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UNIFORM FINITE GENERATION OF THE ISOMETRY 
GROUPS OF EUCLIDEAN AND NON-EUCLIDEAN 

GEOMETRY 

FRANKLIN LOWENTHAL 

I. Introduction. A connected Lie group H is generated by a pair of one-
parameter subgroups if every element of H can be written as a finite product 
of elements chosen alternately from the two one-parameter subgroups. If, 
moreover, there exists a positive integer n such that every element of H 
possesses such a representation of length at most n, then H is said to be 
uniformly finitely generated by the pair of one-parameter subgroups. In this 
case, define the order of generation of H as the least such n\ otherwise define 
it as infinity. 

For the isometry group of the spherical geometry, or equivalently for the 
rotation group SO (3), the order of generation is always finite. In fact, if \f/ 
denotes the angle between the axes of rotation of the two one-parameter 
subgroups, the order of generation is 3 for \f/ = ir/2 and k + 2 for 

ir/(k + 1) g yp < ir/k (k ^ 2) 

[1]. In contrast, it is shown in this paper that the order of generation of the 
isometry group of the Euclidean geometry is either 3 or GO and that the order 
of generation of the isometry group of the hyperbolic geometry is either 3, 4, 
6 or GO. 

The isometry group of the Euclidean geometry is a subgroup of the affine 
group w = az + /5, a ^ 0, a, (3 complex. This latter group has order of 
generation equal to either 4 or 5 while all its other proper connected Lie 
subgroups (except w = az + p, a > 0, fi complex, which is not generated by 
any pair of one-parameter subgroups) have order of generation always equal 
to their dimension. In particular, the subgroups w = e{1+bi)tz + /3, b a fixed, non
zero real number, t real, fi complex, all have order of generation equal to 3 [2], 

I t is of interest to observe that for all the above groups the minimum order 
of generation is equal to their dimension. This is the best possible result since 
it is a simple consequence of Sard's Theorem [5, pp. 45—55] that the order of 
generation of a Lie group must be ^ its dimension. For the groups considered 
here, this will be proved directly. 

II. Preliminaries. The isometry group of the Euclidean geometry, denoted 
by G, consists of all transformations w — az + /5, a, /3 complex, \a\ = 1. 
Choosing the Poincaré half-plane as the model for the hyperbolic geometry, 
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one finds t h a t its isometry group, denoted by H, consists of all transformations 
w = (az + b)/(cz + d), a, b, c, d real, ad — be > 0. H is isomorphic to 
SL (2, R), the group of all 2 X 2 real matrices having de te rminant equal to + 1 , 
provided t h a t we identify the matrices A and —A. 

T h e infinitesimal transformations, i.e. elements of the Lie algebra, of G are 
of the form e = yw + 5, 7, ô complex, R e 7 = 0. This means t h a t the one-
parameter subgroups of G are the solutions of the differential system 

dw 
(1) -^ = yw + Ô, w(0, z) = z, 

i.e. for each t, — GO < t < + 0 0 , w(t, z) is an element of G and the set of all 
solutions of (1) forms a one-parameter subgroup. I t is worth noting t h a t these 
one-parameter subgroups can be determined by means of functional equations 
instead of using Lie group theory. In fact, if wt = atz + fit is a one-parameter 
subgroup of the affine group, then the condition wtows = wt+s yields 
atas = at+s and atfis + fit — fit+s> These equations imply t h a t at = eyt and 
fit = bt if 7 = 0 and fit = X(l — eyt) if 7 3^ 0 which agrees with the solution of 

(1) (provided X = —ô/y). 
T h e infinitesimal transformations of H are given by e = pw2 + 2qw + r, 

£>, g, r real. Under the transformations of the Lie algebra induced by inner 
automorphisms of the group, the discriminant of the infinitesimal transforma
tion is an absolute invariant . An infinitesimal transformation and the one-
parameter subgroup t h a t i t generates are classified as elliptic, parabolic or 
hyperbolic depending upon whether its discriminant is negative, zero or 
positive, respectively. T h u s e = yw + à is elliptic if y2 < 0, parabolic if 7 = 0, 
and never hyperbolic while e = pw2 + 2qw + r is elliptic if q2 — pr < 0, 
parabolic if q2 — pr = 0, and hyperbolic if q2 — pr > 0. 

