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Velocity gradient analysis of a head-on vortex
ring collision
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We simulate the head-on collision between vortex rings with circulation Reynolds numbers
of 4000 using an adaptive, multiresolution solver based on the lattice Green’s function.
The simulation fidelity is established with integral metrics representing symmetries and
discretization errors. Using the velocity gradient tensor and structural features of local
streamlines, we characterize the evolution of the flow with a particular focus on its
transition and turbulent decay. Transition is excited by the development of the elliptic
instability, which grows during the mutual interaction of the rings as they expand
radially at the collision plane. The development of antiparallel secondary vortex filaments
along the circumference mediates the proliferation of small-scale turbulence. During
turbulent decay, the partitioning of the velocity gradients approaches an equilibrium
that is dominated by shearing and agrees well with previous results for forced isotropic
turbulence. We also introduce new phase spaces for the velocity gradients that reflect
the interplay between shearing and rigid rotation and highlight geometric features of
local streamlines. In conjunction with our other analyses, these phase spaces suggest
that, while the elliptic instability is the predominant mechanism driving the initial
transition, its interplay with other mechanisms, e.g. the Crow instability, becomes more
important during turbulent decay. Our analysis also suggests that the geometry-based
phase space may be promising for identifying the effects of the elliptic instability and
other mechanisms using the structure of local streamlines. Moving forward, characterizing
the organization of these mechanisms within vortices and universal features of velocity
gradients may aid in modelling turbulent flows.
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1. Introduction

1.1. Vortex rings
Vortex rings are ubiquitous flow phenomena in both applied and theoretical settings,
with applications including sound generation, transport, mixing and vortex interactions
(Shariff & Leonard 1992). In geophysical settings, vortex rings can be used to model
entrainment and dispersion in particle clouds (Bush, Thurber & Blanchette 2003). They
play important roles in the initial jets of volcanic eruptions (Taddeucci et al. 2015) and
the transport of contaminated sediments disposed of in open-water settings (Ruggaber
2000). In biomechanical settings, vortex rings have been observed in the motions of
blood in the human heart (Arvidsson et al. 2016) and in the propulsive motion of oblate
medusan jellyfish (Dabiri 2005). Remarkably, separated vortex rings augment dandelion
seed dispersal by prolonging flight through drag enhancement (Cummins et al. 2018). In
aerodynamic settings, vortex rings are responsible for the so-called vortex ring state, which
negatively impacts lift in helicopters (Johnson 2005) and the performance of offshore wind
turbines (Kyle, Lee & Früh 2020). In experimental and numerical settings, the formation
and pinch-off of vortex rings are of particular interest in jet flows involving nozzles and
orifices (Gharib, Rambod & Shariff 1998; Mohseni, Ran & Colonius 2001; Krueger &
Gharib 2003; O’Farrell & Dabiri 2014; Limbourg & Nedić 2021).

Vortex rings are also associated with complex instabilities and dynamics that relate
more generally to the sustenance of turbulence. Flow instabilities in vortex rings depend
primarily on the core vorticity distribution, the circulation Reynolds number (ReΓ = Γ/ν)

and the slenderness ratio (δ = a/R) (Balakrishna, Mathew & Samanta 2020). Here, Γ is
the circulation, ν is the kinematic viscosity, a is the core radius and R is the ring radius. We
focus on the evolution of thin-cored vortex rings with Gaussian core vorticity profiles, no
swirl and centroids (Z) that propagate along the z-axis. In cylindrical coordinates (r, θ, z),
this initial vorticity profile is written as

ωθ(r, z; t = 0) = ± Γ0

πa2
0

exp

(
−(z − Z0)

2 + (r − R0)
2

a2
0

)
, (1.1)

where subscripts (·)0 denote parameter values at t = 0 and the sign of ωθ dictates the
propagation direction. Since Gaussian vortex rings only satisfy the governing equations
with infinitesimal core thickness, they initially undergo a rapid period of equilibration in
which vorticity is redistributed throughout the core (Shariff, Verzicco & Orlandi 1994;
Archer, Thomas & Coleman 2008; Balakrishna et al. 2020). Following instability growth,
transition is often marked by the development of secondary vorticity in a halo around
the core vorticity (Dazin, Dupont & Stanislas 2006; Bergdorf, Koumoutsakos & Leonard
2007; Archer et al. 2008). During turbulent decay, the shedding of secondary vortex
structures to the wake can result in a stepwise decay in circulation (Weigand & Gharib
1994; Bergdorf et al. 2007).

Stability analyses of thin vortex rings are often (classically) formulated in terms of
asymptotic expansions in δ (Widnall, Bliss & Tsai 1974; Widnall & Tsai 1977; Fukumoto
& Hattori 2005). Infinitesimally thin vortex rings (δ → 0) are neutrally stable (Shariff &
Leonard 1992). For rings with finite thickness (δ > 0), the curvature instability occurs
at first order in δ and the elliptic instability occurs at second order in δ. The curvature
and elliptic instabilities occur at short wavelengths and arise due to parametric resonance
between Kelvin waves with core azimuthal wavenumbers separated by one and two,
respectively (Fukumoto & Hattori 2005; Hattori, Blanco-Rodríguez & Le Dizès 2019). The
curvature instability is attributed to a dipole field produced by the vortex ring curvature
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Velocity gradient analysis of a vortex ring collision

(Fukumoto & Hattori 2005; Blanco-Rodríguez et al. 2015; Blanco-Rodríguez & Le Dizès
2017). By contrast, the elliptic instability is attributed to a quadrupole field generated
by straining induced by the ring or some external source (Fukumoto & Hattori 2005;
Blanco-Rodríguez et al. 2015; Blanco-Rodríguez & Le Dizès 2016).

This elliptic instability acts to break up elliptic streamlines and is key to the
development of three-dimensional transitional and turbulent flows (Kerswell 2002). In
the context of vortex rings (or, more generally, strained vortices), it is sometimes
called the Moore–Saffman–Tsai–Widnall instability (Fukumoto & Hattori 2005; Chang
& Llewellyn Smith 2021) based on the initial investigations of Moore & Saffman (1975)
and Tsai & Widnall (1976). The elliptic instability dominates the curvature instability
for thin Gaussian vortex rings without swirl. However, the curvature instability becomes
increasingly important for vortex rings with increasing ReΓ and decreasing δ, as well as
in vortex rings with swirl (Blanco-Rodríguez & Le Dizès 2017; Hattori et al. 2019).

While interesting in their own right, thin vortex rings often form canonical building
blocks of more complex turbulent flows. Modified vortex geometries, such as elliptic
vortex rings (Cheng, Lou & Lim 2016, 2019) and trefoil knots (Yao, Yang & Hussain 2021;
Zhao et al. 2021), provide alternative means of probing vortex dynamics and interactions.
Collisions between vortex rings and other vortex rings, walls and free surfaces are also
commonly studied to investigate mechanisms underlying the turbulent cascade and the
generation of small scales (see Mishra, Pumir & Ostilla-Mónico (2021) for a review).
These mechanisms can be characterized using a variety of collision geometries, including
head-on collisions (Cheng, Lou & Lim 2018; McKeown et al. 2018, 2020; Mishra et al.
2021), inclined collisions (Kida, Takaoka & Hussain 1991; Yao & Hussain 2020a,c) and
axis-offset collisions (Zawadzki & Aref 1991; Smith & Wei 1994; Nguyen et al. 2021),
among others. Boundary layers play an important role in vortex–wall interactions (e.g. by
causing rebounding events) (Walker et al. 1987) and interactions with free surfaces can
often be understood in terms of image vortices (Archer, Thomas & Coleman 2010).

Here, we focus on head-on collisions between identical vortex rings of opposite
circulation, which have been noted for their rapid enstrophy production (Lu & Doering
2008; Ayala & Protas 2017; Kang, Yun & Protas 2020). They have been classically studied
in the contexts of the formation of smaller rings through vortex reconnection and the
formation of turbulent clouds at high ReΓ (Oshima 1978; Lim & Nickels 1992; Chu
et al. 1995). Many recent investigations have focused particularly on the mechanisms
(e.g. instabilities) underlying these transitional and turbulent processes (McKeown et al.
2018, 2020; Mishra et al. 2021).

For the head-on vortex ring collisions under consideration, the elliptic instability
competes and interacts with the longer-wavelength Crow instability. The Crow instability
(Crow 1970) is associated with the mutual interaction of perturbed counter-rotating
vortices, which, in the linear regime, locally displaces the vortices without modifying their
core structures (Leweke, Le Dizès & Williamson 2016). Mishra et al. (2021) provides
a focused review of vortex ring collisions in the context of the these instabilities. For
collisions at relatively low Reynolds numbers, the Crow instability can lead to the
pinch-off of secondary vortex rings via local reconnections. At higher Reynolds numbers,
the elliptic instability favours rapid disintegration of the vortex rings into a turbulent cloud.

McKeown et al. (2020) proposed that iterative elliptic instabilities between successive
generations of antiparallel vortices can mediate the turbulent cascade in head-on vortex
ring collisions. Mishra et al. (2021) also observed that the elliptic instability tends to
dominate at high ReΓ , although this behaviour is also sensitive to the slenderness ratio
and vorticity distribution. In a different configuration involving symmetrically perturbed
antiparallel vortices, Yao & Hussain (2020b) attributed the turbulent cascade at high ReΓ
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to an avalanche of successive vortex reconnections. In general, Ostilla-Mónico et al. (2021)
found that collisions between counter-rotating vortices are indeed highly sensitive to the
geometry of their configuration. They particularly found that the mechanisms mediating
the cascade bear resemblance to the reconnection scenario (Yao & Hussain 2020b) when
the vortices are nearly perpendicular, whereas they are more reminiscent of the iterative
elliptic instability scenario (McKeown et al. 2020) when the vortices are more acutely
aligned. These recent works share two common themes, (i) that the mode of transition and
the formation of a cascade are sensitive to the details of the initial flow configuration and
(ii) that the interplay between relevant instabilities is simultaneously important to the flow
physics and difficult to capture.

1.2. Velocity gradients and vortices
The elliptic instability, which typically dominates head-on collisions between the vortex
rings of interest at high ReΓ (McKeown et al. 2020; Mishra et al. 2021), is associated
with elliptic streamlines (Kerswell 2002). This generic feature of strained vortical flows
can be used to characterize the elliptic instability, which is typically difficult to discern in
the complex interactions of multiscale vortices (Mishra et al. 2021; Ostilla-Mónico et al.
2021). Given the inherent complexity of turbulent flows, the geometry of local streamlines
provides a relatively simple and interpretable means for characterizing flow features (e.g.
vortices).

