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Moments and Tails

In this chapter, we look at the moments of a random variable. Specifically, we demonstrate
that moments capture useful information about the tail of a random variable while often be-
ing simpler to compute or at least bound. Several well-known inequalities quantify this intui-
tion. Although they are straightforward to derive, such inequalities are surprisingly powerful.
Through a range of applications, we illustrate the utility of controlling the tail of a random
variable, typically by allowing one to dismiss certain “bad events” as rare. We begin in
Section 2.1 by recalling the classical Markov and Chebyshev inequalities. Then we discuss
three of the most fundamental tools in discrete probability and probabilistic combinatorics.
In Sections 2.2 and 2.3, we derive the complementary first and second moment methods, and
give several standard applications, especially to threshold phenomena in random graphs and
percolation. In Section 2.4, we develop the Chernoff–Cramér method, which relies on the
moment-generating function and is the building block for a large class of tail bounds. Two
key applications in data science are briefly introduced: sparse recovery and empirical risk
minimization.

2.1 Background

We start with a few basic definitions and standard inequalities. See Appendix B for a re-
fresher on random variables and their expectation.

2.1.1 Definitions

Moments As a quick reminder, let X be a random variable with E|X |k < +∞ for some
non-negative integer k. In that case we write X ∈ Lk . Recall that the quantities E[X k] and
E[(X −EX )k], which are well defined when X ∈ Lk , are called, respectively, the kth moment
and kth central moment of X . The first moment and the second central moment are known MOMENTS

as the mean and variance, the square root of which is the standard deviation. A random
variable is said to be centered if its mean is 0. Recall that for a non-negative random variable
X , the kth moment can be expressed as

E[X k] =
∫
+∞

0
k xk−1P [X > x] dx. (2.1.1)

The moment-generating function (or exponential moment) of X is the function MOMENT-
GENERATING

FUNCTIONMX (s) := E
[
esX
]

,
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22 Moments and Tails

defined for all s ∈ R where it is finite, which includes at least s = 0. If MX (s) is defined on
(−s0, s0) for some s0 > 0, then X has finite moments of all orders, for any k ∈ Z,

dk

ds
MX (s) = E

[
X kesX

]
, (2.1.2)

and the following expansion holds

MX (s) =
∑
k≥0

sk

k!
E[X k], |s| < s0.

The moment-generating function plays nicely with sums of independent random variables.
Specifically, if X1 and X2 are independent random variables with MX1 and MX2 defined over
a joint interval (−s0, s0), then for s in that interval,

MX1+X2 (s) = E
[
es(X1+X2)

]
= E

[
esX1 esX2

]
= E

[
esX1

]
E
[
esX2

]
= MX1 (s)MX2 (s), (2.1.3)

where we used independence in the third equality.
One more piece of notation: if A is an event and X ∈ L1, then we use the shorthand

E[X ; A] = E[X 1A].

Tails We refer to a probability of the form P[X ≥ x] as an upper tail (or right tail) prob-TAIL

ability. Typically, x is (much) greater than the mean or median of X . Similarly, we refer to
P[X ≤ x] as a lower tail (or left tail) probability. Our general goal in this chapter is to bound
tail probabilities using moments and moment-generating functions.

Tail bounds arise naturally in many contexts, as events of interest can often be framed
in terms of a random variable being unusually large or small. Such probabilities are often
hard to compute directly however. As we will see in this chapter, moments offer an effective
means to control tail probabilities for two main reasons: (i) moments contain information
about the tails of a random variable, as (2.1.1) makes explicit for instance; and (ii) they are
typically easier to compute – or, at least, to approximate.

As we will see, tail bounds are also useful to study the maximum of a collection of random
variables.

2.1.2 Basic Inequalities

Markov’s inequality Our first bound on the tail of a random variable is Markov’s inequality.
In words, for a non-negative random variable, the heavier the tail, the larger the expectation.
This simple inequality is in fact a key ingredient in more sophisticated tail bounds, as we
will see.

Theorem 2.1.1 (Markov’s inequality). Let X be a non-negative random variable. Then, forMARKOV’S

INEQUALITY all b > 0,

P[X ≥ b] ≤
EX

b
. (2.1.4)
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2.1 Background 23

Figure 2.1 Proof of Markov’s inequality: taking expectations of the two functions
depicted in the figure yields the inequality.

Proof

EX ≥ E[X ; X ≥ b] ≥ E[b; X ≥ b] = bP[X ≥ b].

See Figure 2.1 for a proof by picture. Note that this inequality is non-trivial only when
b > EX .

Chebyshev’s inequality An application of Markov’s inequality (Theorem 2.1.1) to |X−EX |2

gives a classical tail bound featuring the second moment of a random variable.

Theorem 2.1.2 (Chebyshev’s inequality). Let X be a random variable with EX 2 < +∞. CHEBYSHEV’S

INEQUALITYThen, for all β > 0,

P[|X − EX | > β] ≤
Var[X ]

β2
. (2.1.5)

Proof This follows immediately by applying (2.1.4) to |X − EX |2 with b = β2.

Of course, this bound is non-trivial only when β is larger than the standard deviation. Re-
sults of this type that quantify the probability of deviating from the mean are referred to
as concentration inequalities. Chebyshev’s inequality is perhaps the simplest instance – we CONCENTRATION

INEQUALITIESwill derive many more. To bound the variance, the following standard formula is sometimes
useful:

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi]+ 2
∑
i<j

Cov[Xi, Xj], (2.1.6)

where we recall that the covariance of Xi and Xj is COVARIANCE

Cov[Xi, Xj] := E[XiXj]− E[Xi]E[Xj].

When Xi and Xj are independent, then Cov[Xi, Xj] = 0.

Example 2.1.3 Let X be a Gaussian random variable with mean µ and variance σ 2, that is, GAUSSIAN

whose density is

fX (x) =
1

√
2πσ 2

exp
(
−

(x− µ)2

2σ 2

)
, x ∈ R.
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24 Moments and Tails

Figure 2.2 Comparison of the Markov and Chebyshev inequalities: the squared
deviation from the mean (solid) gives a better approximation of the indicator
function (dotted) close to the mean than the absolute deviation (dashed).

