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Abstract

Using species distribution modelling (SDMs) techniques, we predicted the biogeographic his-
tory of crickets commonly found in Neotropical caves as a way to detect potential long-term
environmental refuges in South America. Our models were built based on a thorough inves-
tigation of existing database regarding the genus Endecous Saussure, 1878 (Ensifera:
Phalangopsidae) occurrences. The predictions of their distribution were obtained for two pale-
oclimate scenarios (LGM — 21 ka and Mid-Holocene — 6 ka), the current climate scenario
(0 ka) and one future global warming climate scenario (RCP8.5, 2080–2100). Our findings sug-
gest that in the past, the potential distribution of the crickets was wider, with potential forest
corridors connecting different karst areas with caves within their occupancy area. The future
prediction indicates a drastic reduction in their spatial distribution with an increased potential
for isolation in subterranean ecosystems. Atlantic humid forest patches and caves represent the
main environmental refuges for these crickets. Considering the ongoing impacts on surface
environments and future climate change, the conservation of caves and karst landscapes has
become one of the main strategies for the maintenance of these crickets and all the correlated
subterranean communities.

Introduction

Caves comprise natural cavities associated with different types of lithologies, that allow the col-
onization of different organisms (Moldovan et al. 2018, White & Culver 2012). In South
America, caves are formed in geological groups dating from the Precambrian (Bolivia and
Paraguay), Jurassic, Tertiary (Venezuela) and Cretaceous (areas along the Andes Mountain
range, e.g., Bolivia, Colombia, Ecuador, Peru) (Auler 2004). In Brazil, caves are associated with
rocks of different ages, since Paleoproterozoic to Quaternary (Auler et al. 2019), which means
that current caves were already present in rock formations at least a few hundred thousand
years ago.

Since the Lower Palaeocene (66 Mya) until today, many climate changes cycles (glacial and
interglacial periods) occurred that initiated the genesis of vegetation adapted to the dry climate
in South America (Cox et al. 2016), possibly influencing cave environments along these ranges,
considering thatmost organic resources that supply caves come from the surrounding landscape
(Kováč 2018). These climate changes cycles resulted in dry forests (e.g., Chaco, Savanas, Cerrado
and Caatinga) and humid forests (Amazon and Atlantic Rain Forest) (Ledo & Coli 2017, Olson
et al. 2001, Werneck et al. 2011). However, during the glaciation and interglaciation periods,
several connections were established/lost between humid and dry forests (Cox et al. 2016).
These events are widely known to have led to the isolation and connection of different
taxonomic groups in different ecosystems (Sobral-Souza et al. 2015, Vitorino et al. 2018,
Vivo 1997, Werneck et al. 2011), including hypogean environments (Pérez-González et al.
2017, Polhemus & Ferreira 2018).

Forests and caves can be environmental “refuges” for organisms that evolved or transited in
many of these paleoenvironments (Bryson et al. 2014, Pointing et al. 2014). Consequently, the
combined study of epigean (forests) and hypogean habitats (caves) may allow a better under-
standing of the biogeographic history of cave-dependent taxonomic groups (Pérez-González
et al. 2017). This combined assessment allows the establishment of the relictual species and trace
possible connections, routes and reservoir used by previous lineages in response to large-scale
climate change, e.g., glaciations and interglaciations (Bryson et al. 2014, Pointing et al. 2014).
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Cave crickets belong to the suborder Ensifera (Insecta:
Orthoptera) and are omnivorous or scavengers (Deharveng &
Bedos 2018). In the Neotropical region, the most diverse family
of cave crickets is Phalangopsidae (Ensifera: Grylloidea)
(Deharveng & Bedos 2018, Desutter-Grandcolas 1995). These
crickets are active at night while remaining sheltered during
the day, refuging in hollow trees, crevices, burrows or under
dead branches (Desutter-Grandcolas 1993). Hence, their noc-
turnal habit favoured the use of caves as shelters, and a large
number of species can be found in such subterranean environ-
ments, using caves as diary refuge (“cavicolous” sensu Desutter-
Grandcolas 1995) or living strictly inside the caves due to iso-
lation processes (troglobitic sensu Desutter-Grandcolas 1995).

