + l (see [2]).

Therefore normal fe • By-Jacobi fields along y with 7(0) = 0 are given by

b{fc(cosh y/ai-k21 - 1) • y{t) + y/a-k2 • sinh y/oc-k2 t • Jy(t)}

+Dn((y(t), A • e""2 • sinh^Va - k2 t\\ if \k\ <

b{(at2/2 • y(0 + kt • Jy(t))) + Dn((y(t), B • teki"2)) if k =

b{k(\ - cos y/k2 - a t) • y(t) + y/k2 - a • sin y/k2 - a (• Jy(t))

+Dn((y(t), A • efaI/2 • sin^ VkT^ t\] if

We hence find that
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(1) if |fc| < y/a, there are no k • Ey-conjugate points of y(0) along y,

(2) if |fc| > y/a, then nj/y/k1 - a,; = ±1, ±2 , . . . , are k • 1,-conjugate values of y(0)
along y.

As a direct consequence of our comparison theorem we obtain

Proposition 3. (I) On a Kdhler manifold M of curvature RiemM < — a < 0 we have
no k • Mj-conjugate points if\k\ < -Jo./A.

(2) On a Riemann surface M of curvature RiemM < —a < 0, we have no k • Vo\M-
conjugate points if\k\ < y/oi.

4. Magnetic exponential maps and the ideal boundary

The Hopf-Rinow theorem guarantees that on a complete Riemannian manifold
there exists a minimal geodesic joining given distinct points. But for trajectories of
magnetic fields such a type of theorem does not hold in general. In [2] the author
showed that for any distinct points on CH"(—a) there are only two k • 18,-trajectories
joining them if \k\ < *Ja.. This suggests a Hope-Rinow type theorem holds for
trajectories of weak strength magnetic fields on a negatively curved manifold. In this
section we study some feature of trajectories for uniform magnetic fields on a
Hadamard surface M.

In [3] we showed the following by applying Rauch's comparison theorem for
Jacobi fields along geodesies which are perpendicular to a given trajectory: If the
curvature of M satisfies KM < —a < 0, then any trajectory rays y |[0oo), y l̂ oo.o] for
k • VolM {\k\ < y/a.) are unbounded, crosses once to every geodesic circle Sr(y(0)) =
{p e M | d(p, y(0)) = r} of radius r centred with y(0), and is not tangent to these
geodesic circles. We shall show the following by applying our comparison theorem
for magnetic Jacobi fields.

Theorem 3. Let M be a Riemann surface of curvature KM < —a < 0, and
E = k • VolM be a uniform magnetic field with \k\ < y/oL. Then the ^-exponential map
IB expp : TPM -*• M is a covering map at any point p € M.

Proof. Let n : M -> M denotes the universal covering. If n(p) = p then we have
IBexppoDn — noEexpp : T-pM -*• M. We hence suppose M is a Hadamard surface, and
show that B exp, is a diffeomorphism at any point p e M.

We first show that Bexp,, is injective. For given UQ e UPM, we set

S~ = {t > 0 | there exist u € UpM\{uo} and s > 0 with y^t) = yu(s)}.

By our comparison theorem we find that 9~ is open in (0, oo). Since Bexpp is
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continuous, we get that 9~ is closed in (0, oo), hence either 9~ = (0, oo) or &~ is empty.
As DBexpp is non-degenerate at the origin, we get 9~ is empty, and Bexpp is
injective.

We now show that Bexpp is surjective. For each positive r, we consider the subset
S = Bexpp(7^M)n Sr(p) of the geodesic circle Sr(p) of radius r centred at p. By our
comparison theorem on magnetic Jacobi fields, we find that S is an open subset of
Sr(p)- On the other hand, since Bexpp is continuous, S is closed in Sr(p)- As S is not
empty we get S = Sr(p) and have that IBexp,, is surjective. Since DMexpp does not
degenerate we get our conclusion.

Remark. Let M be a Riemann surface of curvature KM < — a < 0. Consider the
uniform magnetic field k • VolM with \k\ < y/oi. For any two points p,q e M, we have at
least two normal trajectories for IB joining them. One is from p to q, and the other is
from q to p. If we further assume M is simply connected, the number of joining normal
IB-trajectories is two.

In the last stage we mention an asymptotical feature of trajectories for uniform
magnetic fields on a Hadamard surface M. We denote its ideal boundary by M(oo). As
we have seen in [3], if the curvature of M satisfies KM < —a < 0, then every trajectory
y for k • VolM (|fe| < ^/a.) has points at infinity; y(oo) = l im,.^ y(t) e M(oo) and
y(—oo) = lim,_>_00 y(i) e M(oo). In the above Remark, by letting q tend to the ideal
boundary we immediately get the following.

Corollary. Let M be a Hadamard surface of curvature KM < — a. < 0. Consider the
uniform magnetic field B — k • VolM with \k\ < y/oi. For any points p e M and y e M(oo),
we have two and only two normal trajectories y, a for B such that y(0) = <j(0) = p and
y(oo) = (T(-OO) = y.