We write X ∼ N(µ, σ 2). A direct computation shows thatE|X−µ| = σ
√

2
π

. Hence Markov’s
inequality gives

P[|X − µ| ≥ b] ≤
E|X − µ|

b
=

√
2

π
·
σ

b
,

while Chebyshev’s inequality (Theorem 2.1.2) gives

P[|X − µ| ≥ b] ≤
(σ

b

)2
.

Hence, for b large enough, Chebyshev’s inequality produces a stronger bound. See Figure 2.2
for some insight. J

Example 2.1.4 (Coupon collector’s problem). Let (Xt)t∈N be i.i.d. uniform random variablesUNIFORM

over [n], that is, that are equally likely to take any value in [n]. Let Tn,i be the first time that i
elements of [n] have been picked, that is,

Tn,i = inf {t ≥ 1: |{X1, . . . , Xt}| = i} ,

with Tn,0 := 0. We prove that the time it takes to pick all elements at least once – or “collect
each coupon” – has the following tail. For any ε > 0, we have as n→+∞:COUPON

COLLECTOR
Claim 2.1.5

P

∣∣∣∣∣∣Tn,n − n
n∑

j=1

j−1

∣∣∣∣∣∣ ≥ ε n log n

→ 0.

To prove this claim we note that the time elapsed between Tn,i−1 and Tn,i, which we denote by
τn,i := Tn,i−Tn,i−1, is geometric with success probability 1− i−1

n . And all τn,is are independ-
ent. Recall that a geometric random variable Z with success probability p has probabilityGEOMETRIC

mass function P[Z = z] = (1− p)z−1p for z ∈ N and has mean 1/p and variance (1− p)/p2.
So, the expectation and variance of Tn,n =

∑n
i=1 τn,i are

E[Tn,n] =
n∑

i=1

(
1−

i− 1

n

)−1

= n
n∑

j=1

j−1
= 2(n log n) (2.1.7)
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2.2 First Moment Method 25

and

Var[Tn,n] ≤
n∑

i=1

(
1−

i− 1

n

)−2

= n2
n∑

j=1

j−2
≤ n2

+∞∑
j=1

j−2
= 2(n2). (2.1.8)

So by Chebyshev’s inequality

P

∣∣∣∣∣∣Tn,n − n
n∑

j=1

j−1

∣∣∣∣∣∣ ≥ ε n log n

 ≤ Var[Tn,n]

(ε n log n)2

≤
n2
∑
+∞

j=1 j−2

(ε n log n)2

→ 0,

by (2.1.7) and (2.1.8). J

A classical implication of Chebyshev’s inequality is (a version of) the law of large num-
bers. Recall that a sequence of random variables (Xn)n≥1 converges in probability to a random
variable X , denoted by Xn →p X , if for all ε > 0,

lim
n→+∞

P[|Xn − X | ≥ ε]→ 0.

Theorem 2.1.6 (L2 weak law of large numbers). Let X1, X2, . . . be uncorrelated random vari- UNCORRELATED

ables, that is, E[XiXj] = E[Xi]E[Xj] for i 6= j, with E[Xi] = µ < +∞ and supi Var[Xi] <
+∞. Then

1

n

∑
k≤n

Xk →p µ.

See Exercise 2.5 for a proof. When the Xks are i.i.d. and integrable (but not necessarily
square integrable), convergence is almost sure. That result, the strong law of large numbers,
also follows from Chebyshev’s inequality (and other ideas), but we will not prove it here.

2.2 First Moment Method

In this section, we develop some techniques based on the first moment. Recall that the ex-
pectation of a random variable has an elementary, yet handy, property: linearity. That is, if
random variables X1, . . . , Xk defined on a joint probability space have finite first moments,
then

E[X1 + · · · + Xk] = E[X1]+ · · · + E[Xk] (2.2.1)

without any further assumption. In particular, linearity holds whether or not the Xis are
independent.

2.2.1 The Probabilistic Method

A key technique of probabilistic combinatorics is the so-called probabilistic method. The
idea is that one can establish the existence of an object satisfying a certain property – with-
out having to construct one explicitly. Instead, one argues that a randomly chosen object
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26 Moments and Tails

exhibits the given property with positive probability. The following “obvious” observation,
sometimes referred to as the first moment principle, plays a key role in this context.

Theorem 2.2.1 (First moment principle). Let X be a random variable with finite expecta-FIRST

MOMENT

PRINCIPLE
tion. Then, for any µ ∈ R,

EX ≤ µ =⇒ P[X ≤ µ] > 0.

Proof We argue by contradiction. Assume EX ≤ µ and P[X ≤ µ] = 0. We can write
{X ≤ µ} =

⋂
n≥1{X < µ + 1/n}. That implies by monotonicity (see Lemma B.2.6) that,

for any ε ∈ (0, 1), it holds that P[X < µ+ 1/n] < ε for n large enough. Hence, because we
assume that P[X ≤ µ] = 0,

µ ≥ EX

= E[X ; X < µ+ 1/n]+ E[X ; X ≥ µ+ 1/n]

≥ µP[X < µ+ 1/n]+ (µ+ 1/n)(1− P[X < µ+ 1/n])

= µ+ n−1(1− P[X < µ+ 1/n])

> µ+ n−1(1− ε)

> µ,

a contradiction.

The power of this principle is easier to appreciate through an example.