In particular, the genus Endecous (Orthoptera: Grylloidea:
Phalangopsidae) could be a good model group for large-scale stud-
ies as they present species occurring in both epigean and hypogean
environments (Bolfarini & Bichuette 2015, Castro-Souza et al.
2020a, 2020b, Souza-Dias et al. 2014). In addition, resources
derived from cave crickets, such as dung, bodies, carcases and eggs,
can directly be consumed by several other cave invertebrate spe-
cies, thus contributing to the structuring of subterranean commun-
ities (Lavoie et al. 2007, Mammola et al. 2019a, Taylor 2003, Taylor
et al. 2005). This shows their biological relevance as a key group for
ecological and evolutionary studies in caves (Bento et al. 2021,
Fagan et al. 2007, Lavoie et al. 2007). The maintenance of key
groups in caves is essential for subterranean communities’ conser-
vation and a better understanding of the temporal dynamics in
these environments.

However, the true spatial distribution of Endecous (Wallacean
shortfall) as well as many caves are unknown (Racovitzan shortfall)
(see Ficetola et al. 2019, Hortal et al. 2015). Considering that cur-
rent global warming affects in both epigean and hypogean habitats
(Mammola et al. 2019b), it is expected that Endecous crickets can
present changes in their spatial distribution over time as adaptive
response (see Bellard et al. 2012). Therefore, the use of species
distribution models (SDMs) (Guisan & Thuiller 2005, Peterson
et al. 2011) provides a better understanding of temporal dynamics
(past, present and future) and detects historically stable areas (sta-
bility consensus), when different scenarios of these models overlap
(Carnaval et al. 2009, Sobral-Souza et al. 2018, Terribile et al.
2012). Such models allow to infer the potential impacts of climate
change on Endecous ecology and conservation in the face of its
potential distribution.

Here, we aimed to predict the biogeographic history and future
distribution pattern of the crickets Endecous in South America, as
well as to understand the spatio-temporal rearrangements of the
genus to detect possible refuges. We hypothesized that (i) in the
past (LGM 21 ka) the potential distribution of the genus
Endecous was geographically wider, highlighting potential links
between cave environments as result of forest vegetation expansion
(Sobral-Souza et al. 2015) and (ii) in the future, the potential dis-
tribution of the genus Endecouswill be reduced and restrict to caves
from South America, as a direct result of restriction of forest
habitats.

Materials and methods

Dataset compilation for Endecous Saussure (1878)
occurrences

Niche models are based on environmental attributes suitable for
species occurrence (Smith et al. 2019). Since most of the species

known for the genus Endecous are not formally described
(Castro-Souza et al. 2020a), and some of them only have a single
occurrence (Cigliano et al. 2022), we considered here the genus
taxonomic level, since the genus monophyly is well supported in
the cladistic literature for Phalangopsidae (Souza-Dias et al.
2015). Furthermore, most species in this genus exhibit a strong
association with cave environments, unlike groups found in the
same monophyletic clade of Endecous (genera Luzarida,
Melanotes and Palpigera, sensu Souza-Dias (2015)), that have
never been found inhabiting caves (hypogean environment), but
leaf litter, tree trunks and holes or interstices up in tree
(Cigliano et al. 2022; Desutter-Grandcolas 1995). In particular,
Endecous species present apparently similar ecological niches in
such subterranean habitats (e.g., similar dietary requirements, dis-
tribution inside caves), which justifies the use of the genus in such
analysis.

Data occurrences of the genus Endecous were obtained from
different sources. (i) Taxonomic Literature: references available
in Orthoptera Species File Online (Cigliano et al. 2022);9 (ii)
Photographs that allowed identifying the presence of the genus
in online platforms: Platform iNaturalist (research from family
Phalangopsidae, genus Endecous; available at https://www.
inaturalist.org/); Blog (available in http://www.blog.gpme.org.
br/); Personal files of specialists in subterranean biology
(Ferreira, R.L.; Souza-Silva, M.; Cardoso, R.C., Rabelo, L.R.);
(iii) Bioespeleological Studies and Orthoptera Ecological
Studies: papers, dissertations, thesis and academic abstracts;
(iv) Expert Observation: mentioned in the literature of studies
with Endecous species (e.g., Mello, F.A.G.; Zefa, E.; Souza-Dias
P.G.B; Bolfarini M.P.; Acosta, R.C.).; (v) ISLA Collection: speci-
mens cataloged in the “Collection of Subterranean Invertebrates
of Lavras” (ISLA), Center of Studies on Subterranean Biology,
Department of Ecology and Conservation, Federal University of
Lavras, Brazil.; (vi) Technical Reports: studies required by the
Brazilian legislation to carry out projects in areas with caves or
to regulate cave visitation. In this case, some of these studies pre-
sented locations with photos of fauna that enabled the identifica-
tion and confirmation of the genus on site.