The instantaneous trajectory of a materially advecting fluid particle follows the
streamlines, which are frame dependent. At a critical point, e.g. in a frame advecting
with the particle, the velocity gradient tensor (VGT), A = ∇u, determines, to linear order,
the local structure of streamlines (Perry & Fairlie 1975; Perry & Chong 1987; Chong,
Perry & Cantwell 1990). The scale-invariant shape of local streamlines is captured by
normalizing the VGT as Ã = A/A (Girimaji & Speziale 1995; Das & Girimaji 2019),
where A = ‖A‖F = tr(ATA)1/2 is the Frobenius norm of the VGT, (·)T represents the
transpose and, unless otherwise stated, non-bold versions of bold tensor quantities
represent their Frobenius norms. This normalized VGT has been used to investigate
the scalings, forcings and non-local features of the VGT dynamics (Das & Girimaji
2019, 2020a, 2022) and a similar analysis of vorticity gradients has been used to classify
the geometry of local vortex lines (Sharma, Das & Girimaji 2021).

The principal invariants of Ã instantaneously characterize local streamline topologies
and geometries (Chong et al. 1990; Das & Girimaji 2019, 2020a,b). They are given by

pA = −tr(Ã), qA = 1
2(tr(Ã)2 − tr(Ã2)), rA = −det(Ã), (1.2a–c)

where tr(·) and det(·) represent the trace and determinant, respectively. For incompressible
flows (pA = 0), four classes of local streamline topologies are separated by degenerate
geometries in the qA–rA plane. Using the invariants of Ã is advantageous compared with
using the invariants of A since the qA–rA plane is a bounded phase space and it provides a
more complete representation of streamline geometries (Das & Girimaji 2019, 2020a,b).
For example, the aspect ratio of purely elliptic local streamlines (qA > 0 and rA = 0)
is completely characterized by qA, but not by Q = A2qA. However, while the qA–rA
plane efficiently characterizes local streamline geometries at critical points, additional
parameters are required to fully describe all geometries (Das & Girimaji 2020a).

Following Das & Girimaji (2020b), we consider the local streamline geometry in the
context of the modes of deformation of a fluid parcel: extensional straining, (symmetric
and antisymmetric) shearing and rigid rotation. The well-known Cauchy–Stokes
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decomposition of the VGT, Ã = S̃ +W̃ , disambiguates contributions from the symmetric
strain rate tensor, S̃ = (Ã +ÃT)/2, and the antisymmetric vorticity tensor, W̃ =
(Ã −ÃT)/2. It has enabled insightful characterizations of the VGT dynamics from the
perspective of the strain rate eigenframe (Tom, Carbone & Bragg 2021). However, it does
not disambiguate symmetric shearing from extensional straining in S̃ or antisymmetric
shearing from rigid rotation inW̃ . This limitation motivated the development of the triple
decomposition of the VGT (Kolář 2007), which disambiguates all three fundamental
modes of deformation.

Kolář (2004, 2007) originally formulated the triple decomposition of the VGT by
identifying a ‘basic’ reference frame in which motions associated with elongation, rigid
rotation and pure shearing can be isolated. However, identifying a basic reference frame
requires a challenging pointwise optimization problem, the solution of which is typically
approximated over a finite number of frames (Kolář 2007; Nagata et al. 2020). More
recently, Gao & Liu (2018, 2019) introduced a unique triple decomposition, based on a
related vorticity tensor decomposition (Liu et al. 2018; Gao et al. 2019), that is more
computationally practical than that of Kolář (2004, 2007). This triple decomposition
is formally performed in a local ‘principal’ coordinate system (x∗, y∗, z∗), which is
related to the global coordinate system (x, y, z) by an orthogonal transformation. In
this principal frame, denoted by (·)∗, the triple decomposition is given in normalized
form by

Ã∗ =
⎡⎣ε̇x∗ 0 0

0 ε̇y∗ 0
0 0 ε̇z∗

⎤⎦
︸ ︷︷ ︸

ε̇∗

+
⎡⎣ 0 0 0

γ̇z∗ 0 0
γ̇y∗ γ̇x∗ 0

⎤⎦
︸ ︷︷ ︸

γ̇ ∗

+
⎡⎣ 0 −ϕ̇z∗ 0

ϕ̇z∗ 0 0
0 0 0

⎤⎦
︸ ︷︷ ︸

ϕ̇∗

. (1.3)

Here, ε̇∗, γ̇ ∗ and ϕ̇∗ represent the normal straining, pure shearing and rigid body rotation
tensors, respectively. Their constituents can be directly identified from the components of
the VGT in the principal frame (Gao & Liu 2018, 2019; Das & Girimaji 2020b). Their
representations in the global coordinates (ε̇, γ̇ and ϕ̇) can subsequently be recovered by
inverting (i.e. transposing) the original orthogonal transformation (Gao et al. 2019).

The components of the normal straining tensor represent the real parts of the eigenvalues
of Ã, which are identical to those of Ã∗. For points with rotational local streamlines, Ã has
a pair of complex eigenvalues and the real eigenvector defines the local rotation axis. In
this case, the transformation to the principal frame is identified by (i) using a real Schur
decomposition to align the z∗-axis with the real eigenvector of the VGT and (ii) orienting
the x∗–y∗ plane to minimize the local rotational speed (Liu et al. 2018; Das & Girimaji
2020b). One advantage of (1.3) is that it provides representations of the strength (2ϕ̇z∗)
and the axis (z∗) of rigid rotation that are Galilean invariant (Wang, Gao & Liu 2018).
Unlike the rotational case, the VGT has only real eigenvalues when the local streamline
geometry is non-rotational (ϕ̇∗ = 0). In this case, the principal frame is identified by
using a Schur decomposition to transform the VGT into a triangular tensor. The modes
of deformation are then isolated by decomposing this transformed tensor into a normal,
diagonal tensor representing normal straining and a non-normal, strictly triangular tensor
representing pure shearing (Keylock 2018; Das & Girimaji 2020b).

The triple decomposition enables refined analyses of the influences of fundamental
constituents of the VGT. For example, the original triple decomposition (Kolář 2007)
has been used to show that lifetimes of fundamental flow structures at macroscopic
scales (where viscosity can be neglected) can be related to stability of rigid rotation,
linear instability of pure shearing and exponential instability of irrotational straining
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(Hoffman 2021). At small scales, the more recent triple decomposition (Gao & Liu
2018, 2019) has been used to show that pure shearing is typically the dominant
contributor to energy dissipation (Wu et al. 2020) and intermittency (Das & Girimaji
2020b) in turbulent flows. Further, the symmetric and antisymmetric components of
γ̇ ∗ are given by γ̇ ∗

S = (γ̇ ∗ + γ̇ ∗T)/2 and γ̇ ∗
W = (γ̇ ∗ − γ̇ ∗T)/2, respectively. In this

manner, the triple decomposition is more refined than the Cauchy–Stokes decomposition
since S̃∗ = ε̇∗ + γ̇ ∗

S and W̃ ∗ = ϕ̇∗ + γ̇ ∗
W (Gao & Liu 2019; Das & Girimaji 2020b). As

described in detail by Das & Girimaji (2020b), the triple decomposition also enables a
natural characterization of local streamline topologies and geometries. Similar topological
analyses of vortical flow features have also been proposed (Nakayama 2017), but we focus
on the triple decomposition for the advantages outlined herein.

The ability of the triple decomposition to capture local streamline structure in terms of
fundamental modes of deformation has guided efforts to define improved vortex criteria.
There are an abundance of criteria to identify vortices that are based on various features
(e.g. eigenvalues) of the VGT and that adopt various philosophies of what constitutes a
vortex (Chakraborty, Balachandar & Adrian 2005; Epps 2017; Günther & Theisel 2018;
Liu et al. 2019a; Haller 2021). Debates surrounding these criteria primarily involve
their (i) philosophical underpinnings, (ii) threshold sensitivities and (iii) observational
invariances.

Regarding (i), the Cauchy–Stokes decomposition underlies many common symmetry-
based vortex criteria, including the Q (Hunt, Wray & Moin 1988) and λ2 (Jeong & Hussain
1995) criteria. Local streamline topology underlies many common geometry-based vortex
criteria, including the Δ (Chong et al. 1990) and λci (Chakraborty et al. 2005) criteria. Like
the geometry-based methods, and unlike the symmetry-based methods, the rigid vorticity
criterion (ϕ̇z∗ > 0) (Tian et al. 2018) captures all rotational local streamline geometries
under the assumption that rigid rotation is an essential ingredient of a vortex (Liu et al.
2019a; Das & Girimaji 2020b). The philosophical distinction between symmetry-based
and geometry-based criteria also underlies the so-called ‘disappearing vortex problem’
in which, fixing the VGT configuration and strain rate, increasing only the vorticity
magnitude can remove a geometry-based vortex from the flow (Chakraborty et al. 2005;
Kolář & Šístek 2020, 2022). However, we here adopt the geometry-based viewpoint since,
unlike vorticity, rigid rotation persistently underlies rotational local streamline topologies
in all inertial frames. This interpretation in terms of local streamline topology has the
potential to elucidate connections to related (e.g. elliptic) instabilities.

Regarding (ii), the Omega (Ω) class of vortex criteria (Liu et al. 2016; Dong et al.
2018; Dong, Gao & Liu 2019; Liu & Liu 2019) is advantageous since it uses quantities
that are bounded and less threshold sensitive than the aforementioned methods. Regarding
(iii), whereas most common vortex criteria are Galilean invariant, they are typically not
objective since they are not preserved in rotating reference frames (Epps 2017; Günther
& Theisel 2018). However, the objectivized ϕ̇z∗ (Liu, Gao & Liu 2019b) and objectivized
Ω (Liu et al. 2019c) criteria, which are formulated by replacingW̃ with its deviation from
its global spatial mean, remain invariant in these reference frames. Moreover, they are
among the only compatible (i.e. self-consistent) objectivized vortex criteria out of the
modifications commonly associated with the vortex criteria we have discussed (Haller
2021). This advantage enhances the experimental verifiability and clarifies the physical
significance of visualizations of the corresponding vortex structures.

Synthesizing the advantages of the geometry-based vortex definitions and the Ω class
of vortex criteria, we identify vortices using the Ωr method in the present investigation.
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This criterion is formulated in terms of the quantity

Ωr = (ω · ez∗)2

2(ω · ez∗)2 − 4λci
2 + 4εvort

, (1.4)

where λci is the imaginary part of the complex eigenvalues of A, ez∗ is the unit vector along
the z∗-axis and εvort is a numerical threshold used to prevent division by zero. Vortices are
theoretically identified as spatially connected regions satisfying Ωr > 0.5 when εvort = 0.
In practice, however, vortices are identified using a small εvort > 0 and Ωr ≥ 0.52 (Liu
et al. 2019a) to e.g. remove weak vortices.

1.3. Contributions
In this paper, we utilize the advantageous properties of geometry-based analyses of the
VGT to efficiently characterize turbulence initiated by a vortex ring collision. We use the
adaptive, multiresolution computational techniques discussed in § 2 to perform a direct
numerical simulation of this flow at ReΓ0 = 4000. In § 3, we establish the fidelity of our
simulation and we visualize and discuss the various regimes of its evolution. In § 4, we
analyse the partitioning of the velocity gradients to characterize these regimes in terms
of the modes of deformation. In § 5, we introduce a geometry-based phase space that
characterizes the action of the elliptic instability and its interplay with other mechanisms
driving the turbulent flow. Our analyses reveal statistical features of the VGT that are
similar to those of previous simulations. They also provide tools with the potential to help
disentangle mechanisms underlying vortex interactions during transition and turbulent
decay. Finally, we summarize our results in the context of previous works and highlight
promising future research prospects in § 6.