Example 2.2.2 (Balancing vectors). Let v1, . . . , vn be arbitrary unit vectors in Rn. How
small can we make the 2-norm of the linear combination

x1v1 + · · · + xnvn

by appropriately choosing x1, . . . , xn ∈ {−1,+1}? We claim that it can be as small as
√

n, for
any collection of vis. At first sight, this may appear to be a complicated geometry problem.
But the proof is trivial once one thinks of choosing the xis at random. Let X1, . . . , Xn be
independent random variables uniformly distributed in {−1,+1}. Then, since E[XiXj] =
E[Xi]E[Xj] = 0 for all i 6= j but E[X 2

i ] = 1 for all i,

E‖X1v1 + · · · + Xnvn‖
2
2 = E

∑
i, j

XiXj〈vi, vj〉


=

∑
i, j

E[XiXj〈vi, vj〉]

=

∑
i, j

〈vi, vj〉E[XiXj]

=

∑
i

‖vi‖
2
2

= n,

where we used the linearity of expectation on the second line. Hence, random variable Z =
‖X1v1 + · · · + Xnvn‖

2 has expectation EZ = n and must take a value ≤ n with positive
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2.2 First Moment Method 27

probability by the first moment principle (Theorem 2.2.1). In other words, there must be a
choice of Xis such that Z ≤ n. That proves the claim. J

Here is a slightly more subtle example of the probabilistic method, where one has to
modify the original random choice.

Example 2.2.3 (Independent sets). For d ∈ N, let G = (V , E) be a d-regular graph with n
vertices. Such a graph necessarily has m = nd/2 edges. Our goal is to derive a lower bound
on the size, α(G), of the largest independent set in G. Recall that an independent set is a
set of vertices in a graph, no two of which are adjacent. Again, at first sight, this may seem
like a rather complicated graph-theoretic problem. But an appropriate random choice gives
a non-trivial bound. Specifically:

Claim 2.2.4

α(G) ≥
n

2d
.

Proof The proof proceeds in two steps:

1. We first prove the existence of a subset S of vertices with relatively few edges.
2. We remove vertices from S to obtain an independent set.

Step 1. Let 0 < p < 1 to be chosen below. To form the set S, pick each vertex in V
independently with probability p. Letting X be the number of vertices in S, we have by the
linearity of expectation that

EX = E

[∑
v∈V

1v∈S

]
= np,

where we used E[1v∈S] = p. Letting Y be the number of edges between vertices in S, we
have by the linearity of expectation

EY = E

∑
{i, j}∈E

1i∈S1j∈S

 = nd

2
p2,

where we also used that E[1i∈S1j∈S] = p2 by independence. Hence, subtracting,

E[X − Y ] = np−
nd

2
p2,

which, as a function of p, is maximized at p = 1/d, where it takes the value n/(2d). As a
result, by the first moment principle applied to X − Y , there must exist a set S of vertices in
G such that

|S| − |{{i, j} ∈ E : i, j ∈ S}| ≥
n

2d
. (2.2.2)

Step 2. For each edge e connecting two vertices in S, remove one of the endvertices of e.
By construction, the remaining set of vertices (i) forms an independent set, and (ii) has a size
larger than or equal to the left-hand side of (2.2.2). That inequality implies the claim.
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28 Moments and Tails

Note that a graph G made of n/(d + 1) cliques of size d + 1 (with no edge between the
cliques) has α(G) = n/(d + 1), showing that our bound is tight up to a constant. This is
known as a Turán graph. J

Remark 2.2.5 The previous result can be strengthened to

α(G) ≥
∑
v∈V

1

δ(v)+ 1

for a general graph G = (V , E), where δ(v) is the degree of v. This bound is achieved for
Turán graphs. See, for example, [AS11, The probabilistic lens: Turán’s theorem].

The previous example also illustrates the important indicator trick, that is, writing a ran-INDICATOR

TRICK dom variable as a sum of indicators, which is naturally used in combination with the linearity
of expectation.

2.2.2 Boole’s Inequality

One implication of the first moment principle (Theorem 2.2.1) is that if a non-negative,
integer-valued random variable X has expectation strictly smaller than 1, then its value is 0
with positive probability. The following application of Markov’s inequality (Theorem 2.1.1)
adds a quantitative twist: if that same X has a “small” expectation, then its value is 0 with
“large” probability.

Theorem 2.2.6 (First moment method). If X is a non-negative, integer-valued random var-
iable, then

P[X > 0] ≤ EX . (2.2.3)

Proof Take b = 1 in Markov’s inequality.

This simple fact is typically used in the following manner: one wants to show that a cer-
tain “bad event” does not occur with probability approaching 1; the random variable X then
counts the number of such “bad events.” In that case, X is a sum of indicators and Theo-
rem 2.2.6 reduces simply to the standard union bound, also known as Boole’s inequality. WeUNION

BOUND record one useful version of this setting in the next corollary.

Corollary 2.2.7 Let Bn = An,1 ∪ · · · ∪ An,mn , where An,1, . . . , An,mn is a collection of events
for each n. Then, letting

µn :=
mn∑
i=1

P[An,i],

we have

P[Bn] ≤ µn.

In particular, if µn → 0 as n→+∞, then P[Bn]→ 0.

Proof Take X := Xn =
∑mn

i=1 1An,i in Theorem 2.2.6.

A useful generalization of the union bound is given in Exercise 2.2.
We will refer to applications of Theorem 2.2.6 as the first moment method. We give a fewFIRST

MOMENT

METHOD
examples.
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2.2 First Moment Method 29

Example 2.2.8 (Random k-SAT threshold). For r ∈ R+, let 8n,r : {0, 1}n → {0, 1} be a
random k-CNF formula on n Boolean variables z1, . . . , zn with drne clauses. That is, 8n,r is
an AND of drneORs, each obtained by picking independently k literals uniformly at random
(with replacement). Recall that a literal is a variable zi or its negation z̄i. The formula 8n,r

is said to be satisfiable if there exists an assignment z = (z1, . . . , zn) such that 8n,r(z) = 1.
Clearly, the higher the value of r, the less likely it is for 8n,r to be satisfiable. In fact, it is
natural to conjecture that a sharp transition takes place, that is, that there exists an r∗k ∈ R+
(depending on k but not on n) such that

lim
n→∞

P[8n,r is satisfiable] =

{
0 if r > r∗k ,

1 if r < r∗k .
(2.2.4)

Studying such threshold phenomena is a major theme of modern discrete probability. Us- THRESHOLD

PHENOMENONing the first moment method (Theorem 2.2.6), we give an upper bound on the threshold.
Formally:

Claim 2.2.9

r > 2k log 2 =⇒ lim sup
n→∞

P[8n,r is satisfiable] = 0.