A total of 516 occurrences were registered (Figure 1,
Supplementary Table 1). The georeferencing of the occurrences
was obtained with the geographic coordinate system WGS84
and clustered in two categories: (I) “Records” (data with exact
coordinates) and (II) “Approximate record” (data lacking exact
coordinates and based on descriptive reference, e.g., municipality,
city, etc.). For the Approximate Record data, we obtained the geo-
graphic coordinate by analysing satellite images of habitat and for-
est patches nearest the centroid described in the bibliography.
Since the model’s building was carried out with a 0.5º resolution
grid cell, the approximate records do not jeopardize it. Data from
sources whose taxonomic identification was not conclusive or con-
firmed were excluded. Then, with the georeferenced occurrences,
we made a grid of cells with a resolution of 0.5° (~55 × 55 km) in
the South American region. We filtered only one point of occur-
rence within each cell, thus totalling 124 cells with Endecous
records (Figure 1b). This procedure made it possible to reduce
the sampling bias, as the occurrence data tend to be concentrated
in more studied areas.

In order to determine the paleo and the current distribution, as
well as the future genus distribution in South America, we used the
bioclimatic quantitative data obtained from five Atmospheric-
Ocean Global Circulation Models (AOGCMs) adapted from
Lima-Ribeiro et al. (2015): (1) CCSM4; (2) CNRM-CM5;
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(3) IPSL-CM5ALR; (4) MIROC-ESM; (5) MRI-CGCM3. Since
these models represent the temporal dynamics and climate con-
ditions of the planet, they enable us to simulate the past, present
and future climate conditions. The use of multiple AOGCMs
simulations is strongly suggested in SDMs studies (Zurrell
et al. 2020).

Since there might be distinct patterns presented by the
AOGCMs, we used different climate projections (see Varela
et al. 2015). For each AOGCMs, six bioclimatic variables from
the EcoClimate database (http://www.ecoclimate.org) were used:
Bio02 = Mean Diurnal Temperature Range (mean of monthly
(max temp – min temp)); Bio03 = Isothermality; Bio10 = Mean

(a) (b)

(e) (d)

(f) (g)

(h)

(i)

(c)

Figure 1. Outline summarizing our methodological and analytical steps to predict the potential distribution of the genus Endecous Saussure, 1878. The first step consisted in
compiling as much data as known for the distribution of the genus (a). Next, we filter the occurrence data, leaving only one presence point per grid (b). The third step consists of
associating the occurrence sites (b), predictor environmental variables (c), and algorithms (d), to building models. For this, we use the method of Ensemble (e), which consists of
superimposing themodels for each algorithm, inside each AOGCM, for each time scenario investigated (e). Then consensusmaps are built for the genus (f). Next, we use the Lowest
Predicted Value Threshold (lpt) to create binary presence maps, as of the lowest predicted value on environmental suitability according to the occurrence sites. Finally, binary
maps overlapped with categorical variables and occurrence sites of troglobitic species. In addition, we also overlap the binary maps in the four-scenario investigated to check
possible areas climatically stable of the niche potential of Endecous.
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Temperature of Warmest Quarter; Bio16, Bio17, Bio18 (precipita-
tion of Wettest, Driest and Warmest Quarter, respectively). These
variables were selected from a total of 19 available (Lima-Ribeiro
et al. 2015), through Varimax rotation factorial analysis (Fávero
et al. 2009) (Figure 1c, Table 1). The six selected variables showed
low correlation with each other and high representativeness in the
explanation of orthogonal axes.

Niche modelling of the genus Endecous Saussure 1878

Different mathematical algorithms that have been currently used
for niche models building aimed to infer species spatial distribu-
tion patterns (Barry & Elith 2006, Diniz-Filho et al. 2009,
Zurrell et al. 2020). We used eight algorithms to test the potential
spatial distribution of the genus Endecous in four temporal
predicted scenarios: 21 ka (Last Glacial Maximum), 6 ka (mid-
Holocene), 0 ka (1950–1999, current) and RCP 8.5 (mean of sim-
ulations for 2080–2100, with increasing CO2 emissions towards the
end of the 21st century) (Figure 1d). Such algorithms can be
categorized as: i—algorithms of presence: Bioclim (Nix 1986);
Mahalanobis Distance (Farber & Kadmon 2003) and Domain –
Gower distance (Carpenter et al. 1993); ii— algorithms of pres-
ence/absence: General Linear Model (GLMz) (Guisan et al. 2002)
and General Additive Model (GAM) (Guisan et al. 2002); iii—
Machine Learning Algorithms: Support Vector Machines (SVM)

(Tax & Duin 2004), Maximum Entropy (Phillips & Dudik 2008)
and Random Forest (RDNFOR) (Guisan et al. 2002).