2. Methods

2.1. Computational method
To efficiently simulate a turbulent vortex ring collision, we adopt a recently developed
multiresolution solver for viscous, incompressible flows on unbounded domains (Liska &
Colonius 2016; Dorschner et al. 2020; Yu 2021; Yu, Dorschner & Colonius 2022). Yu
et al. (2022) provide a detailed discussion of the formulation, properties and performance
of the method. We summarize the key advantages of the solver here and expound the
computational formulation in Appendix A. The advantages we discuss allow us to simulate
a relatively high Reynolds number vortex ring collision at a relatively low computational
cost.

The Navier–Stokes equations (NSE) are spatially discretized onto a staggered Cartesian
grid using a second-order-accurate finite-volume scheme that endows discrete operators
with useful properties (i) (Liska & Colonius 2016). Discrete differential operators are
constructed to mimic the symmetry, orthogonality and integration properties of their
continuous counterparts. They also commute with the Laplacian and integrating factor
operators, as defined in Appendix A. Furthermore, the discretization of the nonlinear term
in the momentum equations preserves relevant (e.g. energy) conservation properties in the
absence of viscosity. Together, the mimesis, commutativity and conservation properties of
the discretization scheme facilitate fast, stable, high-fidelity simulations of turbulent flows.

The computational methods we employ also have high parallel efficiency (ii) and linear
algorithmic complexity (iii). The computational efficiency of the flow solver is primarily
centred around solving the discrete pressure Poisson equation on a formally unbounded
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grid using the lattice Green’s function (LGF) (Liska & Colonius 2014, 2016; Liska 2016).
The Poisson equation is obtained by taking the divergence of the NSE in rotational form,
such that the source term is ∇ · r, where r = u × ω is the Lamb vector. By considering
flows with at least exponentially decaying far-field vorticity, the approximate support of
this source field can be captured using a finite computational domain. Given a source
cutoff threshold, the finite domain is adaptively truncated to capture only the regions
relevant to the Poisson problem. Solving the Poisson problem over this domain involves
the convolution of the LGF with the source field. The flow solver achieves (ii) and (iii) by
efficiently evaluating this convolution via a fast multipole method (Liska & Colonius 2014)
that compresses the kernel using polynomial interpolation. This method is accelerated by
exploiting the efficiency of fast Fourier transforms on a block-structured Cartesian grid.

In addition to spatially adapting the extent of the computational domain, adaptive
multiresolution discretization (iv) is achieved by using adaptive mesh refinement (AMR)
to reduce the number of degrees of freedom required for solutions. As discussed previously
(Dorschner et al. 2020; Yu et al. 2022), the present AMR framework is carefully
constructed to preserve the desirable operator properties (i) and augment the efficiencies
(ii, iii) associated with the uniform-grid framework (Liska & Colonius 2014, 2016). In
the AMR framework, the computational grid is partitioned into multiple levels, each with
double the resolution in each direction as the previous level. The spatial regions associated
with each level are non-overlapping, except for extended regions that are used to compute
a combined source term that includes a correction induced by the difference between
the coarse-grid and fine-grid partial solutions. As formulated in Appendix A, a region
is refined when its combined source exceeds a threshold and it is coarsened when its
combined source falls below a smaller threshold. As shown in § 3.1 (see table 1), this AMR
formulation drastically reduces the number of computational cells required to capture a
head-on vortex ring collision compared with a fixed-resolution scheme.

2.2. Vortex ring collision simulation
As depicted in figure 1, we consider a flow configuration in which the vortex rings are
initialized with opposing circulations such that they propagate toward one another along
the z-axis and meet at the collision plane at z = 0. The rings are initialized a distance
Lz = 2.5R0 apart, which is sufficiently large to mitigate their mutual influence during the
most vigorous period of equilibration. Both rings are initialized with Gaussian vorticity
distributions (1.1) such that ReΓ0 = 4000 and δ0 = 0.2. Unless otherwise stated, we use
the initial circulation, Γ0 = 1, and radius, R0 = 1, of each ring to non-dimensionalize
all variables. To excite transition, we randomly perturb the radii of the vortex rings
using the first 32 Fourier modes in θ , which are prescribed random phases and uniform
magnitudes, Rpert = 5 × 10−4. Consistent with previous tests (Yu et al. 2022), these initial
perturbations are sufficiently large to dominate perturbations incurred by discretization
errors.

The computational mesh we use has Nlevel = 2 levels of refinement beyond the
base level such that the ratio of the coarsest-grid spacing to the finest-grid spacing is
xbase/xfine = 4. Based on preliminary simulations of turbulent vortex rings (Liska &
Colonius 2016) and vortex ring collisions (Yu et al. 2022), we select a0/xbase = 5 and
t/xfine = 0.35 to ensure the flow is well resolved throughout the simulation. Finally,
parameters controlling the spatial and mesh refinement thresholds are chosen as discussed
in Appendix A.
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Velocity gradient analysis of a vortex ring collision
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Figure 1. Initial geometry of the flow configuration used to simulate the head-on collision between vortex
rings. The shading of the vortex cores reflects their Gaussian vorticity profiles.

2.3. Simulation integral metrics
We track the evolution and fidelity of the simulation using integral metrics associated
with incompressible flows (Liska & Colonius 2016). Particularly, we compute the
hydrodynamic impulse, helicity, vortical kinetic energy and enstrophy of the flow, which
are denoted by IV , H, KV and E, respectively. These integrals are formally evaluated on an
unbounded domain, but we evaluate them using the finite AMR grid as

IV(t) =
∫

V(t)
(x × ω) dV, H(t) =

∫
V(t)

(u · ω) dV,

KV(t) =
∫

V(t)
u · (x × ω) dV, E(t) = 1

2

∫
V(t)

|ω|2 dV,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

where V(t) is the time-varying AMR grid. The impulse is the appropriate measure of
momentum since it converges for flows on unbounded domains with compact vorticity.
The vortical kinetic energy can also be expressed as KV = K + K∂V , where K represents
the kinetic energy and K∂V is a correction term based on the flow at the boundary of the
grid, ∂V(t). These metrics can be expressed as

K(t) = 1
2

∫
V(t)

|u|2 dV, K∂V(t) =
∫

∂V(t)
x · ((uu) · n − 1

2 |u|2n
)

dS, (2.2a,b)

where n is the normal vector of ∂V (Wu, Ma & Zhou 2015). For vanishing far-field
velocity, K∂V vanishes on unbounded domains and, for the present grid, we make use
of the smallness of K∂V when analysing dissipation.

In the absence of non-conservative external body forces, the hydrodynamic impulse is
conserved for incompressible flows on unbounded domains (Saffman 1993). The helicity
would also be conserved in the absence of viscosity, and it is useful for assessing
simulation fidelity as the vortex rings initially approach the collision plane since the
evolution of the flow is dominated by inviscid effects. These integral metrics initially
evaluate to IV(0) = 0 and H(0) = 0 due to the spatial symmetries of the initial flow
configuration. These initial symmetries hold to the extent that the vorticity is well captured
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R. Arun and T. Colonius

and the contributions of the random perturbations used to excite instability growth are
negligible. As the flow evolves, subsequent deviations from these initial values reflect the
degree to which the corresponding initial symmetries are broken.

The enstrophy and the kinetic energy provide a more detailed picture of simulation
fidelity during transition and turbulent decay, when viscous dissipation at small scales
becomes relevant. For unsteady, incompressible flows on unbounded domains, the
dissipation governs the decay rate of kinetic energy and can be expressed in terms of
the enstrophy. Comparing these integrals is useful for characterizing (i) the degree to
which small-scale features are resolved during peak dissipation and (ii) the flux of kinetic
energy out of the finite computational domain (Archer et al. 2008). We therefore introduce
effective Reynolds numbers, which are given by

Reeff
S (t)

ReΓ0

= − ΦS(t)
dK/dt

,
Reeff

W (t)
ReΓ0

= −ΦW(t)
dK/dt

, (2.3a,b)

where ΦS is the volume-integrated dissipation and ΦW = 2E/ReΓ0 is its enstrophy-based
counterpart (Serrin 1959). Here, we differentiate K instead of KV when computing
the effective Reynolds numbers to prevent amplification of the noise associated with
adaptations in the computational domain, to which KV is more sensitive. This is justified
since K and KV are nearly identical throughout the present simulations (see figure 2).
The ratio Reeff

S is useful for assessing spatial resolution since the dissipation can vary
significantly during transition and turbulent decay. The corresponding Kolmogorov scale,
η = (ν3/ΦS)

1/4, can also be used to validate the selected grid spacings. The difference
between Reeff

S and Reeff
W reflects the relative significance of the acceleration of the flow

on ∂V through the boundary integral in the Bobyleff–Forsyth formula (Serrin 1959).
Together, the error metrics defined in this section comprehensively characterize the fidelity
of the simulation as its flow structures evolve and the computational domain adapts
accordingly.

3. Evolution of integral metrics and vortical structures

3.1. Evolution of integral metrics
Figure 2 shows the evolution of the integral metrics from § 2.3 over the course of
the simulation. In the subsequent analysis, we reference the various regimes of flow
development with respect to the time, t∗ = 14.77, at which maximum dissipation is
attained. Table 1 qualitatively characterizes the state of the simulation at each reference
time we consider for the initial, transitional and turbulent regimes of the simulation.

The initial evolution of the flow involves a rapid period of equilibration (t � 0.25t∗) and
the propagation of the equilibrated rings towards the collision plane (0.25t∗ � t � 0.50t∗).
The interaction of the rings accelerates their radial expansion (0.50t∗ � t � 0.75t∗) and
the elliptic instability eventually emerges along the expanding rings (0.75t∗ � t � 0.90t∗).
Appendix B supports the importance of the elliptic instability during the early stages of
transition. Subsequently, the flow transitions to turbulence (0.90t∗ � t � t∗) and rapidly
produces small-scale flow structures. Following transition, the flow undergoes turbulent
decay for the remainder of the simulation (i.e. for t � t∗). See § 3.2 for visualizations
of the flow at the reference times from table 1 associated with each of these regimes of
evolution.