Proof How to start the proof should be obvious: let Xn be the number of satisfying assign-
ments of 8n,r. Applying the first moment method, since

P[8n,r is satisfiable] = P[Xn > 0],

it suffices to show that EXn → 0. To compute EXn, we use the indicator trick

Xn =

∑
z∈{0,1}n

1{z satisfies 8n,r}.

There are 2n possible assignments. Each fixed assignment satisfies the random choice of
clauses 8n,r with probability (1 − 2−k)drne. Indeed, note that the rn clauses are picked inde-
pendently and each clause literal picked is satisfied with probability 1/2. Therefore, by the
assumption on r, for ε > 0 small enough and n large enough,

EXn = 2n(1− 2−k)drne

≤ 2n(1− 2−k)(2k log 2)(1+ε)n

≤ 2ne−(log 2)(1+ε)n

= 2−εn

→ 0,

where we used (1 − 1/`)` ≤ e−1 for all ` ∈ N (see Exercise 1.16). Theorem 2.2.6 implies
the claim.

Remark 2.2.10 Bounds in the other direction are also known. For instance, for k ≥ 3, it
has been shown that if r < 2k log 2− k, then

lim inf
n→∞

P[8n,r is satisfiable] = 1.
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30 Moments and Tails

See [ANP05]. For the k = 2 case, it is known that (2.2.4) in fact holds with r∗2 = 1 [CR92].
A breakthrough of [DSS22] also establishes (2.2.4) for large k; the threshold r∗k is charac-
terized as the root of a certain equation coming from statistical physics. J

2.2.3 F Random Permutations: Longest Increasing Subsequence

In this section, we bound the expected length of a longest increasing subsequence in a
random permutation. Let σn = (σn(1), . . . , σn(n)) be a uniformly random permutation ofRANDOM

PERMUTATION [n] := {1, . . . , n} (i.e., a bijection of [n] to itself chosen uniformly at random among all such
mappings) and let Ln be the length of a longest increasing subsequence of σn (i.e., a sequence
of indices i1 < · · · < ik such that σn(i1) < · · · < σn(ik)).

Claim 2.2.11

ELn = 2(
√

n).

Proof We first prove that

lim sup
n→∞

ELn
√

n
≤ e, (2.2.5)

which implies half of the claim. Bounding the expectation of Ln is not straightforward as it
is the expectation of a maximum. A natural way to proceed is to find a value ` for which
P[Ln ≥ `] is “small.” More formally, we bound the expectation as

ELn ≤ `P[Ln < `]+ nP[Ln ≥ `] ≤ `+ nP[Ln ≥ `] (2.2.6)

for an ` chosen below. To bound the probability on the right-hand side, we appeal to the first
moment method (Theorem 2.2.6) by letting Xn be the number of increasing subsequences of
length `. We also use the indicator trick, that is, we think of Xn as a sum of indicators over
subsequences (not necessarily increasing) of length `.

There are
(n
`

)
such subsequences, each of which is increasing with probability 1/`!. Note

that these subsequences are not independent. Nevertheless, by the linearity of expectation
and the first moment method,

P[Ln ≥ `] = P[Xn > 0] ≤ EXn =
1

`!

(
n

`

)
≤

n`

(`!)2
≤

n`

e2[`/e]2`
≤

(
e
√

n

`

)2`

,

where we used a standard bound on factorials recalled in Appendix A. Note that, in order
for this bound to go to 0, we need ` > e

√
n. Then (2.2.5) follows by taking ` = (1+ δ)e

√
n

in (2.2.6), for an arbitrarily small δ > 0.
For the other half of the claim, we show that

ELn
√

n
≥ 1.

This part does not rely on the first moment method (and may be skipped). We seek a lower
bound on the expected length of a longest increasing subsequence. The proof uses the fol-
lowing two ideas. First observe that there is a natural symmetry between the lengths of the
longest increasing and decreasing subsequences – they are identically distributed. Moreover,
if a permutation has a “short” longest increasing subsequence, then intuitively it must have
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a “long” decreasing subsequence, and vice versa. Combining these two observations gives a
lower bound on the expectation of Ln. Formally, let Dn be the length of a longest decreasing
subsequence. By symmetry and the arithmetic mean-geometric mean inequality, note that

ELn = E
[

Ln + Dn

2

]
≥ E

√
LnDn.

We show that LnDn ≥ n, which proves the claim. Let L(k)
n be the length of a longest increasing

subsequence ending at position k, and similarly for D(k)
n . It suffices to show that the pairs

(L(k)
n , D(k)

n ), 1 ≤ k ≤ n, are distinct. Indeed, noting that L(k)
n ≤ Ln and D(k)

n ≤ Dn, the number
of pairs in [Ln]× [Dn] is at most LnDn, which must then be at least n.

Let 1 ≤ j < k ≤ n. If σn(k) > σn( j), then we see that L(k)
n > L( j)

n by appending σn(k) to the
subsequence ending at position j achieving L( j)

n . If the opposite holds, then we have instead
D(k)

n > D( j)
n . Either way, (L( j)

n , D( j)
n ) and (L(k)

n , D(k)
n ) must be distinct. This clever combinatorial

argument is known as the Erdős–Szekeres Theorem. That concludes the proof of the second
claim.

Remark 2.2.12 It has been shown that in fact

ELn = 2
√

n+ cn1/6
+ o(n1/6),

as n→+∞, where c = −1.77 . . . [BDJ99].

2.2.4 F Percolation: Existence of a Non-Trivial Threshold on Z2

In this section, we use the first moment method (Theorem 2.2.6) to prove the existence of
a non-trivial threshold in bond percolation on the two-dimensional lattice. We begin with
some background.

Threshold in bond percolation Consider bond percolation (Definition 1.2.1) on the two-
dimensional lattice L2 (see Section 1.1.1) with density p. Let Pp denote the corresponding
measure. Recall that paths are “self-avoiding” by definition (see Section 1.1.1). We say that
a path is open if all edges in the induced subgraph are open. Writing x⇔ y if x, y ∈ L2 are OPEN PATH

connected by an open path; recall that the open cluster of x is

Cx := { y ∈ Z2 : x⇔ y}.