For each algorithm, 10 randomly repetitions were performed
using the bootstrapping partition, with double partitioning for
occurrence sites (70% training and 30% test), in order to evaluate
the model predictive power (true skill statistic (TSS)) (Allouche
et al. 2006). TSS values close to one (1) were classified as good,
zero (0) values were classified as random and negative values
(close to −1) were classified as poor models.

The ensemble method was used to concatenate all built models
in a single map (Araújo & New 2007): first, the models obtained in
each algorithm (10 replicates), then between the algorithms
(8 algorithms), and finally the AOGCM (5AGCMs) (Figure 1e).
A total of 400 models were built (10 models × 8 algorithms × 5
AOGCMS) for each temporal period (21 ka, 6 ka, 0 ka and
2100). Thus, each cell on the map has a prediction value ranging
from 0 to 400, which, divided by 400, represents the prediction
frequency of Endecous occurrence within the grid (Figure 1f;
Supplementary Figure 1). Then, we used the Lowest Predicted
Value Threshold (lpt) to create binary maps of presence
(Pearson et al. 2007) (Figure 1g).

The temporal binary maps were compared with the South
American karstic areas (shapefile available at: https://www.fos.
auckland.ac.nz/our_research/karst/. Accessed March 21, 2021),
and the records of troglobitic Endecous species (only occurring
in caves) (Figure 1h). The records of cave-restricted species were
not used for the niche models building since it was assumed they
were not being influenced directly by external climatic variables
used on the models, as the remaining species (which are troglo-
philic, thus, presenting external populations). Furthermore, we
also contrasted the binary maps with the Cave Occurrence
Areas in Brazil, data provided by the National Center for Cave
Research and Conservation (CECAV) (shapefile available at:
https://www.icmbio.gov.br/cecav/projetos-e-atividades/provincias-
espeleologicas.html. AccessedMarch 21, 2021) (Figure 1h). Finally,
we ensembled the temporal binary potential distribution maps to
obtain consensus on areas of climatic stability within the possible
potential niche of Endecous (representing potential refuges for the
genus) (Figure 1i).

All analyses mentioned above were performed in R
(R Development Core Team, 2021). Species distribution models
were built using dismo package (Hijmans et al. 2022). Maps were
made through QGIS 3.4 (Free 2021) and Inkscape (Inkscape Team
2004–2021) software.

Results

The niche models showed great adjustments, with TSS values
greater than 0.5 for each algorithm analysed (Table 2). The six bio-
climatic variables selected explained approximately 91% of the
environmental variation in South America climate conditions.

The temporal predictions showed that Endecous had a wide
spatial distribution 21 ka ago (LGM), extending along central
and western South America, with additional small patches in
northwestern South America, between Colombia and Venezuela.
During the LGM, the Endecous distribution coincided with the
main existing Brazilian karstic areas (e.g., Araras, Corumbá,
Açungui, Bambuí and Una geological groups) and with two karstic
areas of Bolivia and Paraguay (Figure 2, 21 ka).

The spatial paleodistribution was fragmented in the middle
Holocene (6 ka) with occupancy losses in central South America,
in the Araras and Corumbá carbonatic groups, respectively,

Table 1. Results of varimax rotation factorial analysis, used for the selection of
more explanatory variables among the 19 bioclimatic variables (Nix 1986,
Hijmans et al. 2005) for the construction of SDMs