Given a pair of infinitesimal transformations e and 77, denote by Tt and S8, 
respectively, the generated one-parameter subgroups. T h e orbit under e or Tt 

of the point z0 is defined as {Tt(z0)} —00 < t < +00 } ; similarly, one defines 
the orbit of 30 under rj. 

A pair of dist inct infinitesimal transformations of G may be simultaneously 
transformed into one and only one of the normal forms 

(a) € = 1, rj = a, Im a ^ 0, both parabolic, 
(2) (b) e = iWj 7] = 1, e elliptic, rj parabolic, 

(c) e = iw, rj = i(w — a)y a > 0, both elliptic, 

by means of a sui tably chosen inner automorphism of G. In case (a) , the 
subgroup generated by Tt and 5 S is no t G bu t ra ther the two-dimensional 
subgroup of G consisting of all t ranslat ions w = z + fi, fi complex. In both 
cases (b) and (c), the subgroup generated by Tt and Ss is G since it is easily 
established t h a t e, rj, and 

r -, de drj 

are linearly independent over the reals [3]. 
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If € and 7] are infinitesimal transformations of H, then Tt and 5S generate H 
if and only if e and T\ have no common roots [4]. A pair of infinitesimal trans
formations of H with no common roots may be simultaneously transformed by 
means of an inner automorphism of H into one and only one of the normal 
forms [4]. 

I) (a) e = w2 + 1, 7] = W2 + c\ c> 1, both elliptic, 
(b) e = w2 + 1, 7] = W2 c\ ^ 1, e elliptic, 

77 hyperbolic, 
(c) e = w2 + 1, IJ = 1 e elliptic, 

77 parabolic, 
(d) e = 1, 7] = W2, both parabolic, 
(e) 6 = 1, 7] = W2 1 e parabolic, 

77 hyperbolic, 
(f) € = W, 7} = {w l)(w r), r > 1, , both hyperbolic 

with roots separating, 
(g ) € = W, 7] = (w — l)(w + 0, r ^ L , both hyperbolic 

with roots interlacing. 
III. 

THEOREM 1. If the whole group G is generated by two one-parameter subgroups, 
then the order of generation is 3 or co. It is 3 if one is elliptic and the other 
parabolic, and it is 00 if both are elliptic. 

Proof. If both Tt and 5S are elliptic, then for every positive integer n the 
subset of G consisting of all finite products of Tt and Ss of length at most n is 
compact. But G is not compact. 

If Tt is elliptic, Ss parabolic, assume that their infinitesimal transformations 
have the form (2)(b), i.e. e = iw, T\ = 1. Let W(z) Ç G and suppose that 
W(y) = 0, 7 7̂  0. Choose the rotation Tt so that Im Tt(y) — 0: there are, 
in fact, two possible choices for Tt. Next, select the translation 5 5 so that 
SsTt(y) = 0. Since \W(0)\ = |S,7\(0)| , it is possible to find a rotation Tu 

such that TuSsTt(0) = 1^(0). Since W and TuSsTt agree on 0, 7, and co, 
W = TuSsTt. Since the transformation W(z) — % — i cannot be represented 
as a product of length 2, the order of generation of G is 3; it is worth observing 
that, in fact, all transformations of G of the form w = dzZ + /3, Im/3 9^ 0, 
cannot be represented as a product SuTtSs so that the roles of the two one-
parameter subgroups are not interchangeable. 

IV. 

THEOREM 2. If the whole group H is generated by two one-parameter subgroups, 
then the order of generation is 3, 4, 6 or 00. It is 00 if both are elliptic, 3 if exactly 
one is elliptic, and 4 in all other cases except that it is 6 if both are hyperbolic with 
interlacing fixed points. 
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Proof. Refer to the list of normal forms in (3). 
(a) Both elliptic. Since H is not compact, the order of generation of H must 

be infinite. 
(b) € = w2 + 1, 7] = w2 — c2, c ^ 1. The orbits under the elliptic infinites

imal transformation e are just the circles of Appollonius with respect to its 
fixed points i and —i, while the orbits under the hyperbolic infinitesimal 
transformation r? are the arcs of the family of all circles through c and — c 
that lie in the upper and lower half planes, respectively, together with the two 
intervals of the real axis determined by c and —c. 