The percolation function is defined as PERCOLATION

FUNCTION
θ ( p) := Pp[|C0| = +∞],

that is, θ ( p) is the probability that the origin is connected by open paths to infinitely many
vertices. It is intuitively clear that the function θ ( p) is non-decreasing. Indeed, consider
the following alternative representation of the percolation process: to each edge e, assign a
uniform [0, 1] random variable Ue and declare the edge open if Ue ≤ p. Using the same Ues
for densities p1 < p2, it follows immediately from the monotonicity of the construction that
θ ( p1) ≤ θ ( p2). (We will have much more to say about this type of “coupling” argument in
Chapter 4.) Moreover, note that θ (0) = 0 and θ (1) = 1. The critical value is defined as CRITICAL

VALUE
pc(L2) := sup{ p ≥ 0: θ ( p) = 0},
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the point at which the probability that the origin is contained in an infinite open cluster
becomes positive. Note that by a union bound over all vertices, when θ ( p) = 0, we have that
Pp[∃x, |Cx| = +∞] = 0. Conversely, because {∃x, |Cx| = +∞} is a tail event (see Defini-
tion B.3.9) for any enumeration of the edges, by Kolmogorov’s 0-1 law (Theorem B.3.11) it
holds that Pp[∃x, |Cx| = +∞] = 1 when θ ( p) > 0.

Using the first moment method we show that the critical value is non-trivial, that is, it is
strictly between 0 and 1. This is a different example of a threshold phenomenon.

Claim 2.2.13

pc(L2) ∈ (0, 1).

Proof We first show that for any p < 1/3, θ ( p) = 0. In order to apply the first moment
method, roughly speaking, we need to reduce the problem to counting the number of in-
stances of an appropriately chosen substructure. The key observation is the following:

An infinite C0 contains an open path starting at 0 of infinite length and, as a result, of all lengths.

Hence, we let Xn be the number of open paths of length n starting at 0. Then, by monotonicity,

Pp[|C0| = +∞] ≤ Pp[∩n{Xn > 0}] = lim
n
Pp[Xn > 0] ≤ lim sup

n
Ep[Xn], (2.2.7)

where the last inequality follows from Theorem 2.2.6. We bound the number of paths by
noting that they cannot backtrack. That gives four choices at the first step, and at most three
choices at each subsequent step. Hence, we get the following bound

Ep Xn ≤ 4(3n−1)pn.

The right-hand side goes to 0 for all p < 1/3. When combined with (2.2.7), that proves half
of the claim:

pc(L2) > 0.

For the other direction, we show that θ ( p) > 0 for p close enough to 1. This time, we
count “dual cycles.” This type of proof is known as a contour argument, or Peierls’ argument,
and is based on the following construction. Consider the dual lattice L̃2 whose vertices areDUAL LATTICE

Z2
+ (1/2, 1/2) and whose edges connect vertices u, v with ‖u − v‖1 = 1. See Figure 2.3.

Figure 2.3 Primal (solid) and dual (dotted) lattices.
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Note that each edge in the primal lattice L2 has a unique corresponding edge in the dual
lattice which crosses it perpendicularly. We make the same assignment, open or closed, for
corresponding primal and dual edges. The following graph-theoretic lemma, whose proof is
sketched below, forms the basis of contour arguments. Recall that cycles are “self-avoiding”
by definition (see Section 1.1.1). We say that a cycle is closed if all edges in the induced
subgraph are closed, that is, are not open.

Lemma 2.2.14 (Contour lemma). If |C0| < +∞, then there is a closed cycle around the CONTOUR

LEMMAorigin in the dual lattice L̃2.

To prove that θ ( p) > 0 for p close enough to 1, the idea is to apply the first moment method
to Zn equal to the number of closed dual cycles of length n surrounding the origin. We bound
from above the number of dual cycles of length n around the origin by the number of choices
for the starting edge across the upper y-axis and for each n−1 subsequent non-backtracking
choices. Namely,

P[|C0| < +∞] ≤ P[∃n ≥ 4, Zn > 0]

≤

∑
n≥4

P[Zn > 0]

≤

∑
n≥4

EZn

≤

∑
n≥4

n

2
3n−1(1− p)n

=
33(1− p)4

2

∑
m≥1

(m+ 3)(3(1− p))m−1

=
33(1− p)4

2

(
1

(1− 3(1− p))2
+ 3

1

1− 3(1− p)

)
when p > 2/3, where the first term in parentheses on the last line comes from differentiating
with respect to q the geometric series

∑
m≥0 qm and setting q := 1− p. This expression can

be taken smaller than 1 if we let p approach 1. We have shown that θ ( p) > 0 for p close
enough to 1, and that concludes the proof. (Exercise 2.3 sketches a proof that θ ( p) > 0 for
all p > 2/3.)

It is straightforward to extend the claim to Ld. (Exercise 2.4 asks for the details.)

Proof of the contour lemma We conclude this section by sketching the proof of the contour
lemma, which relies on topological arguments.

Proof of Lemma 2.2.14 Assume |C0| < +∞. Imagine identifying each vertex in L2 with
a square of side 1 centered around it so that the sides line up with dual edges. Paint green
the squares of vertices in C0. Paint red the squares of vertices in Cc

0 which share a side with
a green square. Leave the other squares white. Let u0 be a highest vertex in C0 along the y-
axis and let v0 and v1 be the dual vertices corresponding to the upper left and right corners,
respectively, of the square of u0. Because u0 is highest, it must be that the square above it
is red. Walk along the dual edge {v0, v1}, separating the squares of u0 and u0 + (0, 1) from

https://doi.org/10.1017/9781009305129.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009305129.003


34 Moments and Tails

v0 to v1. Notice that this edge satisfies what we call the red-green property: as you traverse
it from v0 to v1, a red square sits on your left and a green square is on your right. Proceed
further by iteratively walking along an incident dual edge with the following rule. Choose
an edge satisfying the red-green property, with the edges to your left, straight ahead, and
to your right in decreasing order of priority. Stop when a previously visited dual vertex is
reached. The claim is that this procedure constructs the desired cycle. Let v0, v1, v2, . . . be
the dual vertices visited. By construction {vi−1, vi} is a dual edge for all i.