Bioclimatic
Variables/Vectorial
Axes (I—VI) I II III IV V VI

BIO1 0.94 0.12 0.16 0.27 0.05 0.01

BIO2 0.06 0.13 0.32 0.16 0.91 0.15

BIO3 0.35 0.23 0.01 0.78 0.02 0.17

BIO4 0.34 0.34 0.03 0.79 0.28 0.02

BIO5 0.94 0.07 0.2 0 0.2 0.16

BIO6 0.83 0.2 0.06 0.44 0.24 0.11

BIO7 0.16 0.24 0.15 0.7 0.64 0.02

BIO8 0.92 0.01 0.15 0.07 0.03 0.19

BIO9 0.8 0.19 0.11 0.42 0.12 0.26

BIO10 0.98 0.02 0.16 0.01 0.05 0.05

BIO11 0.86 0.2 0.13 0.43 0.11 0.03

BIO12 0.11 0.89 0.25 0.24 0.04 0.24

BIO13 0.16 0.93 0.13 0.22 0.09 0.1

BIO14 0.25 0.08 0.91 0 0.17 0.08

BIO15 0.25 0.18 0.78 0.18 0.06 0.03

BIO16 0.12 0.93 0.13 0.18 0.06 0.21

BIO17 0.11 0.2 0.92 0.16 0.13 0.09

BIO18 0.17 0.39 0.19 0.16 0.15 0.71

BIO19 0.09 0.6 0.18 0.04 0.12 0.31

S.S.L 6.135 3.507 2.716 2.598 1.547 0.917

Proportion 0.323 0.185 0.143 0.137 0.081 0.048

Cumulative 0.323 0.507 0.650 0.787 0.869 0.917
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located in the States of Mato Grosso and Mato Grosso do Sul
(Brazil). However, a slight geographical expansion occurred in
southern and northeastern Brazil, including part of the Apodi car-
bonatic group. Distribution patches may also be verified bordering
Peru and Bolivia, southern Argentina and Andean regions during
the mid-holocene (Figure 2, 6 ka).

The current Endecous potential spatial distribution is broader
than the known occurrence data (Figure 1a), incorporating areas
of central and northeastern South America. The predictions
showed a distribution pattern similar to 6 ka ago and presented
spatial losses and rearrangements along the distribution patches,
mainly in the Andean region. In Brazil, there is an area gain in
the central region, covering again some karst regions that had been
lost in the middle Holocene (Araras and Corumbá groups).
Furthermore, the distribution of Endecous has expanded towards
northeastern and southern Brazil, with southward expansions to
other countries, such as Uruguay and part of eastern Argentina
(Figure 2, 0 ka).

The spatial predictions to future climate scenarios (RCP8.5,
2080–2100) showed a potential decrease in spatial occupancy
and occurrence of Endecous in karstic areas of northeastern and
southeastern South America. Its distribution will mainly occur
in a continuous area in eastern and southeastern Brazil. Smaller
occupancy patches are expected in southern Uruguay and eastern
Argentina and throughout the central and southern Andean
region, comprising the borders with Bolivia, Argentina and
Chile, respectively. Such distributional retractions exclude possible

occurrences of the genus in all karstic areas of Argentina and the
entire territory of Paraguay (Figure 2, RCP8.5).

Regarding the analysis of Endecous distribution in cave
occurrence areas in Brazil, the models showed that 21,000 years
ago all Endecous populations were established throughout all
biomes and occupied large karstic areas, likely inhabiting caves
that already exist in these regions (Figure 3, 21 ka). However, it
also showed that there was a reduction in Endecous distribution
in central Brazil approximately 6,000 years ago, and the same
pattern has been observed for the current scenario (Figure 3,
6 ka and 0 ka). The predictions for future distribution patterns
(2080–2100) show that a rearrangement could occur with an
intensive decrease in the genus distribution in areas of cave
occurrence in central, southeastern and northeastern Brazil
(Figure 3, RCP8.5).

The models revealed possible refuges for Endecous in the four
scenarios analyzed (21 ka ∩ 6 ka ∩ 0 ka ∩ RCP8.5), including epi-
gean and hypogean environments in Brazil (Figure 4a and b – karst
areas in red color). On the epigean regions, its distribution
remained stable mainly in Atlantic rainforest regions, although
it also comprised two smaller regions of the Caatinga (semi-arid)
and Cerrado (savanna) biomes (Figure 4). In the hypogean envi-
ronment, the most stable regions (21 ka ∩ 6 ka ∩ 0 ka ∩
RCP8.5) comprised part of the Açungui group and the southern-
most Bambuí and Una groups. In addition, in at least one of the
temporal scenarios, the distribution encompasses karstic areas of
South America (Figure 4b – karstic areas in orange).

Table 2. True Skill Statistic (TSS) values for each combination of algorithms and AOGCM for SDMs of the genus Endecous Saussure, 1878

ALGORITHM/
AOGCMs BIOCLIM GAM GLM GOWER MAHALANOBIS MAXENT RANDOMFOREST SVM Mean

Standard
Deviation

CCSM 0,5405 0,6757 0,5216 0,5162 0,6378 0,6757 0,6568 0,6595 0,6105 0,0712

CNRM 0,4703 0,6405 0,4351 0,4811 0,6054 0,5919 0,6243 0,6649 0,5642 0,0882

IPSL 0,5892 0,6946 0,5189 0,6243 0,6892 0,7000 0,7027 0,7108 0,6537 0,0696

MIROC 0,4081 0,6892 0,4297 0,3568 0,7270 0,6622 0,7108 0,7162 0,5875 0,1592

MRI 0,5189 0,6405 0,5108 0,5324 0,7216 0,6405 0,6784 0,6432 0,6108 0,0795

Figure 2. Potential distribution for genus Endecous Saussure, 1878 during Last Glacial Maximum (21 ka), Mid-Holocene (6 ka), Current (0 ka) and Future (RCP8.5, 2080–2100).
The models were overlapping with the main karst areas in South America, since most of the genus is facultative in caves. The colouring of the arrows represents the temperature
rise in each scenario (cold ⇨ hot).