As the vortex rings initially propagate towards the collision plane (t � 0.50t∗), the
kinetic energy decays slowly and the enstrophy and dissipation are relatively small.
The effective Reynolds numbers rapidly adjust to the value of ReΓ0 during the initial
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Figure 2. Temporal evolution of the integral metrics defined in § 2.3 over the course of the simulation. The
vertical lines correspond to the reference times in table 1 and they are coloured accordingly. The horizontal lines
in the Reeff panel represent ReΓ0 (solid) with 10 % margins (dashed). The impulse magnitude is normalized by
that of each vortex ring in isolation, |IV1| ≈ 1.02π ≈ 3.204. The enstrophies EE and EC are computed using
vorticities located at the edges and centres, respectively, of the computational cells.

equilibration period (t � 0.25t∗) and remain roughly constant as the equilibrated rings
approach the collision plane (0.25t∗ � t � 0.50t∗). The helicity is well conserved in
this regime since the flow evolves in a nearly inviscid fashion. Further, the impulse is
initially small and grows relatively slowly during this period. These results suggest that
the symmetries associated with the handedness and momentum distribution of the flow
are well preserved in the initial regime of evolution.

As the rings expand radially at the collision plane (0.50t∗ � t � 0.75t∗) and the elliptic
instability emerges (0.75t∗ � t � 0.90t∗), the kinetic energy decays more rapidly and the
dissipation grows. During these periods, the helicity symmetry remains well preserved
and the effective Reynolds numbers remain relatively constant near ReΓ0 , suggesting that
the flow is well resolved. However, the impulse magnitude varies more rapidly in time due
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Regime of evolution t/t∗ R̄p V φ0 (%) φ1 (%) φ2 (%)

Post-equilibration vortex rings 0.25 1.18 201 80.9 13.8 5.3
Vortex boundary merger 0.50 2.01 243 76.6 18.5 4.9
Enhanced radial expansion 0.75 3.58 356 80.6 15.7 3.7
Formation of secondary vortices 0.90 4.51 408 76.6 20.0 3.4
Interaction of secondary vortices 0.95 4.77 421 72.0 24.1 3.9
Proliferation of small scales 1.00 4.97 445 63.8 30.9 5.3
Early turbulent decay 1.25 5.38 507 61.4 30.8 7.8
Intermediate turbulent decay 1.50 5.60 531 66.7 26.7 6.6
Late turbulent decay 2.12 5.82 564 72.1 26.8 1.1

Table 1. Reference times used to analyse the initial (red), transitional (green) and turbulent (blue) regimes of
the present vortex ring collision, where t∗ = 14.77 is the time of maximum dissipation. Here, R̄p represents the
mean vortex ring radius (see Appendix B), V is the volume of the computational domain and φk is the fraction
of V occupied by level k of the AMR grid, which has grid spacing xk = xbase/2k with xbase = 0.04.

to the rapid radial expansion of the rings. In following the expanding vortical flow at the
collision plane, the adaptations of the domain break the symmetry associated with impulse
integral more significantly than during the initial evolution of the rings. The resulting
growth in |IV | is primarily attributed to its component in the z direction, along which the
domain is compressed as the flow concentrates about the collision plane.

As the flow transitions to turbulence (0.90t∗ � t � t∗), the kinetic energy decays even
more rapidly and the dissipation approaches its maximum value. Due to the proliferation
of small-scale flow structures during this period, the effective Reynolds numbers drop to
their minimum values at t ≈ t∗, when the flow is most difficult to resolve. The increased
difference between Reeff

S and Reeff
W reflects that the acceleration of the flow near ∂V is more

relevant at this time. The rapid generation of small-scale flow structures also implies that
viscosity plays a more important role in this regime. Correspondingly, the helicity begins
to vary in time in this regime, reaching its maximum rate of change at the time of peak
dissipation. Its variations reflect that vortex lines in the flow undergo rapid topological
changes during transition. By contrast, the impulse magnitude decays to a roughly constant
value as the radial expansion of the rings slows in this transitional regime.

During the turbulent decay of the flow (t � t∗), the kinetic energy becomes small and
the dissipation decays rapidly, eventually falling below its initial value (at t ≈ 1.62t∗). The
dissipation matches the kinetic energy decay rate more closely for this regime than for
transition. Further, as the turbulence develops, the effective Reynolds numbers agree well
with one another and, to a lesser extent, with ReΓ0 . These features reflect, respectively,
that the acceleration near ∂V is less significant and that the small scales are relatively
well resolved, especially with respect to the transitional period. The helicity variations
in this turbulent regime also eventually slow relative to those observed during transition.
Similarly, the impulse remains roughly constant around its value at t = t∗. Whereas the z
component dominates the impulse magnitude during the radial expansion of the rings, all
impulse components have similar magnitudes in this turbulent regime.

The evolution of the integral metrics characterizes the various regimes of the flow
and supports the fidelity of our simulation. For example, the helicity is well conserved
during the nearly inviscid evolution of the vortex rings and its subsequent variations are
relatively small in magnitude. Further, the variations in the impulse magnitude throughout
the simulation remain less than 5 % of the impulse associated with each vortex ring
in isolation. These results indicate that the symmetries associated with the handedness and
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Velocity gradient analysis of a vortex ring collision

momentum distribution of the flow also remain well preserved in the appropriate regimes
of the simulation.

Our dissipation analysis also suggests that the small-scale flow structures remain
reasonably well resolved throughout the entire simulation. After equilibration, the
maximum relative deviation in Reeff

S from ReΓ0 is roughly 6.5 % and it occurs around
t ≈ t∗. This relative deviation is similar to that of a previous simulation of a single vortex
ring at ReΓ0 = 7500 using a finite computational grid (Archer et al. 2008). Moreover, it is
considerably smaller during the approach and radial expansion of the rings and, to a lesser
extent, during turbulent decay. Even during peak dissipation, when the Kolmogorov scale
is smallest, the finest grid has acceptable resolution since xfine/η ≈ 3.42. Altogether,
these results suggest that our simulation is well resolved and support our analysis of the
mechanisms underlying transition and turbulent decay.

3.2. Evolution of vortical flow structures
For the present simulation, we identify vortices using the Ωr criterion (Liu et al. 2019a)
with a numerical threshold of εvort = 0.04. This criterion provides connections to the triple
decomposition of the VGT and the structure of local streamlines. Due to the well-preserved
symmetries of the flow, the global spatial mean of the vorticity tensor is nearly zero and,
hence, the Ωr criterion is nearly objective (Liu et al. 2019c) for the present simulation. We
specifically visualize the flow using Ωr = 0.52 and Ωr = 0.93 to investigate the structures
of the vortex boundaries and the vortex cores, respectively. We colour these structures
using cos θ∗, where θ∗ is the angle between the z∗-axis and the z-axis. This colour scheme
enables the identification of antiparallel vortices along the z-axis, which play an important
role in mediating transition and generating small-scale flow structures in the present vortex
ring collision. In figure 3, we visualize the vortical structures in the flow at each reference
time from table 1.

During the initial evolution of the flow, the equilibrated vortex rings approach the
collision plane and expand radially due to their mutual interaction. In this regime, the
thinning of the vortex boundaries and cores illustrates the mechanisms driving the shift
from a rigid-rotation-dominated regime to a shearing-dominated regime. Further, the
visualizations at t = 0.75t∗ depict the emergence of the short-wave elliptic instability,
which is consistent with previous vortex ring collision simulations in similar parameter
regimes (McKeown et al. 2020; Mishra et al. 2021).

The transitional regime of the flow is marked by the development of secondary vortex
filaments and the subsequent generation of small-scale vortical flow structures. At t =
0.90t∗, the visualizations show the development of secondary vortical structures around
the circumference of the collision. These structures consist of antiparallel vortex filament
pairs that arise in regions where the elliptic instability drives local interactions between
the rings. This behaviour supports the notion that the elliptic instability mediates the
initial transition of the rings, leading to the development of secondary vortical structures.
The antiparallel secondary filaments become increasingly densely packed as transition
progresses and they mediate the proliferation of small-scale vortical flow structures, e.g.
as observed at t = t∗.

In Appendix B, we decompose the flow into azimuthal Fourier modes to characterize the
wavenumbers of the perturbations that dominate transition. Our analysis confirms that the
short-wave elliptic instability, with wavelength of the order of the core radius, mediates the
initial stages of transition. We further show that, at t = t∗, the most prominent antiparallel
vortices occur at the second harmonic of an originally dominant perturbation. Taken
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Figure 3. Visualizations of the vortex boundaries (Ωr = 0.52, left side) and vortex cores (Ωr = 0.93, right
side), coloured by cos θ∗, for each reference time from table 1. A movie depicting the evolution of the vortex
boundaries from the auxiliary viewpoint (leftmost column) is provided as supplementary material available at
https://doi.org/10.1017/jfm.2024.90.

together, our visualizations and perturbation analysis are consistent with the initial stages
of the iterative elliptic instability pathway, which is driven by subsequent generations of
antiparallel vortex filaments (McKeown et al. 2020).

During the turbulent decay of the flow, the geometric features of the vortex boundaries
remain similar at each reference time. However, as energy is dissipated, the smallest-scale
vortices are progressively destroyed and the vortical flow structures grow larger in
time. The structures of the vortex cores and boundaries reinforce the importance of the
interactions between the secondary vortex filaments in mediating the evolution of the
turbulent flow. The vortex boundaries also show the formation and ejection of vortex rings
from the turbulent cloud resulting from the collision. These ejections, which are a hallmark
of the Crow instability, often occur in regions where antiparallel vortex filaments interact
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Velocity gradient analysis of a vortex ring collision

and are of similar size to those filaments. This observation provides further evidence
of the interplay between the elliptic and Crow instabilities driven by interacting vortex
filaments around the turbulent cloud (Mishra et al. 2021; Ostilla-Mónico et al. 2021). In
what follows, we develop machinery to probe these mechanisms in the context of features
of the velocity gradients, with a particular emphasis on characterizing the action of the
elliptic instability among other mechanisms.

4. Partitioning of velocity gradients

Here, we investigate the partitioning of the velocity gradients to characterize the evolution
of the flow in the context of the fundamental modes of deformation. We first consider
volumetric weighted averages of the relative contributions of various constituents of Ã to
the strength of the velocity gradients. These averages may be expressed as

〈ξ〉A2 =

∫
V(t)

A2ξ dV∫
V(t)

A2 dV
, (4.1)

where ξ ∈ {S̃2, W̃2} for the Cauchy–Stokes decomposition and ξ ∈ {ε̇2, γ̇ 2, ϕ̇2, 2ϕ̇:γ̇ } for
the triple decomposition. Here, we have used that the Frobenius inner product, denoted
by :, of a symmetric tensor with an antisymmetric tensor is zero and that γ̇ 2

W = γ̇ 2
S =

γ̇ 2/2. The shear–rotation correlation term, 2ϕ̇:γ̇ = 2ϕ̇z∗ γ̇z∗ > 0, reflects the presence of
shearing in the plane of rigid rotation. All of the relative contributions discussed are
unitarily invariant and, thus, they apply to both the principal coordinates and the global
coordinates. Figure 4 shows how these relative contributions evolve during the simulation
for both decompositions ofÃ.