• A dual cycle is produced. We first argue that this procedure cannot get stuck. Let {vi−1, vi}

be the edge just crossed and assume that it has the red-green property. If there is a green
square to the left ahead, then the edge to the left, which has highest priority, has the red-
green property. If the left square ahead is not green, but the right one is, then the left
square must in fact be red by construction (i.e., it cannot be white). In that case, the edge
straight ahead has the red-green property. Finally, if neither square ahead is green, then
the right square must in fact be red because the square behind to the right is green by
assumption. That implies that the edge to the right has the red-green property. Hence,
we have shown that the procedure does not get stuck. Moreover, because by assumption
the number of green squares is finite, this procedure must eventually terminate when a
previously visited dual vertex is reached, forming a cycle (of length at least 4).

• The origin lies within the cycle. The inside of a cycle in the plane is well defined by the
Jordan curve theorem. So the dual cycle produced above has its adjacent green squares
either on the inside (negative orientation) or on the outside (positive orientation). In the
former case the origin must lie inside the cycle as otherwise the vertices corresponding to
the green squares on the inside would not be in C0, as they could not be connected to the
origin with open paths.

So it remains to consider the latter case, where through a similar reasoning the origin
must lie outside the cycle. Let vj be the repeated dual vertex. Assume first that vj 6=

v0 and let vj−1 and vj+1 be the dual vertices preceding and following vj during the first
visit to vj. Let vk be the dual vertex preceding vj on the second visit. After traversing the
edge from vj−1 to vj, vk cannot be to the left or to the right because in those cases the
red-green properties of the two corresponding edges (i.e., {vj−1, vj} and {vk , vj}) are not
compatible. So vk is straight ahead and, by the priority rules, vj+1 must be to the left upon
entering vj the first time. But in that case, for the origin to lie outside the cycle as we are
assuming and for the cycle to avoid the path v0, . . . , vj−1, we must traverse the cycle with a
negative orientation, that is, the green squares adjacent to the cycle must be on the inside,
a contradiction.

So, finally, assume v0 is the repeated vertex. If the cycle is traversed with a positive
orientation and the origin is on the outside, it must be that the cycle crosses the y-axis at
least once above u0 + (0, 1), again a contradiction.

Hence, we have shown that the origin is inside the cycle.

That concludes the proof.

Remark 2.2.15 It turns out that pc(L2) = 1/2. We will prove pc(L2) ≥ 1/2, known as
Harris’ Theorem, in Section 4.2.5. The other direction is due to Kesten [Kes80].
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Figure 2.4 Second moment method: if the standard deviation σX of X is less than
its expectation µX , then the probability that X is 0 is bounded away from 1.

2.3 Second Moment Method

The first moment method (Theorem 2.2.6) gives an upper bound on the probability that a
non-negative, integer-valued random variable is positive – which is non-trivial provided its
expectation is small enough. In this section, we seek a lower bound on that probability. We
first note that a large expectation does not suffice in general. Say, Xn is n2 with probability
1/n, and 0 otherwise. Then, EXn = n → +∞, yet P[Xn > 0] → 0. That is, although the
expectation diverges, the probability that Xn is positive can be arbitrarily small.

So we turn to the second moment. Intuitively, the basis for the so-called second moment
method is that if the expectation of Xn is large and its variance is relatively small, then we
can bound the probability that Xn is close to 0. As we will see in applications, the first and
second moment methods often work hand in hand.

2.3.1 Paley–Zygmund Inequality

As an immediate corollary of Chebyshev’s inequality (Theorem 2.1.2), we get a first version
of the second moment method: if the standard deviation of X is less than its expectation,
then the probability that X is 0 is bounded away from 1 (see Figure 2.4). Formally, let X be
a non-negative random variable (not identically zero). Then

P[X > 0] ≥ 1−
Var[X ]

(EX )2
. (2.3.1)

Indeed, by (2.1.5),

P[X = 0] ≤ P[|X − EX | ≥ EX ] ≤
Var[X ]

(EX )2
.

The following tail bound, a simple application of Cauchy–Schwarz (Theorem B.4.8), leads
to an improved version of this inequality.

Theorem 2.3.1 (Paley–Zygmund inequality). Let X be a non-negative random variable. For PALEY–
ZYGMUND

INEQUALITY

all 0 < θ < 1,

P[X ≥ θ EX ] ≥ (1− θ )2 (EX )2

E[X 2]
. (2.3.2)
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Proof We have

EX = E[X 1{X<θEX }]+ E[X 1{X≥θEX }]

≤ θEX +
√
E[X 2]P[X ≥ θEX ],

where we used Cauchy–Schwarz. Rearranging gives the result.

As an immediate application:

Theorem 2.3.2 (Second moment method). Let X be a non-negative random variable (notSECOND

MOMENT

METHOD
identically zero). Then

P[X > 0] ≥
(EX )2

E[X 2]
. (2.3.3)

Proof Take θ ↓ 0 in (2.3.2).

Since
(EX )2

E[X 2]
= 1−

Var[X ]

(EX )2 + Var[X ]
,

we see that (2.3.3) is stronger than (2.3.1).
We typically apply the second moment method to a sequence of random variables (Xn).

The previous theorem gives a uniform lower bound on the probability that {Xn > 0} when
E[X 2

n ] ≤ CE[Xn]2 for some C > 0. Just like the first moment method, the second moment
method is often applied to a sum of indicators (but see Section 2.3.3 for a weighted case).
We record in the next corollary a convenient version of the method.