Let W(z) € H and assume that W(y) = i, 7 ^ i (note that Im 7 > 0). 
The orbit of 7 under e intersects the orbit of i under rj at exactly two points. 
Choose Tt so that Tt(y) is one of these two points and then select 5 5 so that 
SsTt(y) = i. Now both W(0) and SsTt(0) are on the real axis which is an 
orbit under e so that it is possible to find Tu such that TuSsTt(0) = W(0). 
Since J^and TuSsTt agree on 0, 7, and 7 (complex conjugate of 7), W = TuSsTt. 
It is clear that the order of generation of H is at least 3; in fact, all hyperbolic 
transformations in H exactly one of whose fixed points is c or — c together with 
all parabolic transformations in H with either + c o r - c a s fixed point cannot 
even be represented as a product SuTtSs. For if Tt is not the identity, the 
product SuTtSs leaves neither c nor — c fixed. 

(c) € = w2 + 1, rj = 1. The orbits under the parabolic infinitesimal trans
formation 7] are just the family of parallel lines Im z = const. Let W{z) Ç H 
be as above. Observe that the orbit of 7 under e intersects the orbit of i under 97 
at two points and then proceed as above. Note that all hyperbolic transforma
tions in H one of whose fixed points is 00 cannot be represented as a product 

In the remaining cases the order of generation of H must be at least 4 since 
any hyperbolic transformation of H one of whose fixed points is a root of e, 
the other a root of 77, cannot be represented as a product of length 3. 

(d) € = 1,77 = w2. In this case it will be convenient to work with SL(2, R), 
identifying the matrices A and —A. One easily finds that Tt(z) = z + /, 
Ss(z) = z/ (sz + 1) or in matrix form 

'• - C .') • * - C ?) • 
Since 

W \0 l)\s lAo 1/ = V s 1+sv )> 

every matrix (" a) in SL(2, R) with c ^ O can be represented as a product of 
length 3: choose 5 = c, t = (a — l ) /c , v = (d — l)/c. Similarly, every matrix 
(" J) m SL(2, R) with b 9e 0 can be represented as a product 
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Since 

( 5 ) \1 1/a) \-a 1/ = VO 1/a) ' 

where (Î i/a) is represen table as a product of Tt and 5S of length 3, the order of 
generation of H is 4. 

(e) e = 1, rj = w2 — 1. Let (x, y) be an ordered pair of distinct points on the 
real axis, one of which could be oo. Define order(x,y) (with respect to — 1 
and 1) as the least positive integer k for which there exists a transformation 
W(z) Ç H expressible as a product of Tt and Ss of length k with W(x) = — 1, 
W(y) = 1. Since — 1 and 1 are the fixed points of Ss(z), the last (reading from 
right to left) element of any product of T% and Ss of length k = order(x, y) 
representing W(z) must always be a Tt. If order(x, y) = k, then every 
transformation V (z) £ H such that V (x) = —l,V(y) = 1, can be expressed as 
a product of T % and Ss of length at most k + 1 since for some s, - c o < 5 < +00 , 

(6) Viz) = SsW(z). 

Hence, to prove that the order of generation of H is 4, it suffices to prove that 
order (x, y) g 3 for all (x, y). 

Since Tt(z) = z + t is the one-parameter translation subgroup, it is clear 
that order (x, y) = 1 if and only if y = x + 2. Hence order (x, y) ^ 2 if and 
only if there is an element Ss(z) such that Ss(y) = Ss(x) + 2. In particular, 
if |x| < 1 and if either \y\ > 1 or y = 00 , then order (x, y) ^ 2; there are three 
cases to consider: 

(a7) x < y ^ x + 2, 
(b') x + 2<y, 
(c') 3/ = 00 or y < — 1. 