Consistent with the equivalence of ΦS and ΦW for incompressible flows on unbounded
domains (Serrin 1959), 〈S̃2〉A2 ≈ 〈W̃2〉A2 ≈ 0.50 for the present simulations. The largest
deviations from this balance occur during equilibration (t � 0.25t∗) and around the time
of peak dissipation (t ≈ t∗). These deviations are consistent with the behaviour of the
effective Reynolds numbers in figure 2 and their smallness further validates the ability
of the finite computational grid to approximate a formally unbounded flow. However,
since 〈S̃2〉A2 and 〈W̃2〉A2 remain relatively constant throughout the simulation, they provide
limited information about the nature of the velocity gradients as the flow progresses
through its initial, transitional and turbulent regimes.

Compared with the constituents of the Cauchy–Stokes decomposition, the constituents
of the triple decomposition show more pronounced variations associated with the different
regimes of evolution. For the initial Gaussian vorticity profiles, the contribution of rigid
rotation to the enstrophy dominates the contribution of antisymmetric shearing. During
equilibration (t � 0.25t∗), the fluctuations in all contributions of the triple decomposition
constituents reflect the redistribution of velocity gradients in the cores of the vortex rings.
As the equilibrated rings approach the collision plane and spread (0.25t∗ � t � 0.75t∗),
〈ε̇2〉A2 and 〈ϕ̇2〉A2 decrease and 〈γ̇ 2〉A2 and 2〈ϕ̇:γ̇ 〉A2 increase. As the elliptic instability
emerges, these contributions level off in a regime where antisymmetric shearing dominates
rigid rotation and shear–rotation correlations are enhanced. The subsequent development
of the elliptic instability (0.75t∗ � t � 0.90t∗) is marked by slight rebounds in the
contributions of 〈ϕ̇2〉A2 and 〈γ̇ 2〉A2 . These rebounds are associated with the emergence
of secondary vortex filaments and, hence, the nonlinear evolution of the elliptic instability.
The transition to turbulence (0.90t∗ � t � t∗), which is associated with the generation
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Figure 4. Relative contributions of the constituents of the Cauchy–Stokes decomposition and the triple
decomposition to A2. The vertical lines correspond to the reference times in table 1 and they are coloured
accordingly.

Constituent 〈ε̇2〉A2 〈γ̇ 2〉A2 〈ϕ̇2〉A2 2〈ϕ̇:γ̇ 〉A2

Present vortex ring collision 28.0 % 44.6 % 13.3 % 14.1 %
Forced isotropic turbulence (Das & Girimaji 2020b) 24 % 52 % 11 % 13 %

Table 2. Comparison of the equilibrium partitioning of the velocity gradients for the present vortex ring
collision with the partitioning computed for forced isotropic turbulence (Das & Girimaji 2020b). Here, the
equilibrium partitioning is computed as the mean over the turbulent decay regime (t � t∗) and it is insensitive
to the length of the averaging interval.

of small scales and enhanced dissipation, is marked by a decrease in the contribution of
2〈ϕ̇:γ̇ 〉A2 .

Remarkably, even though the flow is not stationary during turbulent decay, the relative
contributions of the constituents of the triple decomposition to the strength of the velocity
gradients remain roughly constant after transition. Further, as summarized in table 2, these
‘equilibrium’ relative contributions are similar to those computed by Das & Girimaji
(2020b) for forced isotropic turbulence at high Taylor-scale Reynolds numbers. This
agreement suggests that the velocity gradient partitioning may encode a relatively common
balance in unbounded, incompressible turbulence with appropriate symmetries. In this
balance, shearing makes the largest contribution to the velocity gradients and rigid rotation
makes the smallest contribution.

Beyond the strength of velocity gradients, it is also useful to examine the interplay
between the modes of deformation in the context of vortical flow structures. Here, we
introduce a new phase space defined by the relative contributions of 〈γ̇ 2

W〉A2 , 〈ϕ̇2〉A2
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Velocity gradient analysis of a vortex ring collision

and (implicitly) 2〈ϕ̇:γ̇ 〉A2 to 〈W̃2〉A2 . The upper bound of this phase space is found
by maximizing 〈ϕ̇2〉A2/〈W̃2〉A2 , which occurs when 2〈ϕ̇:γ̇ 〉A2/〈W̃2〉A2 = 0. The bottom
boundary is found by minimizing 〈ϕ̇2〉A2/〈W̃2〉A2 , which occurs when 2〈ϕ̇:γ̇ 〉A2/〈W̃2〉A2 =
2
√

〈ϕ̇2〉A2〈γ̇ 2
W〉A2/〈W̃2〉A2 . Correspondingly, these boundaries may be expressed as

(
1 −

√
〈γ̇ 2

W〉A2

〈W̃2〉A2

)2

≤ 〈ϕ̇2〉A2

〈W̃2〉A2
≤ 1 − 〈γ̇ 2

W〉A2

〈W̃2〉A2
, (4.2)

� �

− 2

(
〈γ̇ 2

W〉A2

〈W̃2〉A2
−
√

〈γ̇ 2
W〉A2

〈W̃2〉A2

)
≥ 2〈ϕ̇:γ̇ 〉A2

〈W̃2〉A2
≥ 0, (4.3)

highlighting that lower and upper bounds of the rigid rotation contribution correspond to
the upper and lower bounds, respectively, of the shear–rotation correlation contribution.
The maximum value of 2〈ϕ̇:γ̇ 〉A2/〈W̃2〉A2 varies along the lower boundary of this phase
space to ensure that the relative contributions sum to unity. The global maximum occurs
when 2ϕ̇:γ̇ /W̃2 = 0.5 or, equivalently, ϕ̇2/W̃2 = γ̇ 2

W/W̃2 = 0.25 at all points, which
corresponds to the (pointwise) maximum of 2ϕ̇:γ̇ = (

√
2 + 1)−1 reported by Das &

Girimaji (2020b). This maximum corresponds to local streamlines in the principal frame
for which shearing occurs exclusively in the plane of rigid rotation.

Figure 5 depicts the trajectory of the flow in this shear–rotation phase space and
elucidates how the relationships between the constituents of enstrophy associated with
the triple decomposition evolve in time. Following rapid variations during equilibration,
the trajectory returns to a position in phase space similar to that of the initial condition at
t ≈ 0.25t∗. The trajectory then undergoes a shift across the phase space as the equilibrated
rings approach the collision plane and spread radially (0.25t∗ � t � 0.75t∗). This shift
from a rigid-rotation-dominated regime to a shearing-dominated regime is associated
with an enhanced contribution from 2〈ϕ̇:γ̇ 〉A2/〈W̃2〉A2 . The development of the elliptic
instability (0.75t∗ � t � 0.90t∗) and transition (0.90t∗ � t � t∗) are associated with a
shift in the direction of the trajectory towards smaller contributions of 2〈ϕ̇:γ̇ 〉A2/〈W̃2〉A2 .
During turbulent decay (t � t∗), the trajectory remains roughly fixed in the phase space
and very close to its position at t = t∗.

Considering this phase space trajectory in the context of the dissipation (see figure 2)
reveals that, while the initial growth in dissipation is associated with enhanced
shear–rotation correlations, its subsequent enhancement during transition is associated
with a reduction in shear–rotation correlations. In Appendix C, we reexamine the
visualizations from figure 3 in terms of the shear–rotation correlations in the flow to
highlight their relationship to the vortical flow structures. In § 5, we interpret the effects
of these shear–rotation correlations using a new, related phase space, based on local
streamline geometry, to characterize the elliptic instability and other mechanisms.

5. Statistical geometry of local streamlines

5.1. Phase space transformations
The elliptic instability is associated with the resonance of the vortical flow with the
underlying strain field and acts to break up elliptic streamlines. Consistent with this picture,
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Figure 5. Shear–rotation phase space trajectory of the flow, highlighting the evolution during equilibration
(left inset) and transition and turbulent decay (right inset). The contours represent increments of 0.05 in the
colour scale. The white circle marks the initial condition and the fill colours of the black circles correspond to
the reference times they represent from table 1.

we introduce a new geometry-based phase space that captures local flow features that (i)
are conducive to the elliptic instability and (ii) characterize its action.

To address (i), we consider the angle, θω, between the vorticity vectors associated with
antisymmetric shearing and rigid rotation, which is given by

θω = cos−1

(√
(ϕ̇:γ̇ )2

ϕ̇2γ̇ 2
W

)
. (5.1)

Our focus on shear straining is consistent with the classical models of strained
vortices used to characterize the elliptic instability (Kerswell 2002). Since decreasing θω

corresponds to increasing the alignment between shearing and rigid rotation, it can be
associated with conditions conducive to the elliptic instability.

To address (ii), we consider the aspect ratio, ζ , of the elliptic component of rotational
local streamlines in the plane of rigid rotation, which is given by

ζ =
√

1 − e2 =
√

ϕ̇2

ϕ̇2 + 2ϕ̇:γ̇
, (5.2)

where e represents the eccentricity of an ellipse with aspect ratio ζ . This aspect ratio
characterizes the scale-invariant geometry of the local streamlines in the plane of rigid
rotation. As such, it can be used alongside θω to characterize the action of the elliptic
instability by identifying how alignment between shearing and rigid rotation affects local
streamline geometry.
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Velocity gradient analysis of a vortex ring collision

The present shear–rotation and geometry-based phase spaces can be understood through
nonlinear transformations of the qA–rA phase space. The transformations we derive express
the relative contributions of the triple decomposition to the velocity gradients using
qA and rA, and they represent the inverse transformations to those presented by Das &
Girimaji (2020b). However, an additional parameter, θω, is generally required to evaluate
our transformations. This extra parameter demonstrates that the invariants of Ã alone
cannot generally characterize the relative contributions of the constituents of the triple
decomposition to the velocity gradients.

For rotational local streamlines, the transformations are given by

ε̇2 = (−3 × 22/3qA + 32/3(2
√

3Δ + 9|rA|)2/3)2

65/3(2
√

3Δ + 9|rA|)2/3
, γ̇ 2 = 2γ̇ 2

W = 1 − 2ε̇2 − 2qA,

ϕ̇2 =
(

−
√

γ̇ 2
W cos θω +

√
1 − ε̇2 − γ̇ 2

W(2 − cos2 θω)

)2

, 2ϕ̇:γ̇ = 2
√

ϕ̇2γ̇ 2
W cos θω,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5.3)

where Δ = qA
3 + 27

4 rA
2 is proportional to the discriminant of the characteristic equation

of Ã. In this case, ε̇2 and γ̇ 2 can be determined directly from qA and rA and ϕ̇2, 2ϕ̇:γ̇ and ζ

can be determined if θω is known. For non-rotational local streamlines, the transformations
are given by

ε̇2 = −2qA, γ̇ 2 = 1 − ε̇2, ϕ̇2 = 0, (5.4a–c)

which can be determined directly from a single parameter, qA. The rotational and
non-rotational transformations are continuous with one another at their boundary (Δ = 0)
and they are both symmetric about the qA-axis. However, the aspect ratio is only well
defined for Δ > 0, consistent with our focus on rotational local streamlines.