Journal of Tropical Ecology 5

https://doi.org/10.1017/S0266467422000529 Published online by Cambridge University Press

https://doi.org/10.1017/S0266467422000529


Discussion

Our findings suggest that the Endecous spatial distribution occu-
pied a broad region in central and western South America, cover-
ing and linking groups of areas where caves were present (Figures 2
and 3, scenarios 21 ka and 6 ka). The current distribution scenario
(0 ka) was similar to 6 ka, showing rearrangements and expansions
to the northeast and south of South America (Figures 2 and 3, sce-
nario 0 ka). For the future scenario, the predictions are worrying, as
there is a retraction of almost two-thirds of the potential areas for
the genus occurrence, isolating several regions with caves that were
previously connected, which may indicate a reduction of suitable
climatic areas and the isolation of Endecous in epigean and hypo-
gean environments (Figures 2 and 3, scenario RCP8.5, 2080–2100).

By overlaying all models, it is possible to detect potential refuges
for the genus in eastern and southeastern South America, mainly in

the Atlantic Rainforests (Figures 2 and 3, overlapping scenarios
21 ka, 6 ka, 0 ka, RCP8.5). Furthermore, considering the current
impacts on epigean environments, the conservation of karst land-
scapes can represent a vital action to preserve several Endecous
lineages.

The Atlantic Rainforests as a source and temporal refuge of
Endecous crickets

The current distribution and paleodistribution of Endecous
encompass the late Pleistocene expansion and retraction cycles
of humid forests in South America (see Ledo & Colli 2017,
Sobral-Souza et al. 2015). Furthermore, their distribution in areas
currently known as dry forest diagonal (Dinerstein et al. 2017,
Olson et al. 2001), similarly to 6,000 and 21,000 years ago
(e.g., Werneck et al. 2011, 2012), indicates that these areas could

Figure 3. Potential distribution for genus Endecous Saussure, 1878 during Last Glacial Maximum (21 ka), Mid-Holocene (6 ka), Current (0 ka) and Future (RCP8.5, 2080–2100). The
models were overlapping themain areas with the occurrence of caves fromBrazil, sincemost known data in this study come from these environments. The colouring of the arrows
represents the temperature rise in each scenario (cold ⇨ hot).

Figure 4. (a) Stability Consensus comparing
different combinations between the four scenar-
ios the potential distribution for genus Endecous
Saussure, 1878. Legend: Last Glacial Maximum
(21 ka), Mid-Holocene (6 ka), Current (0 ka)
and Future (RCP8.5, 2080–2100); (b) Karst areas
as a potential refuge from Species distribution
models (SDMs) of the Endecous Saussure, 1878.
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have been transitional and expansion zones, where the Endecous
could have colonized and established in caves. In addition, the
presence of small refuges, such as hypogean habitats and/or ves-
tiges of humid forests and riparian forests, or even certain prefer-
ence for more shaded phytophysiognomies (e.g., Cerrado and
Riparian Forests) in arid locations, may explain the occurrence
of Endecous along dry forests, and in turn the constant presence
of Endecous inhabiting caves in arid biomes (Castro-Souza et al.
2017, Souza-Dias et al. 2014, Zefa et al. 2014).

The abovementioned explanations corroborate many studies
indicating that the dry diagonal was a permeable barrier (due to
several persistent patches of wet vegetation) that split the South
American humid forests into the Amazon and Atlantic Forest
(Johnson et al. 1999, Redford & Fonseca 1986, Weisenberg & Mori
2020). The current distribution of many taxonomic groups, such as
arachnids (Peres et al. 2017), small mammals (Costa 2003,
Redford & Fonseca 1986), birds (Silva 1996, Willis 1992), reptiles
(Weisenberg & Mori 2020), anurans (Vasconcelos & Doro 2016),
butterflies (Cabette et al. 2017, Matos-Maraví et al. 2021) and crickets
(De Campos et al. 2021) inside remnant humid forests along the dry
diagonal is explained by this past separation of humid forests.