The continuous function/(s) = 5S(3>) — Ss(x) satisfies 

/ ( 0 ) = 5 0 ( y ) - S o ( * ) = y - * . 

For 3; > 1, y y*- co, there is a y > 0 such that Sv(y) = 00. The function f(s) 
is strictly increasing on ( — 00 , v), and 

lim f(s) = lim S,(y) - lim Ss(x) = 1 - 1 = 0, lim f(s) = +00 . 
5->—00 S->—OO S->—00 S-$V— 

In case (a'), / (0) g 2 and hence there exists an 5 ^ 0 such that / (0) = 2; 
in case (b'), / (0) > 2 and hence there exists an 5 < 0 such tha t / (5 ) = 2. In 
case (c')> first choose 5M(z) such that 5M(y) > l,SM(:y) ^ 00 . Since —1 < x < 1, 
— 1 < Su(x) < 1, and hence either case (a') or case (b') applies to the pair 
(Su(x),Su(y)) (there exists an Ss(z) such that SsSu(y) = SsSu(x) + 2 or 
Ss+U(y) = Ss+U(x) + 2). A similar argument shows that if \y\ < 1, and if 
either |x| > 1 or x = 00, then order (x, y) ^ 2. 

If x ^ 00, then there exists a translation r t ( z ) such that | r*(x) | < 1, and 
1^*001 > 1 or Tt(y) — 00 and hence order(x, y) _ 3. If x = 00, y ^ 00, 
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there exists a translation Tt(z) such that |7\(y) | < 1, T t(x) = Tt(co) = oo 
and again it follows that order (x, y) ^ 3. 

In the last two cases define order (x, y) (with respect to 0 and oo ) as the least 
positive integer k for which there exists a transformation W(z) £ H expressible 
as a product of Tt and 5S of length k with W(x) = 0, W(y) = oo. In both 
cases, e = £, and thus the fixed points of Tt(z) are 0 and oo. The last element 
of any product of Tt and 5S of length k = order (x, 3/) representing W(z) must 
always be an Ss. If order (x, y) = k, then every transformation V(z) £ H 
such that V(x) = 0, V(y) = 00 can be expressed as a product of Tt and ^ 
of length at most k + 1 since for some t, —00 < t < +00, 

(7) V(z) = TtW(z). 

Finally, observe that order (00, 0) must be odd since both the first and last 
elements of the product of length k = order (00, 0), representing W(z), must 
be an 55. 

(f) € = w, r] = (w — l)(w — r), r > 1. Since T\(z) = elz, all transforma
tions of this one-parameter subgroup preserve the ratio x/y, i.e. 

Tt(x)/Tt(y) = x/y 

for all t. The fixed points of the one-parameter subgroup Ss(z) are 1 and r; 
lims^+005s(x) = 1 for x ^ r and lim5^_005s(x) = r for x 9e 1. Let I be the 
open interval 1 < x < r and J the open interval {x > r) KJ [x < 1} U {00}. 
Note that if Ss(x) = 0, then x £ J and if 5,

5(^) = 00, then y G J . 
If order (x, 3/) = 1, then clearly x £ J, y £ J. Further, for each x Ç J", there 

is a unique y £ J, denoted by g(x), such that order(x, g(x)) = 1; in fact, given 
x Ç / , choose s(x) such that ^ (^ (x ) = 0; then 

y = g(x) = S-s(x)(co) = Ss^ico). 

Clearly g is a continuous function from J into the projective line. If 3̂0 = g(°° )> 
then r < 3̂0 < + 0 0 and if s0 is the unique solution of 5S(0) = 00, then 
x0 = 55o

_1(0) satisfies 0 < x0 < 1. The behaviour of g is as follows: on (r, +00 ), g 
is strictly increasing, r < g(x) < x, l i n v ^ g(x) = r, and lim^+oo g(x) = y0; on 
( — oo,0], g is strictly increasing, \imx^-œ g(x) = yo, and limx_+o-g(x) = 
^(0) = +00 ; finally, on (0, 1), g is again strictly increasing, —00 < g(x) < x, 
lim^o+g(x) = —oo,g(x0) = 0, and lim^i_g(x) = 1. Hence the range of 
x/g(x) on (r, +00) is (1, +00) ; on ( - 0 0 , 0), ( — 00, 0); on (0, x0), ( — 00, 0); 
on (x0, 1), (1, +00) . 