In figure 6, we illustrate how ε̇2, γ̇ 2, ϕ̇2, 2ϕ̇:γ̇ and ζ vary within the qA–rA phase space.
In this phase space, the rotational geometries are externally bounded by 3

√
3|rA| = (1 +

qA)(1 − 2qA)1/2 and the non-rotational geometries are externally bounded by qA = −1
2 . For

the rotational geometries, we display ϕ̇2, 2ϕ̇:γ̇ and ζ for θω = 43.57◦, which corresponds
to the mean value at t = 1.25t∗ (see figure 8) and approximates the equilibrium value
during turbulent decay. We document how each of these quantities varies with θω in the
qA–rA phase space in Appendix D.

Figure 6 shows that, generically, the contribution of pure shearing (γ̇ 2) tends to
dominate the velocity gradients near the origin of the qA–rA plane. The contribution of
normal straining (ε̇2) grows large when the velocity gradients are dominated by the strain
rate tensor. By contrast, for rotational geometries, the contribution of rigid rotation (ϕ̇2)
grows large near the external boundary in regions where the vorticity tensor dominates.
The contribution of shear–rotation correlations (2ϕ̇:γ̇ ) grows largest in the intermediate
region of the phase space and it decays near the discriminant line and the external
boundary. The aspect ratio ζ is unity along the external boundary and it decays to zero
at the discriminant line.

The elliptic instability, which is relevant in strained vortical flows, is expected to
be most active for an intermediate range of aspect ratios. Further, vortex stretching
and squeezing, which are known to play important roles in turbulent flows, can most
readily be associated with the SFS and UFC streamline topologies, respectively (Lopez
& Bulbeck 1993). In the corresponding regions in the qA–rA plane, the transformations
in figure 6 suggest that the interplay between shearing and rotation is pertinent to
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Figure 6. The qA–rA phase space (a) and the variations in ε̇2, γ̇ 2, ϕ̇2, 2ϕ̇:γ̇ and ζ in this space when
θω = 43.57◦ is held constant. Panel (a) shows the boundaries corresponding to the symmetry-based (dotted
green) and the geometry-based (solid blue) vortex criteria (see § 1.2). It also labels the four classes of
non-degenerate local streamline topologies: stable-focus–stretching (SFS), unstable-focus–compression (UFC),
stable-node–saddle-saddle (SNSS) and unstable-node–saddle-saddle (UNSS).

these fundamental turbulent processes. Within this context, the transformations have the
potential to characterize the role of the elliptic instability, among other mechanisms, in
mediating such processes. In what follows, we investigate this premise by analysing the
evolution of the velocity gradient distributions in the qA–rA, shear–rotation and ζ–θω phase
spaces.

5.2. Phase space distributions
The joint probability density functions (p.d.f.s) of the normalized velocity gradients in
the phase spaces we investigate encode information about the local streamline geometries.
Although these phase spaces are related to one another, the choice of phase space plays
an important role in interpreting the statistical distributions of the flow. In the qA–rA
phase space, incompressible turbulent flows often follow a near-universal teardrop-like
distribution about the origin (Das & Girimaji 2019, 2020a). The shear–rotation phase
space highlights the distribution of rotational streamline geometries and it characterizes
the interplay of rigid rotation and antisymmetric shearing. The ζ–θω phase space also
considers rotational streamline geometries and it characterizes the flow in terms of
geometric features of local streamlines that are associated with the elliptic instability.

Figure 7 shows the qA–rA and the shear–rotation phase space distributions at reference
times, selected from table 1, that pertain to the development of the elliptic instability,
transition and turbulent decay. As the elliptic instability emerges (t ≈ 0.75t∗), the velocity
gradients are concentrated near the qA-axis. Since 2〈ϕ̇:γ̇ 〉A2 is relatively large around this
time, the rotational regions of the flow are concentrated near the bottom boundary of the
shear–rotation phase space, particularly near the location where 2〈ϕ̇:γ̇ 〉A2 is maximized.
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Figure 7. Joint p.d.f.s of the velocity gradients satisfying A2/max(A2) ≥ 0.1 % in the qA–rA phase space
(a) and W2/max(W2) ≥ 0.1 % in the shear–rotation phase space (b) at times t = 0.75t∗, 0.90t∗, 1.00t∗ and
1.25t∗ (from top to bottom). The blue triangles represent the centroids of the distributions and the magenta
contours represent the p.d.f. levels for which 90 % of the flow (by volume) resides at higher p.d.f. levels. These
contours are smoothed by using coarser p.d.f. bins to ensure that they roughly enclose the regions with higher
p.d.f. levels.
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As the flow transitions (t ≈ 0.90t∗), the distribution remains centred about the qA-axis
but it expands towards larger |rA| as it begins to fill the qA–rA phase space. Similarly, the
p.d.f. in the shear–rotation phase space begins extending away from the bottom boundary
of the phase space, although its bulk remains concentrated at the boundary. The broadening
p.d.f.s represent the generation of more diverse local streamline topologies (see figure 6),
which is consistent with the formation of more complex vortical structures (see figure 3).

At the time of peak dissipation (t ≈ t∗), the distributions populate nearly all of the
area in both the phase spaces. During the subsequent turbulent decay (as shown for
t ≈ 1.25t∗), the flow approaches its equilibrium distributions in both phase spaces, which
remain similar to the distributions for t ≈ t∗. In the qA–rA phase space, the equilibrium
p.d.f. above the rA-axis is concentrated slightly left of the qA-axis. This slight preference
of the SFS topology is consistent with the typical presence of positive vortex stretching
in regions of turbulent flows with rotational geometries. Below the rA-axis, the p.d.f. is
concentrated along the discriminant line for rA > 0. The equilibrium distribution of our
vortex ring collision in this phase space is similar to the near-universal teardrop-like shapes
reported previously for forced isotropic turbulence (Das & Girimaji 2019, 2020a). This
similarity suggests that, in addition to the velocity gradient partitioning (see table 2), the
teardrop-like distribution may be more broadly applicable to incompressible flows with
appropriate symmetries.

The p.d.f.s in the shear–rotation phase space evolve similarly to those in the qA–rA phase
space (e.g. by broadening) and specifically highlight rotational geometries. However, the
difference between vortex stretching and squeezing, which is encoded in the sign of the real
eigenvalue of the VGT, cannot be distinguished in this phase space since its constituents
are non-negative. The high concentration of the p.d.f.s near the lower corner of this phase
space, representing the origin of the qA–rA phase space, shifts the centroids accordingly and
highlights the importance of shearing in the generation and evolution of turbulent flows.
The equilibrium distribution remains relatively concentrated about the lower boundary
of this phase space, including regions where 2〈ϕ̇:γ̇ 〉A2 is relatively large. This behaviour
highlights the potential for the elliptic instability to be active during turbulent decay, but
the breadth of the distribution suggests it may not be a completely dominant mechanism
driving turbulent flow in rotational regions.

To further investigate the evolution of the flow in the context of the elliptic instability,
we again consider the relationship between the ζ–θω and shear–rotation phase spaces.
Using θω and ζ , the constituents of the shear–rotation phase space and the corresponding
shear–rotation correlation term and vortex identification criterion are given by

ϕ̇2

W̃2
= 4ζ 4 cos2 θω

1 + (−2 + 4 cos2 θω)ζ 2 + ζ 4 ,
γ̇ 2

W

W̃2
= (1 − ζ 2)2

1 + (−2 + 4 cos2 θω)ζ 2 + ζ 4 ,

2ϕ̇:γ̇

W̃2
= 4ζ 2 cos2 θω(1 − ζ 2)

1 + (−2 + 4 cos2 θω)ζ 2 + ζ 4 , Ωr =

⎛⎜⎝1 +
⎛⎝1 −

√
ϕ̇2

W̃2

⎞⎠2
⎞⎟⎠

−1

.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.5)

Figure 8 shows the p.d.f.s of the velocity gradients alongside the distributions of 2ϕ̇:γ̇ /W̃2

and Ωr in the geometry-based phase space at the same times as those in figure 7.
As the elliptic instability emerges (t ≈ 0.75t∗), the p.d.f. is highly concentrated at small

values of θω over a broad range of ζ . This distribution is consistent with the enhancement
of 2〈ϕ̇:γ̇ 〉A2 around this time (see figure 4) and reflects conditions conducive to the elliptic
instability. The centroid of the distribution is located around ζ ≈ 0.5, which suggests
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Figure 8. Joint p.d.f.s (a–d) of the velocity gradients in the ζ–θω phase space at the same times, at the same
points and in the same style as those in figure 7. The bottom plots superimpose the 90 % contours and centroids
for t = 0.75t∗ (red) and t = 1.25t∗ (black) on 2ϕ̇:γ̇ /W̃2 (e) and on Ωr ( f ), as given by (5.5).

that rotational streamlines with this aspect ratio may be particularly susceptible to these
conditions.

During transition (t ≈ 0.90t∗), the distribution broadens to a much larger range of
θω and, at the high end of this range, ζ becomes increasingly correlated with θω.
This broadening reflects the diversification of rotational local streamline topologies to
include those for which shearing and rigid rotation are not well aligned. However, despite
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this broadening, the p.d.f. is still concentrated at small θω. This behaviour is consistent
with the importance of the elliptic instability during transition (see Appendix B).

During turbulent decay (t � t∗), the features of the p.d.f. are relatively invariant in time.
In the equilibrium distribution (approximated at t ≈ 1.25t∗), the centroid is located around
θω ≈ 44◦, which is considerably larger than its value (θω ≈ 3◦) at t = 0.75t∗. Further, the
90 % contour of the p.d.f. spans nearly the entire range of θω and highlights a well-defined
sharpening in the correlation of ζ with θω with increasing θω. The upper limit (θω, ζ ) =
(90◦, 1) corresponds to circular local streamlines in the plane of rigid rotation subject to
out-of-plane shearing.

The shifts in the centroid and the 90 % contour support the hypothesis that, while
the elliptic instability still plays a role in the turbulent regime, other mechanisms also
contribute significantly to the local flow structure. Specifically, they suggest that, in
addition to the breakup of elliptic streamlines via the elliptic instability, the deformation
of vortices, e.g. through the action of the Crow instability, may play an important role
during turbulent decay. As discussed in Appendix C, the partitioning of shear–rotation
correlations between the cores and boundaries of vortices in the flow (see figure 12)
provides an interesting opportunity for analysing these mechanisms. Given current
challenges in disentangling the elliptic and Crow instabilities in turbulent flows (Mishra
et al. 2021; Ostilla-Mónico et al. 2021), the present geometry-based (ζ–θω) phase space
has the potential to help distinguish flow features associated with these ubiquitous
mechanisms.

Altogether, the results in this section reinforce the notion that the elliptic instability
is the dominant mechanism mediating the transition of the present vortex ring collision.
They also support the notion that, after transition, the elliptic instability is no longer a
strictly dominant mechanism underlying the turbulent decay of the flow. The results point
to increased contributions from rotational geometries with out-of-plane shearing, which
may reflect interactions associated with mechanisms like the Crow instability. The results
also highlight the ability of the new shear–rotation and geometry-based phases spaces to
characterize the relative contributions of different modes of deformation and rotational
features of local streamlines, respectively.