The spatial rearrangements (21 ka, 6 ka, 0 ka and RCP8.5) indi-
cated that the most stable occurrence areas of Endecous are asso-
ciated with the Atlantic Forest. This highlights moisture as a
threshold condition for these crickets, since they depend on sub-
strate moisture for oviposition (De Farias-Martins et al. 2017).
Considering that caves frequently present high moisture content
and climatic stability (Mejía-Ortíz et al. 2021, Moldovan et al.
2018, Sánchez-Fernández et al. 2018), the frequent observations
of the genus associated with climatically stable regions within caves
also coincide to what is exposed by the models. Furthermore, cave
crickets may have sensitivity to desiccation (Lavoie et al. 2007)
what favours their association to hypogean environments.

It is plausible to assume that humid forests have played an
important role as population reservoirs for the genus Endecous.
Furthermore, since the genus was continuously distributed over
a vast geographic region, connections between caves were estab-
lished, along with colonization events in such environments, sup-
porting our first hypothesis.

Analysis in different temporal scenarios (21 ka, 6 ka, 0 ka and
RCP8.5) based on the current Endecous distribution showed that
these crickets almost did not reach the north of the Amazon biome.
The same patternwas observed for the sympatric genus Eidmanacris
Chopard, 1956 (Castro-Souza et al. 2020b), a group that is also
dependent on remnants of humid forests and cave habitats (De
Campos et al. 2021). Although these two genera can co-occur inside
caves, there is spatial segregation between their populations, with
Endecous inhabiting deeper regions and Eidmanacris occurring
near cave entrances, which would avoid competitive exclusion
(Castro-Souza et al. 2020b, Paixão et al. 2017).

In the Amazon biome, other genera of phalangopsids have been
registered inside caves, as Uvaroviella Chopard, 1923 and
Phalangopsis Serville, 1831. Additionally, studies in 844 caves in
this region have never reported Endecous or Eidmanacris (supple-
mentary material, Jaffe et al. 2016). Accordingly, it is plausible to
infer that its dispersion is limited to the dry diagonal and Atlantic
rainforests during the glacial and interglacial cycles. It is also pos-
sible that if there had been populations of Endecous in the Amazon
biome in the past, interspecific competition might have occurred
between Endecous and other crickets of similar habitat preference,
as the genus Phalangopsis. This could have led to the exclusion of
Endecous from the Amazon biome.

Another factor to be considered is that the Endecous species
cannot fly because they are micropterous or apterous, which limits
their dispersion through migration corridors with suitable habitats
(e.g., forest habitats or caves, according to what we know). This also
helps to explain the current and paleodistribution of the genus
along the forests and caves inside of the Cerrado biome, since there
is a greater floristic and climatic similarity between the Cerrado
and the Atlantic Forest, than the Cerrado and the Amazon forest
(Méio et al. 2003, Nimer 1989).

The future predictions (2080–2100) showed that the potential
distribution of Endecous crickets would become restricted on epi-
gean habitats, with its potential isolation in caves in South
America, corroborating our second hypothesis. This habitat reduc-
tion or restriction can be intensified because favourable epigean
habitats, such as the Cerrado and Atlantic Rainforests, have
been strongly threatened by agricultural expansion, urbanization
and mining (Dinerstein et al. 2017, MapBiomas Project 2021,
Mittermeier et al. 2004, Myers et al. 2000, Souza et al. 2020,
Sugai et al. 2015).

The continued deforestation of the Atlantic Forest has intensi-
fied in Brazil (2018–2019), especially in State of Minas Gerais
(INPE 2021, SOS Mata Atlântica 2021). The Brazilian political–
environmental scenario often brings bills (e.g., PL 3729/04, PL
191/20 (Brasil 2021a, 2021b)) seeking to use regions currently pro-
tected and conserved by law. This certainly represents a constant
threat, which makes the effects of future climate change even more
severe for the ecology of these crickets and associated subterra-
nean biota.

Finally, although our models have indicated the genus is more
intimately associated with the Atlantic Forest than with the dry
diagonal, it is not possible to address any origin for the genus
without an updated and broadly taxon-inclusive phylogeny.
Furthermore, many of our records came from caves (hypogean
environments) since it is easier to find and sample Endecous spe-
cies in such habitats. Thus, due to the extensive sampling gaps in
surface environments, further samplings along the dry diagonal
and the Amazon forest are recommended, as well as a taxonomic
review of the genus, accompanied by molecular phylogeny. Only
then, it will be possible to understand more precisely the biogeo-
graphic pathways used by the different species of this genus.