It follows from the above characterization of the points of order 1 that if 
x/y < 0 or if both x/y > 1 and x > 0, then order (x, y) ^ 2. Assume first 
that x/y < Oandx < 0. Choose x' < 0 such that xVg(xr) = x/y and then select 
Tt(z) such that Tt(x) = x'\ clearly Tt(y) = g(xf) and order(x/, g(x')) = 1. 
If x/y < 0 but x > 0, choose x' > 0 such that x'/g(xr) = x/y and then proceed 
as above. If x/y > 1 and x > 0, choose x' > 0 such that x'/g(x') = x/y and 
then again proceed as above. Further, order(00 , y) ^ 2 if y > 0: choose Tt(z) 
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such that Tt(y) = y0 and then note that order(oo, y0) = 1. Since Tt preserves 
the ratio x/y and takes both the positive and negative real axes into themselves, 
it follows that if 0 < x/y < 1 or if both x < 0 and y < 0 or if x = 0, y ^ oo 
or if x = oo, y ^ 0, then order (x, y) > 2. 

Next, it will be shown that for all (x,y) except those satisfy ingl S x < y ^ r, 

order (x, y ) ^ 3. 

If x Ç / , then there exists an Ss(z) such that — oo < S8(x) < 0 and 

0 <Ss(y) < + o o . 

Since Ss(x)/Ss(y) < 0, order(S8(x), Ss(y)) g 2. Similarly, if y £ J , choose 
S,(s) such that - o o < S,(y) < 0 and 0 < S8(x) < +oo. If 1 ^ x ^ r, 
1 :g y :g r, and x > y, then order (x, y) = 2. However, if 1 ^ x < y ^ r, then 
since 1 ^ Ss(x) < 5s(y) ^ r for all s, it follows that order(S8(x), Ss(y)) > 2 
for all 5 and hence order(x, y) > 3. In this case, since there does exist a Tt(z) 
such that Tt(y) £ J , order(x, y) = 4. 

Equation (7) implies that unless 1 ^ x < y ^ r, all transformations 
F(s) 6 H such that F(x) = 0, V(y) = 00, can be expressed as a product of T t 

and 5 5 of length at most 4; in the exceptional case, (7) provides the estimate 5 
which is unsatisfactory since the more careful analysis given below shows that 
V(z) can also in this case be expressed as a product of length 4. Note that if 
V(x) = 0, V(y) = 00, where 1 ^ x < y g r, then V(0) lies on the negative 
real axis and, conversely, all such V(z) £ H. 

Note that all W(z) 6 H, W(0) = 00 , and W(co ) > 0 can be represented as a 
product TtSsTu\ in fact, choose s = s0, Tt such that TtSS0(co) = W(oo ) 
(possible as 5S0(oo) > 0) and finally Tu such that Tu{W~l(0)) = x0 (possible 
since W'1®) > 0). Then W(z) and TtSsTu(z) agree on 0, 00, and W-x(0) and 
hence are identical. Assume that 1 ^ x < y S ?- Any transformation W(z) 6 H 
such that W(0) = 00, W(x) < 0, and W(y) > 0 satisfies W(oo ) > 0 and 
hence is expressible as a product TtSsTu of length 3. Next, observe that if for 
x1 < 0, s(x') is such that SS(X>)(xf) = 0, then the function h(x') = Ss(x^(oo) 
is strictly decreasing and 

lim h(xf) = 0, lim h(xf) = —00. 

Given V(z) £ H such that V(x) = 0, F(y) = 0 0 , 1 ^ x < y ^ r, choose 
x' < 0 such that /z(x') = F(0) and then choose W(z) such that W(x) = x', 
W(y) = g(x'), and W(0) = 00. Then V(z) and -S^^I^Os) agree on x, y and 
on 0 and therefore V(z) = SS(X>)W(z). But W(s) is expressible as a product of 
length 3 so that the order of generation of H is again 4. 