Corollary 2.3.3 Let Bn = An,1 ∪ · · · ∪ An,mn , where An,1, . . . , An,mn is a collection of events

for each n. Write i
n
∼ j if i 6= j and An,i and An, j are not independent. Then, letting

µn :=
mn∑
i=1

P[An,i], γn :=
∑
i

n
∼j

P[An,i ∩ An, j],

where the second sum is over ordered pairs, we have limn P[Bn] > 0 whenever µn → +∞

and γn ≤ Cµ2
n for some C > 0. If moreover γn = o(µ2

n), then limn P[Bn] = 1.

Proof We apply the second moment method to Xn :=
∑mn

i=1 1An,i so that Bn = {Xn > 0}.
Note that

Var[Xn] =
∑

i

Var[1An,i ]+
∑
i6=j

Cov[1An,i , 1An, j ],

where

Var[1An,i ] = E[(1An,i )
2]− (E[1An,i ])

2
≤ P[An,i],

and, if An,i and An, j are independent,

Cov[1An,i , 1An, j ] = 0,

whereas, if i
n
∼ j,

Cov[1An,i , 1An, j ] = E[1An,i 1An, j ]− E[1An,i ]E[1An, j ] ≤ P[An,i ∩ An, j].
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Hence,
Var[Xn]

(EXn)2
≤
µn + γn

µ2
n

=
1

µn
+
γn

µ2
n

.

Noting

(EXn)2

E[X 2
n ]
=

(EXn)2

(EXn)2 + Var[Xn]
=

1

1+ Var[Xn]/(EXn)2

and applying Theorem 2.3.2 gives the result.

2.3.2 F Random Graphs: Subgraph Containment and Connectivity
in the Erdős–Rényi Model

Threshold phenomena are also common in random graphs. We consider here the Erdős–
Rényi random graph model (Definition 1.2.2). In this context, a threshold function for a THRESHOLD

FUNCTIONgraph property P is a function r(n) such that

lim
n
Pn,pn [Gn has property P] =

{
0 if pn � r(n),

1 if pn � r(n),

where Gn ∼ Gn,pn is a random graph with n vertices and density pn. In this section, we
illustrate this type of phenomenon on two properties: the containment of small subgraphs
and connectivity.

Subgraph containment

We first consider the clique number, then we turn to more general subgraphs.

Cliques Let ω(G) be the clique number of a graph G, that is, the size of its largest clique. CLIQUE

NUMBER
Claim 2.3.4 The property ω(Gn) ≥ 4 has threshold function n−2/3.

Proof Let Xn be the number of 4-cliques in the random graph Gn ∼ Gn,pn . Then, noting
that there are

(4
2

)
= 6 edges in a 4-clique,

En,pn [Xn] =
(

n

4

)
p6

n = 2(n4p6
n),

which goes to 0 when pn � n−2/3. Hence, the first moment method (Theorem 2.2.6) gives
one direction: Pn,pn [ω(Gn) ≥ 4]→ 0 in that case.

For the other direction, we apply the second moment method for sums of indicators, that
is, Corollary 2.3.3. We use the notation from that corollary. For an enumeration S1, . . . , Smn

of the 4-tuples of vertices in Gn, let An,1, . . . , An,mn be the events that the corresponding 4-
clique is present. By the calculation above we have µn = 2(n4p6

n), which goes to +∞ when
pn � n−2/3. Also µ2

n = 2(n8p12
n ), so it suffices to show that γn = o(n8p12

n ). Note that two
4-cliques with disjoint edge sets (but possibly sharing one vertex) are independent (i.e., their
presence or absence is independent). Suppose Si and Sj share three vertices. Then, i

n
∼ j and

Pn,pn [An,i |An, j] = p3
n,
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as the event An, j implies that all edges between three of the vertices in Si are already present,
and there are three edges between the remaining vertex and the rest of Si. Similarly, if |Si ∩

Sj| = 2, we have again i
n
∼ j and this time Pn,pn [An,i |An, j] = p5

n. Putting these together,
we get by the definition of the conditional probability (see Appendix B) and the fact that
Pn,pn [An, j] = p6

n

γn =

∑
i

n
∼j

P[An,i ∩ An, j]

=

∑
i

n
∼j

Pn,pn [An, j]Pn,pn [An,i |An, j]

=

∑
j

Pn,pn [An, j]
∑
i:i

n
∼j

Pn,pn [An,i |An, j]

=

(
n

4

)
p6

n

[(
4

3

)
(n− 4)p3

n +

(
4

2

)(
n− 4

2

)
p5

n

]
= O(n5p9

n)+ O(n6p11
n )

= O

(
n8p12

n

n3p3
n

)
+ O

(
n8p12

n

n2pn

)
= o(n8p12

n )

= o(µ2
n),

where we used that pn � n−2/3 (so that for example n3p3
n � 1). Corollary 2.3.3 gives the

result: Pn,pn [∪iAn,i]→ 1 when pn � n−2/3.

Roughly speaking, the first and second moments suffice to pinpoint the threshold in this
case because the indicators in Xn are “mostly” pairwise independent and, as a result, the sum
is “concentrated around its mean.”

General subgraphs The methods of Claim 2.3.4 can be applied to more general subgraphs.
However, the situation is somewhat more complicated than it is for cliques. For a graph H0,
let vH0 and eH0 be the number of vertices and edges of H0, respectively. Let Xn be the number
of (not necessarily induced) copies of H0 in Gn ∼ Gn,pn . By the first moment method,

P[Xn > 0] ≤ E[Xn] = 2(nvH0 p
eH0
n )→ 0,

when pn � n−vH0 /eH0 . The constant factor, which does not play a role in the asymptotics,
accounts in particular for the number of automorphisms of H0. Indeed, note that a fixed set
of vH0 vertices can contain several distinct copies of H0, depending on its structure.

From the proof of Claim 2.3.4, one might guess that the threshold function is n−vH0 /eH0 .
That is not the case in general. To see what can go wrong, consider the graph H0 in Figure 2.5
whose edge density is

eH0

vH0
=

6
5 . When pn � n−5/6, the expected number of copies of H0 inEDGE DENSITY

Gn tends to +∞. But observe that the subgraph H of H0 has the higher density 5/4 and,
hence, when n−5/6

� pn � n−4/5 the expected number of copies of H tends to 0. By the
first moment method, the probability that a copy of H0 – and therefore H – is present in
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Figure 2.5 Graph H0 and subgraph H .

that regime is asymptotically negligible despite its diverging expectation. This leads to the
following definition

rH0 := max
{

eH

vH
: subgraphs H ⊆ H0, eH > 0

}
.