Proof. When k = 0 this is a classical result on a Hadamard manifold, so we
suppose a > 0. We shall show the uniqueness. Suppose there are two distinct
normal trajectories yo,y, with yo(O) = y2(0) = p and y0(oo) = y,(oo) = y. By Theorem
3 and by the theorem for Jordan curves we can conclude the strip A between y0

and y, consists of a family of normal trajectories {y,}0<j<i for B with y,(0) = p and
y,(oo) = y. We compare this strip with the geodesic strip {Ays(0) | X > 0,0 < s < 1}
in R2 ~ TpM. Regarding the magnetic exponential map B exp, as a polar coordinate
we find by Proposition 2 that the strip A has an infinite area. Now join yo(r)
and y,(t) by a geodesic segment pt, and consider the triangle At = A(p,yo(t),yl(t)).
Clearly they satisfy A, c AK c A if t < t'. By the Gauss-Bonnet Theorem the set of
their areas {Area(A,)}, is bounded, therefore the distance d(p, pt) from p to p, is
bounded with respect to t. We hence obtain that {p,} converges to a geodesic p
with d(p, p) < oo as t goes to infinity (c.f. p. 370 of [9]). Since p(co) = p(-oo) = y,
this is a contradiction.
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FIGURE 1

We define maps $+ : UPM -*• M(oo) and Op : UpM ->• M(oo) by

®t («) = Vu(oo) and O;(u) = yB(-oo),

and set <6+ : t/Af -> M(oo) and O" : C/M -+ M(oo) by O+(u) = <Dt
+
(u)(u) and

G>~(u) = ®^u)(u). The above Corollary implies that O* and <D~ are homeomorphism with
respect to the cone topology on M(oo).

We now consider normal trajectories joining two point on the ideal boundary. On
a hyperbolic plane H2(—a) of curvature —a, the asymptotic behaviour of normal
trajectories y for k • VolH2(_a) are well known;

(1) when k = ±y/a, they are horocyclic, hence y(oo) = y(—oo),

(2) when |fc| < ±Va, f° r every distinct points x, y on the ideal boundary there is a
unique normal trajectory y with y(oo) = x, y(—oo) = v.

We show the second property holds for general Hadamard surfaces of bounded
negative curvature.

Theorem 4. Let M be a Hadamard surface of bounded negative curvature
KM < —a < 0. Consider the uniform magnetic field k • VolM with \k\ < */OL. For distinct
points x,ye M(co) we have a unique normal trajectory y with y(oo) = x and
y(-oo) = y.

Proof. We first show the existence of such a trajectory. Since |fe| < y/a, we can find
a positive e satisfying the following; if a k • Vb/M-trajectory y and a geodesic p satisfies
y(0) = p(0) = p and y(oo) = p(oo) then the angle < (y(0), p(0)) of these curves at p is not
greater than n - e. Now choose a point p e M so that the angle < (ji,(0), fi2(0)) of the
geodesies nt,n2

 w i * n A**(0) — P» Hi(°°) — x and /*2(°°) = y at p is smaller than e (see the
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following figure). We choose normal trajectories y,,y2 for k • VolM so that
y,(0) = y2(0) = p, y,(oo) = x and y2(—oo) = y. Then the angle < (y,(0), y2(0)) of these
trajectories at p is smaller than n. Let a,, pt{t > 0) be the normal trajectory and the
geodesic from y2(-t) to y,(f) (see the figure). The trajectory a, does not cross to y,
except at these points. We shall show that the distance d(p, a,) from p to a, is bounded
with respect to t. Since the angle < (y,(0), y2(0)) is smaller than n, we find that
d(p, ot) < d(p, pt). Each geodesic pt crosses to the geodesic p.{ at a point qit. When one
of the sets {gu}, {q2,,} is bounded, it is clear that d(p, at) is bounded. When both sets
are unbounded, p, converges to the geodesic p with p(oo) = x and p(—oo) = y. Hence
d(.P' °t)(< d(p, p,) < d(p, p)) is bounded. We therefore find that the sequence of tangent
vectors {vn} to an at the base point of the perpendicular from p to an possesses an
accumulation point v. The trajectory y with y(0) — v satisfies y(oo) = x and
y(-oo) = y.

Y2c-t)

FIGURE 2

Secondly we show uniqueness. Suppose there exist two normal trajectories y, y
satisfying y(oo) = y(oo) = x and y(-oo) = y(-oo) = y. By the above Corollary we find
that the strip between these trajectories is constructed by a family of normal
trajectories. By Proposition 2 we get that this strip has infinite area. By the same
argument as the Corollary we can conclude it is a contradiction.
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Remark. Let M be a Hadamard surface of bounded negative curvature
K < — a < 0. Consider the uniform magnetic field IB = k • VolM with |fc| < Ja. For given
u0 e UM and positive e, we find positive 5 such that if d(u, u0) < 5 then the following
hold;

(1) there is v(u) e UM with d(v(u), u0) < e, <D+(t>(")) = ®+(uo) and ®~(v(u)) = <D~(u),

(2) there is w(u)eUM with d(w(u), -u 0 ) <e, «)-(w(u)) = O"(u0) and O+(w(u)) = (&+(w).
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