(g) e = w, 7} = (w — l)(w + r), r ^ 1. The fixed points of the one-
parameter subgroup Ss(z) are 1 and — r\ Yims_>+œSs(x) = — r for x ^ 1 and 
l im^-^ Ss(x) = 1 for x 9e —r. Let / be the open interval — r < x < 1 and / 
the open interval {x < — r] \J {x > 1} U {00}. Note that if Ss(x) = 0, then 
x f l and if Ss(y) = 00, then y £ J. 
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If order(x,y) = 1, then x G I, y G J. Further, for each x G 7, there is a 
unique y € J, denoted by g(x), such that order(x, g(x)) = 1. Clearly g is a 
continuous function from I into J whose behaviour is as follows: on (0, 1), g is 
strictly decreasing, lim^0+ g(x) = +oo , and l im^ i - g(x) = 1; on ( —r, 0), g is 
again strictly decreasing, limx^-r+g(x) = —r, and \imx^0- g(x) — — oo. 
Therefore the range of x/g(x) on (0, 1) is (0, 1), and on ( —r, 0) it is again 
(0, 1). It easily follows that order(x, y) ^ 2 if and only if 0 < x/y < 1 
(except that order (0, oo ) = 1). 

Next it will be established that order (x, y) S 3 if and only if x G I or y G J. 
Assume first that x G I and y G J (closure of 7). Ifx < ;y, there is an S5(s) such 
that 0 < Ss(x) < Ss(y) since l im^-^ Ss(x) = 1 and5 s(x) < Ss(y) ^ 1 for all 
s. H x > y} there is an Ss(z) such that Ss(y) < Ss(x) < 0. In either case, 
0 < Ss(x)/Ss(y) < 1 and hence order(Ss(x), Ss(y)) ^ 2. If x G J and y £ J, 
there is an 55(s) such that 0 < 55(x) < 1 < S5(;y) since 

lim Ss(x) = lim S*(;y) = 1; 
S->—oo S->—co 

again order (Ss(#), *S5(3>)) ^ 2. Finally, if a; G J and y £ J, there exists either 
an 5s(s) such that 1 ^ ^ ( x ) < 5S(^) or an Ss(z) such that 

S8(y) < Ss(x) ^ -r 

and in both cases order(Ss(x), Ss(y)) ^ 2. Conversely, if x G J and y G 7, 
then for all 5, either 55(x)/5,(y) > 1 or Ss(x)/Ss(y) < 0 or Ss(x) = oo or 
^s(3/) = 0 a n d m all these instances, order(5s(x), Ss(y)) > 2 for all s. In 
particular, order(oo, 0) > 3; since order(oo, 0) must be odd, it follows that 
order (oo , 0) ^ 5. In fact, order (oo ,0) = 5; this is a simple consequence of the 
fact proved below that order(x, y) ^ 4 for all (x, y) ^ (oo , 0). 

If (x,y) 9^ (oo, 0), then either x T̂  co and there exists a Tt(z) such that 
Tt(x) G I or y ^ 0 and there exists a r ^ z ) such that Tt(y) G / . In either 
case, it follows that order (Tt(x), Tt(y)) g 3 and thus order(x, y) ^ 4. 

It follows that the order of generation of H is ^ 6; to complete the proof of 
Theorem 2 it suffices to show that the transformation w — — r/z G H cannot 
be expressed as a product of Tt and Ss of length ^ 5 . This transformation takes 
0 into oo , oo into 0, 1 into — r, and —r into 1. Since order (oo , 0) = 5, w = —r/z 
cannot be expressed as a product of length < 5, and, moreover if it is expressible 
as a product of length 5, such a product must begin and end with an S8(z). 
Since 1 and — r are the fixed points of Ss(z), it would follow that there exists a 
product TtSsTu that takes 1 into — r and — r into 1. This implies that 

S,TU(1) < 0 and SsTu(-r) > 0. 