6. Conclusions

We use a recently developed adaptive, multiresolution numerical scheme based on the
LGF to efficiently simulate the head-on collision between two vortex rings at a relatively
high Reynolds number (ReΓ0 = 4000). The fidelity of this simulation is confirmed
using various integral metrics that reflect the symmetries, conservation properties and
discretization errors of the flow. We provide a detailed analysis of the initial evolution,
transition and turbulent decay of the flow to elucidate flow features that are pertinent to
the mechanisms driving its evolution, e.g. the elliptic instability.

Our visualizations of vortex structures enable qualitative characterizations of the various
regimes through which the flow evolves. They depict the short-wave elliptic instability as
the mechanism driving the initial transition of the rings as they merge at the collision
plane. Consistent with previous studies (McKeown et al. 2020; Mishra et al. 2021), late
transition and (to a lesser extent) turbulent decay are mediated by antiparallel secondary
vortex filaments that arise from local interactions associated with the elliptic instability.
We confirm that the elliptic instability dominates transition by analysing the scales of
dominant wave-like perturbations in that regime. During turbulent decay, we observe
local ejections of vortex rings in regions where antiparallel vortex filaments interact.
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Velocity gradient analysis of a vortex ring collision

This observation supports the notion that interplay between the elliptic and Crow
instabilities can impact vortex interactions, consistent with previous findings (Mishra et al.
2021; Ostilla-Mónico et al. 2021).

Our analysis of the flow centres around using the triple decomposition of the VGT to
characterize the contributions of axial straining, shearing, rigid rotation and shear–rotation
correlations to the velocity gradients. The mutual interaction of the rings is marked by the
development of shearing-dominated vorticity and enhanced shear–rotation correlations,
reflecting conditions conducive to the elliptic instability. These conditions are consistent
with the initial elliptic instability observed in our visualizations and previously in similar
configurations (McKeown et al. 2020; Mishra et al. 2021). During turbulent decay, the
relative contributions of the different modes of deformation to the velocity gradient
strength (which is not stationary) are roughly invariant in time, suggesting an equilibrium
partitioning of the VGT. This equilibrium partitioning is remarkably similar to the
partitioning observed for forced isotropic turbulence (Das & Girimaji 2020b), suggesting
that it may provide a broadly applicable avenue for modelling incompressible flows with
appropriate symmetries.

During the transition and turbulent decay of the flow, we also consider instantaneous
distributions of the velocity gradients in various phase spaces. The broadening of
the phase space distributions in these regimes reflects the generation of more diverse
local streamline topologies. The distributions in the qA–rA phase space show that the
present vortex ring collision produces velocity gradients that follow the near-universal
teardrop-like distribution observed previously for forced isotropic turbulence (Das
& Girimaji 2019, 2020a). In addition to the qA–rA phase space, we introduce the
shear–rotation phase space to characterize the interplay of shearing and rigid rotation
in rotational settings and highlight the role of their correlations during transition and
turbulent decay.

Finally, we introduce a geometry-based (ζ–θω) phase space to further characterize the
action of the elliptic instability (and other mechanisms) during transition and turbulent
decay. As the rings interact, the emergence of the elliptic instability spurring transition is
associated with the alignment of shearing and rigid rotation (θω ≈ 3◦). In this regime,
the elliptic local streamlines in the plane of rigid rotation have aspect ratios centred
about ζ ≈ 0.5. During late transition and turbulent decay, the generation and interaction
of secondary vortical structures broadens the distribution to include larger θω, and the
equilibrium distribution is ultimately centred near θ ≈ 44◦. In this regime, regions with
high θω and high ζ become increasingly correlated as they approach (θω, ζ ) = (90◦, 1).
In conjunction with our visualizations, these results suggest that proximity to vortex cores
and boundaries may be a useful tool for modelling the interplay between mechanisms
such as the elliptic and Crow instabilities. As a whole, the geometry-based phase space we
introduce has the potential to help distinguish effects associated with the elliptic instability
(small θω) and other mechanisms, which is an ongoing challenge for turbulent flows driven
by interacting vortex filaments (Mishra et al. 2021; Ostilla-Mónico et al. 2021).

Moving forward, the VGT phase spaces we introduce may provide a useful setting for
analysing a broad class of turbulent flows. For vortex ring collisions, analysing regimes
where the Crow instability dominates the elliptic instability would clarify the extent to
which the phase spaces can disambiguate these mechanisms. More generally, it would
also be useful to identify the conditions under which (i) the equilibrium partitioning
of the VGT (Das & Girimaji 2020b) and (ii) the teardrop-like distribution in the qA–rA
phase space (Das & Girimaji 2019, 2020a) are applicable. The present VGT analyses are
limited by the local, instantaneous nature of the streamline geometries under consideration.
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It would be interesting to generalize these analyses to capture features that are non-local
and that persist in time.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.90.
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Appendix A. Computational formulation

Here, we briefly document the adaptive computational framework. We refer to Yu et al.
(2022) for a detailed description of the framework and a discussion of its novel aspects.

The non-dimensional, incompressible NSE are given by

∂tu + (u · ∇)u = −∇p + 1
Re

∇2u, ∇ · u = 0, (A1a,b)

where u = (u, v, w) is the velocity, p is the pressure, t denotes time and Re is the
Reynolds number. We focus particularly on the class of unbounded flows obeying the
following far-field boundary conditions: u(x, t) → 0, p(x, t) → p∞ and ω(x, t) → 0
(exponentially) as |x| → ∞. These boundary conditions differ slightly from the more
generic (time-varying) free-stream conditions considered by Liska & Colonius (2016).
For the present simulations, variables are non-dimensionalized using the initial radius and
circulation of each vortex ring (R0 and Γ0, respectively) and Re is given by the initial
circulation Reynolds number (ReΓ0).

The NSE are spatially discretized on the composite grid, which contains a series of
uniform staggered Cartesian meshes with increasing resolution. Figure 9 depicts the
locations of various vector and scalar flow variables on the cells of these meshes. We use
Q ∈ {C,F , E,V} to denote operations that are constrained to the corresponding locations
on the cells. The semi-discrete NSE on the composite grid are given by

du

dt
− N(u) = −Gptot + 1

Re
LFu, Du = 0, (A2a,b)

where we represent discretized variables and operators using sans-serif symbols, which are
bold in vector settings and non-bold in scalar settings. Here, G, D, L and N represent the
discrete forms of the gradient, divergence, Laplace and nonlinear operators, respectively.
We have used the rotational form of the convective term in (A2a) such that ptot =
p + 1

2 |u|2 discretely represents the total pressure perturbation and N(u) = r discretely
represents the Lamb vector, r = u × ω.

The semi-discrete momentum equations, subject to the continuity constraint, are
integrated in time using the IF-HERK method (Liska & Colonius 2016; Yu et al. 2022).
This method combines an integrating factor (IF) technique for the viscous term with
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Figure 9. Unit cells of the staggered Cartesian grid at the base and refinement levels of the mesh, showing
the locations of relevant flow variables.

a half-explicit Runge–Kutta (HERK) technique for the convective term. In the HERK
time-stepping scheme (Brasey & Hairer 1993; Liska & Colonius 2016; Yu et al. 2022),
the task of integrating (A2a,b) at each time step is subdivided into Nstage stages. Using
a block lower–upper (LU) decomposition and the mimesis and commutativity properties
of the relevant operators, the subproblem associated with stage i of the HERK scheme is
formulated on the composite grid as

LCpi
tot = f i = Dr i, ui = H i

F (r i − Gpi
tot). (A3a,b)

Here, H represents the IF operator and f = Dr approximately represents the divergence
of the Lamb vector. For brevity, we omit the exact dependencies of r i on various flow
variables from stages 1 to i of the HERK scheme. We refer to the formulation in § 2.4 of
Yu et al. (2022) for these details and for the corresponding Butcher tableau.

While the discrete operators in (A2a,b) and (A3a,b) are formally defined on the
unbounded composite grid, they are practically applied to the finite subset representing the
AMR grid. The operator RQ restricts variables from the composite grid (·) to the AMR
grid as (̂·) = RQ(·). In the other direction, the operator PQ approximates variables on the
composite grid using the values on the AMR grid as (·) ≈ PQ(̂·). Using these operators,
solutions to the subproblems associated with each stage of the HERK formulation in
(A3a,b) can be approximated on the AMR grid.

The two steps of each subproblem in (A3a,b) involve (i) solving the discrete pressure
Poisson equation and (ii) applying the IF to recover the velocity. The solution to the
pressure Poisson equation on the AMR grid can be expressed as

p̂i
tot = RCGC ∗ f i = RCL−1

C f i ≈ RCL−1
C PC f̂ i, (A4)

where GC is the LGF and ∗ represents the discrete convolution. We efficiently evaluate
(A4) using a fast multipole method (Liska & Colonius 2014; Dorschner et al. 2020) that
accelerates solutions by incorporating summation techniques based on the fast Fourier
transform. This method is key to enabling the linear algorithmic complexity and high
parallel efficiency of the flow solver. The application of the IF operator can similarly be
expressed as

ûi = RFH i
F (r i − Gpi

tot) ≈ RFH i
FPF (r̂ i − ̂Gpi

tot), (A5)

where ̂Gpi
tot = RCGpi

tot. The application of the IF operator represents a convolution with
an exponentially decaying kernel and it can also be evaluated using fast LGF techniques
(Liska & Colonius 2016; Yu et al. 2022).
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At each time step, the simulation adapts the extent of the AMR grid and adaptively
refines regions within the AMR grid according to the spatial adaptivity and mesh
refinement criteria, respectively. The spatial adaptivity criterion sets the boundaries of the
AMR grid to capture regions where the source of the pressure Poisson equation exceeds a
threshold, εadapt, relative to its maximum value in the domain. In other words, the AMR
grid is adaptively truncated to capture the subset of the unbounded domain satisfying

|f(x, t)| < εadapt‖f‖∞(t), (A6)

where εadapt = 10−6 for the present simulation. One caveat is that the IF convolution
involves a velocity source that decays slower than vorticity. Correspondingly, its evaluation
requires the velocity field in a slightly extended domain based on a cutoff distance that
is selected to capture the IF kernel with high accuracy. For the present simulation, the
initial rectangular domain is large enough to contain as a subset the domain satisfying the
adaptivity criterion (A6).