Caves as potential refuges for the species conservation in the
future

The Atlantic Rainforest and subterranean environments are the
main refuges for the crickets Endecous. Furthermore, due to the
fact that the hypogean environments are more climatically stable
than epigean (Badino 2010, Brookfield et al. 2016, Mammola et al.
2019b), many Endecous populations distributed in caves were less
vulnerable to climatic oscillations that occurred at the surface in
the past and are likely to occur in the future (2080–2100).
Hence, considering that caves are important refuges, and that such
environments can become, in some areas, the only suitable habitat
for species in the face of global warming, cave preservation is cru-
cial for the maintenance of many populations of different species.

Brazilian’s legislation on the protection of the spelaeological
heritage provides for a categorization of caves into levels of rel-
evance (maximum, high, medium or low), being the caves of ‘maxi-
mum relevance’ the only ones fully protected (Decree No. 6640 of
November 7, 2008 and Normative Instruction No. 01/2017,
Ganem 2009). However, this legislation is currently under strong
political debate, due to the proposal of a retrograde decree
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(nº. 10.935/2022) which allows the destruction of any cavities, even
those considered as presenting maximum relevance (Ferreira et al.
2022). Furthermore, most Endecous species are ‘troglophiles’
(facultative in caves), and only few species are restricted to cave
habitats (troglobitic). Therefore, this may be a setback for
Endecous conservation, since their presence would not be enough
to classify a cave as ‘maximum relevance’, reinforcing that such
habitats may be crucial for many species in the future.

Although we did not use records of troglobitic Endecous in our
dataset, when superimposing such occurrences with the models
built, it is evident that the ancestors of these species colonized
the caves in the past, since the potential paleodistribution of the
genus was wide and encompassed regions where such species cur-
rently occur. Thus, it is important to emphasize that facultative
cave ancestors have great potential to become cave specialists in
the future (Chapman 1982), with Endecous being a living example,
given that it is one of the only two genera of crickets in Brazil with
troglobitic species (Bolfarini & Bichuette 2015, Castro-Souza et al.
2020a, Souza-Dias et al. 2014). Furthermore, geographically iso-
lated refuges may have contributed to the increase in speciation
within caves (e.g., Castro-Souza et al. 2020a), which increases
the taxonomic complexity of the genus (Castro-Souza, R.A &
Ferreira, R.L. unpubl. data from analysis of DNA barcoding).

In addition, a phalangopsid (Luzarinae) found in an amber
from the early Miocene (around 20 million years from the
Dominican Republic (Heads 2010), demonstrates the ancient his-
tory of occurrence of this group in the Americas and allows us to
assume that many ancestors of phalangopsid species could already
be colonizing existing caves due to their nocturnal and foraging
lifestyle. In particular, many South American cave phalangopsidae
(e.g.Adelosgryllus, Endecous, Phalangopsis and Strinatia) (Campos
et al. 2017, Castro-Souza et al. 2020b, Cigliano et al. 2022, Junta
et al. 2020, Merlo et al. 2022, Mesa et al. 1999) reveal pre-adapta-
tions reported for other cave crickets (Desutter-Grandcolas 1993;
Desutter-Grandcolas 1997; Heads 2010), such as eye size reduced,
loss of ocelli, absence of auditory tympana and body discoloration.
However, to confirm that the traits are pre-adaptations, it is nec-
essary to evaluate them together with the habitat from a phyloge-
netic perspective (Desutter-Grandcolas 1997). Thus, the past
investigated in our study (the last 21 ka) likely represents just
the “tip of the iceberg” in the biogeographic history of South
American cave crickets, as uncountable events of colonization,
speciation and extinction may have occurred in different caves
along the continent, which highlights the need for more studies
of evolution and biogeography of this group.

Caves are more than a refuge to the Endecous species. They are
natural laboratories that play an important role on the biodiversity
conservation and the understanding of evolutive processes which
this crickets has been undergoing. These subterranean environ-
ments are also a source of important biological information regard-
ing the evolutive lineages of this group. Furthermore, the study of
key species, hereby represented by the genus Endecous, will cer-
tainly aid on the conservation of subterranean ecosystems
(Wynne et al. 2021). This information may surrogate more well-
defined conservation actions, which should not only aim at trog-
lobite species, but also at some key facultative cave-dwelling
groups. Although some organisms inhabiting caves are not
restricted to these environments, they may be undergoing specia-
tion processes and may also be key species to the subterranean
environment. The data presented in this study broadens the knowl-
edge of the crickets Endecous and highlights the importance of cave
conservation for better biodiversity conservation policies.

Supplementary material. To view supplementary material for this article,
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