Clearly Tu(l) j* 1; if Tu(l) > 1, then Tu(-r) < -r and hence S,TU(1) < 0 
implies that 

(8) S . r . U ) < SSTU(-') < - r ; 
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if Tu(l) < 1, then Tu( — r) > —r and hence SSTU(1) < 0 implies that 

(9) SsTu(-r) <SSTU(1) < 0 . 

In either case, SsTu(—r) < 0, and a contradiction is obtained. 

Remark 1. It can be shown that every V(z) 6 H such that V(0) = oo, 
V(oo) = 0 except V(z) = — r/z can be expressed as a product of 7\ and Ss 

of length 5. 

Remark 2. To understand why w — —r/z could not be expressed as a product 
of length 5, consider the inner automorphism of H induced by 

Viz) = (* + f ) / ( 2 - 1). 

Note that although F(2) g H, V~lHV = H. Further, since F(00 ) = 1, 
V(0) = —r, V(l) = 00, and V(—r) = 0, it is clear that F transforms the 
pair of infinitesimal transformations €, rj into the pair 77, e. Suppose that there 
were a product TtSsTu that took 1 into —r, — r into 1; then 

(10) V-lTtVV-lSsVV-lTuV = 7-^,5,^7 

would take 0 into co and GO into 0. Hence order (00, 0) = 3, a contradiction. 
What has really been shown is that order (00, 0) (with respect to 0 and 00 ) 
must equal order( —r, 1) (with respect to 1 and —r). 

Remark 3. Observe that in both cases (e) and (g), the order of generation 
of H is equal to the maximum of the order(x, y) + 1 while in (f) the order of 
generation of H is equal to the maximum of order(x, y). 

It is of interest to compare the situation for the isometry group of the 
spherical geometry with that for the isometry groups of the hyperbolic and 
Euclidean geometry. For the latter two groups the order of generation is 
uniquely determined by the nature of the infinitésimal transformations, i.e., 
elliptic, parabolic or hyperbolic, except that if both are hyperbolic, then the 
order of generation depends upon whether or not the roots separate or interlace. 
For the isometry group of the spherical geometry, both infinitesimal trans
formations must be elliptic and the order of generation depends upon the 
magnitude of the cross-ratio of the roots. 

V. Let n 9e co be the order of generation of a connected Lie group by Tt 

and Ss. It is of interest to determine whether every element of the group can, 
in fact, be represented as a product of length n whose last element is a Tt\ 
a dual question may be asked of Ss. Note that any element that can be 
expressed as a product of length < n can be expressed both as a product of 
length n whose last element is a Tt and one whose last element is an Ss by 
inserting the identity I = To = So an appropriate number of times. 
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If there is an inner automorphism of the group (or even if there is any 
automorphism of the group) that interchanges the two one-parameter sub
groups, then both questions must have the same answer. The same conclusion 
holds under the quite different assumption that n is even; if an element is not 
representable as a product of length n ending in a Tu then its inverse is not 
representable as a product of length n ending in an Ss. 

For SO (3), the answer to both questions is in the affirmative (both questions 
must have the same answer since every pair of one-parameter subgroups of 
SO (3) can be interchanged by some inner automorphism) [1]. From the proof 
of Theorem 1 it follows that every element of G can be expressed as a product 
TUSSTU but not all elements of G can be expressed as a product SUT\SS (Tt is 
elliptic; Ss is parabolic). From the proof of Theorem 2 the same conclusion 
follows for H in case Tt is elliptic and 55 parabolic or hyperbolic. If the order 
of generation of H is 4 or 6, then both questions must have the same answer. 
It is in the affirmative except if both one-parameter subgroups are hyperbolic 
with roots separating. If both are parabolic, this is clear from the proof of 
Theorem 2. The assertion in the remaining cases follows directly from the 
observation in Remark 3 that if one is parabolic and the other hyperbolic or if 
both are hyperbolic with roots interlacing, then all pairs (x, y) have order less 
than the order of generation of H while if both are hyperbolic with roots 
separating, then there exist pairs (x, y) whose order equals the order of genera
tion of H. 
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