At each level k of the AMR grid, the mesh refinement criteria are formulated in terms of
a combined source, fk(t), which includes the source of the pressure Poisson equation and
a correction term. The correction term accounts for the differences between the partial
solutions on the coarse and fine grids and it is evaluated using an extended region that
can overlap with neighbouring levels. We refer to Yu et al. (2022) for the details of its
formulation and implementation, which we omit for brevity. Using the combined source,
a region is refined or coarsened when

fk(x, t) > αNlevel−kfmax(t) or fk(x, t) < βαNlevel−kfmax(t), (A7)

respectively, where α ∈ (0, 1) and β ∈ (0, 1) and we select α = 0.125 and β = 0.875
for the present simulation. In these criteria, the combined source is evaluated relative to
its maximum blockwise root-mean-square (BRMS) value computed over all blocks and
previous times, which is expressed as

fmax(t) = max
τ<t

BRMS(fk(x, τ )). (A8)

Appendix B. Instability development during transition

Whereas the short-wave elliptic instability has a wavelength of the order of the vortex
core radius, a(t), the long-wave Crow instability occurs at wavelengths much larger than
a(t) (Leweke et al. 2016; McKeown et al. 2020; Mishra et al. 2021). Here, we track the
development of wave-like instabilities around the azimuth of the ring at the reference times
from table 1 associated with the transition to turbulence. Figure 10 shows closeups of the
vortical flow structures at these times from the auxiliary viewpoint in figure 3.

The dominant scales of the wave-like perturbations are identified by decomposing the
flow into azimuthal Fourier modes, which are denoted using ˆ(·) and have corresponding
wavenumbers m. To obtain these Fourier modes, we linearly interpolate the flow at the
finest level of the AMR grid to a uniform cylindrical grid. This uniform grid is discretized
into Nθ = 1001 points in the azimuthal direction and it has spacings, runi = zuni =
0.01, that are consistent with that of the finest level, xfine = 0.01. In the following
analysis, we limit our consideration to (r, z) pairs for which 〈ω2

z 〉θ exceeds 10 % of
maxr,z〈ω2

z 〉θ , where 〈·〉θ denotes azimuthal averaging.
As depicted in figure 11, we characterize instability development using two flow

variables. First, following previous studies (McKeown et al. 2020; Mishra et al. 2021),
we approximate the positions, X+ and X−, of the vortex cores by identifying the
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t = 0.75t∗ t = 0.90t∗ t = 0.95t∗ t = 1.00t∗
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z

Figure 10. Magnified versions of the auxiliary viewpoints in figure 3 at the reference times associated with
instability growth and transition.
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Figure 11. Fourier coefficient amplitudes: |ω̂z| (coloured by radial displacement from R̄p) and |R̂p| (black). At
each of the reference times shown, δ represents the average slenderness ratio of the vortex rings. The values
of |ω̂z| at wavenumbers pertinent to instability development are marked by symbols and the shaded regions
represent wavenumbers for which C > 10.

locations of the pressure minima for z > 0 and z < 0, respectively. The radial perturbations
of these cores, R+

p (θ) and R−
p (θ), about their mean radial positions, R̄+

p and R̄−
p ,

characterize the interactions between the rings. We measure the strength of the vortex
core perturbations using |R̂p| = [(|R̂+

p |2 + |R̂−
p |2)/2]1/2. Second, we consider ωz since it

captures the antiparallel vortex structures that develop around the ring during transition.
The Fourier coefficient amplitudes of the corresponding perturbations, |ω̂z|, are coloured
according to their displacement from average vortex ring radius, R̄p = (R̄+

p + R̄−
p )/2.

To characterize the wavelengths of the dominant perturbations in terms of the elliptic
and Crow instabilities, we estimate the core radii, a+ and a−, of the vortex rings at each
reference time. Following McKeown et al. (2020), we fit a two-dimensional Gaussian

982 A16-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.90


R. Arun and T. Colonius

function to the vortex core profiles, 〈ωθ 〉θ , for each ring. However, whereas McKeown
et al. (2020) estimated the core radii by averaging the standard deviations of the Gaussian
fits, σ±

min and σ±
max, we instead estimate the core radii as a± = [(σ±

min)
2 + (σ±

max)
2]1/2.

Our estimates produce core radii that are consistent with the definition in (1.1) for Gaussian
vortex rings. Hence, we correctly identify a0 = 0.2 for the initial condition, which is larger
than the alternate core radius definition (McKeown et al. 2020; Ostilla-Mónico et al.
2021) by a factor of

√
2. We compute the average slenderness ratio of the vortex rings as

δ = (δ+ + δ−)/2, where δ± = a±/R̄±
p . This definition is consistent with the Gaussian fits

we consider since the radial locations of their centroids coincide with R̄±
p to within 0.38 %.

The average ratio of the perturbation wavelength to the core thickness can be expressed as
C = (C+ + C−)/2, where C± = 2π/mδ±. Here, we loosely associate C > 10 and C < 10
with the Crow and elliptic instabilities, respectively.

At t = 0.75t∗, the wavenumber (m = 36) of the largest ω̂z perturbation corresponds
to C = 5.08. A similar value, C = 5.38, is obtained at t = 0.90t∗ for the m = 52
perturbation. However, m = 76 represents the largest perturbation at both t = 0.90t∗ and
t = 0.95t∗, for which C = 3.68 and 3.97, respectively. At each of these times, the dominant
short-wave perturbations are of the order of the core thickness. This result suggests that
the corresponding development of secondary antiparallel vortex filaments (see figure 10)
can be associated with the development of the elliptic instability.

The vortex core perturbations further support the notion that the elliptic instability
is the dominant mechanism in the transitional regime. The perturbations at t = 0.75t∗
are too small, relative to runi = 0.01, to resolve. The dominant core perturbations are
resolved for t = 0.90t∗ and t = 0.95t∗ and, consistent with the vorticity perturbations,
they are largest at m = 52 and m = 76. For both ω̂z and R̂p, we also observe prominent
perturbations at m = 80, but we do not speculate on their source.

For a similar vortex ring collision with ReΓ0 = 3500 and δ0 = 0.1, Mishra et al.
(2021) attributed the growth of the m = 40 mode to the elliptic instability in a regime
where 2πRp(t)/m ≈ 0.2–0.4. Employing a crude volume-conserving approximation for
the vortex cores (McKeown et al. 2020; Mishra et al. 2021), the core radii can be

modelled as a± = a0

√
R0/R±

p , which suggests that C ≈ 2.26–6.38 in that regime. Hence,
the scales of the dominant perturbations relative to the core thickness in the present
case are consistent with those previously attributed to the elliptic instability in a similar
collision.

At t = t∗, we remarkably observe that the dominant ω̂z perturbation occurs at m = 152,
which is the second harmonic of the m = 76 perturbation that governed the generation
of secondary vorticity. This observation suggests that the elliptic instability retains an
important role in mediating the production of subsequent generations of vortical structures
at progressively smaller scales. It thus qualitatively supports the initial stages of iterative
elliptic instability scenario leading to the generation of turbulence (McKeown et al. 2020).
Identifying the later stages of this pathway would require a more refined analysis of the
orientation of each generation of vortices relative to previous generations.

Although perturbations for which C > 10 are non-negligible, their signatures in ω̂z are
not as prominent as those for which C < 10. This observation supports the notion that
the Crow instability plays a secondary role to the elliptic instability in the transitional
regime, consistent with previous studies in similar configurations (McKeown et al. 2020;
Mishra et al. 2021). Nevertheless, especially as the flow becomes turbulent, the broadening
range of active scales obscures the interplay between these mechanisms. As this occurs,
the vortex core perturbations gain significant energy at lower wavenumbers (C > 10),
indicating that long-wave mechanisms like the Crow instability may become important.
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Figure 12. Visualizations of the vortex boundaries (Ωr = 0.52, left side) and vortex cores (Ωr = 0.93, right
side), coloured by 2ϕ̇:γ̇ /W̃2, for each reference time from table 1. A movie depicting the evolution of the vortex
boundaries from the auxiliary viewpoint (leftmost column) is provided as supplementary material.

Altogether, while relatively limited, the present analysis of instability development
confirms the pre-eminence of the elliptic instability during transition and supports our
interpretation of the corresponding velocity gradients.

Appendix C. Shear–rotation correlations and vortical flow structures

The visualizations in figure 3 help identify antiparallel vortex filaments and interactions
between vortices, but the comparisons between the vortex boundary (Ωr = 0.52) and core
(Ωr = 0.93) structures provide relatively little information. In figure 12, we visualize the
same vortex structures but instead colour them using 2ϕ̇:γ̇ /W̃2 to probe how conditions
conducive to the elliptic instability are structured throughout the vortices in the flow.
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Figure 13. Transformations to ϕ̇2, 2ϕ̇:γ̇ and ζ from the qA–rA phase space for various alignment angles, θω.
The plots are in the same style as those in figure 6.

As the vortex boundaries merge and expand radially, the shear–rotation correlations are
relatively large at the collision plane and the outer boundaries in z and they are relatively
small at the inner and outer boundaries in the radial direction. This structuring illustrates
how shear–rotation correlations are especially enhanced in regions where the vortex
boundaries become thinner, corresponding to the shift from a rigid-rotation-dominated
regime to a shearing-dominated regime. During transition, the secondary vortex filaments
are initially associated with relatively high and low shear–rotation correlations near
their boundaries and cores, respectively. As the turbulence develops, this structuring of
2ϕ̇:γ̇ /W̃2 within the vortices remains similar to that of the secondary vortices mediating
transition.

This persistent partitioning opens up an interesting possibility of analysing the action of
various mechanisms (e.g. the elliptic and Crow instabilities) in turbulent flows based on
their proximity to vortex cores. For example, the phase space transformations in § 5 can be
used to characterize local streamline geometries throughout vortices using the structure of
the shear–rotation correlations. Consistent with the transformations depicted in figure 8,
our results suggest that local streamlines are more elliptic near vortex boundaries and
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more circular near vortex cores. This conceptual picture is consistent with the notion that
the breakup and displacement of vortex core structures can be loosely associated with the
elliptic and Crow instabilities, respectively.

Appendix D. Effect of shear–rotation alignment

Here, we characterize the effect of the alignment between shearing and rigid rotation,
as measured by θω, on the phase space transformations associated with rotational local
streamline geometries. Figure 13 depicts how the corresponding transformations vary
with θω in the qA–rA phase space. When θω = 90◦, shearing and rigid rotation occur in
orthogonal planes. In this case, 2ϕ̇:γ̇ = 0, ζ = 1, and the region where ϕ̇2 dominates A2

extends the furthest from the external boundary of the phase space. When θω = 45◦, the
regions where ϕ̇2 and ζ are large concentrate more sharply near the external boundary
and 2ϕ̇:γ̇ grows in the intermediate region between the boundaries of the rotational
geometries. The concentration of ϕ̇2 and ζ and the amplification of 2ϕ̇:γ̇ are most extreme
when θω = 0◦. In this case, the peak contribution of 2ϕ̇:γ̇ is (

√
2 + 1)−1 (Das & Girimaji

2020b) and, for all θω < 90◦, it occurs when rA = 0. The location of this maximum
approaches qA → 1

4 as θω → 90◦ and qA → 1
2
√

2
as θω → 0◦. The qualitative features of

the distributions vary more significantly from θω = 90◦ to θω = 45◦ than they do from
θω = 45◦ to θω = 0◦.
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