Assume H0 has at least one edge.

Claim 2.3.5 “Having a copy of H0” has threshold n−1/rH0 .

Proof We proceed as in Claim 2.3.4. Let H∗0 be a subgraph of H0 achieving rH0 . When
pn � n−1/rH0 , the probability that a copy of H∗0 is in Gn tends to 0 by the argument above.
Therefore, the same conclusion holds for H0 itself.

Assume pn � n−1/rH0 . Let S1, . . . , Smn be an enumeration of the copies (as subgraphs) of
H0 in a complete graph on the vertices of Gn. Let An,i be the event that Si ⊆ Gn. Using again
the notation of Corollary 2.3.3,

µn = 2(nvH0 p
eH0
n ) = �(8H0 (n)),

where

8H0 (n) := min
{
nvH peH

n : subgraphs H ⊆ H0, eH > 0
}

.

Note that 8H0 (n) → +∞ when pn � n−1/rH0 by definition of rH0 . The events An,i and An, j

are independent if Si and Sj share no edge. Otherwise we write i
n
∼ j. Note that there are

2(nvH n2(vH0−vH )) pairs Si, Sj whose intersection is isomorphic to H . The probability that both

Si and Sj of such a pair are present in Gn is 2( peH
n p

2(eH0−eH )
n ). Hence,

γn =

∑
i

n
∼j

P[An,i ∩ An, j]

=

∑
H⊆H0,eH>0

2
(

n2vH0−vH p
2eH0−eH
n

)
≤

2(µ2
n)

2(8H0 (n))

= o(µ2
n),

where we used that 8H0 (n)→+∞. The result follows from Corollary 2.3.3.
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Going back to the example of Figure 2.5, the proof above confirms that when n−5/6
�

pn � n−4/5 the second moment method fails for H0 since 8H0 (n) → 0. In that regime,
although there is in expectation a large number of copies of H0, those copies are highly
correlated as they are produced from a small (vanishing in expectation) number of copies
of H – producing a large variance that helps to explain the failure of the second moment
method.

Connectivity threshold

Next we use the second moment method to show that the threshold function for connectivity
in the Erdős–Rényi random graph model is log n

n . In fact, we prove this result by deriving
the threshold function for the presence of isolated vertices. The connection between the
two is obvious in one direction. Isolated vertices imply a disconnected graph. What is less
obvious is that it also works the other way in the following sense: the two thresholds actually
coincide.

Isolated vertices We begin with isolated vertices.

Claim 2.3.6 “Not having an isolated vertex” has threshold function log n
n .

Proof Let Xn be the number of isolated vertices in the random graph Gn ∼ Gn,pn . Using
1− x ≤ e−x for all x ∈ R (see Exercise 1.16),

En,pn [Xn] = n(1− pn)n−1
≤ elog n−(n−1)pn → 0, (2.3.4)

when pn �
log n

n . So the first moment method gives one direction: Pn,pn [Xn > 0]→ 0.
For the other direction, we use the second moment method. Let An, j be the event that

vertex j is isolated. By the computation above, using 1 − x ≥ e−x−x2
for x ∈ [0, 1/2] (see

Exercise 1.16),

µn =

∑
i

Pn,pn [An,i] = n(1− pn)n−1
≥ elog n−npn−np2

n , (2.3.5)

which goes to +∞ when pn �
log n

n . Note that An,i and An, j are not independent for all i 6= j
(because the absence of an edge between i and j is part of both events) and

Pn,pn [An,i ∩ An, j] = (1− pn)2(n−2)+1,

so that

γn =

∑
i6=j

Pn,pn [An,i ∩ An, j] = n(n− 1)(1− pn)2n−3.

Because γn is not o(µ2
n), we cannot apply Corollary 2.3.3. Instead we use Theorem 2.3.2

directly. We have

En,pn [X
2
n ]

En,pn [Xn]2
=
µn + γn

µ2
n

≤
n(1− pn)n−1

+ n2(1− pn)2n−3

n2(1− pn)2n−2

≤
1

n(1− pn)n−1
+

1

1− pn
, (2.3.6)
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which is 1 + o(1) when pn �
log n

n by (2.3.5). The second moment method implies that
Pn,pn [Xn > 0]→ 1 in that case.

Connectivity We use Claim 2.3.6 to study the threshold for connectivity.

Claim 2.3.7 Connectivity has threshold function log n
n .

Proof We start with the easy direction. If pn �
log n

n , Claim 2.3.6 implies that the graph
has at least one isolated vertex – and therefore is necessarily disconnected – with probability
going to 1 as n→+∞.

Assume now that pn �
log n

n . Let Dn be the event that Gn is disconnected. To bound
Pn,pn [Dn], we let Yk be the number of subsets of k vertices that are disconnected from all
other vertices in the graph for k ∈ {1, . . . , n/2}. Then, by the first moment method,

Pn,pn [Dn] ≤ Pn,pn

[
n/2∑
k=1

Yk > 0

]
≤

n/2∑
k=1

En,pn [Yk].

The expectation of Yk is straightforward to bound. Using k ≤ n/2 and
(n

k

)
≤ nk ,

En,pn [Yk] =
(

n

k

)
(1− pn)k(n−k)

≤
(
n(1− pn)n/2

)k
.

The expression in parentheses is o(1) when pn �
log n

n by a calculation similar to (2.3.4).
Summing over k,

Pn,pn [Dn] ≤
+∞∑
k=1

(
n(1− pn)n/2

)k
= O(n(1− pn)n/2) = o(1),

where we used that the geometric series (started at k = 1) is dominated asymptotically by its
first term. So the probability of being disconnected goes to 0 when pn �

log n
n and we have

proved the claim.

A closer look We have shown that connectivity and the absence of isolated vertices have
the same threshold function. In fact, in a sense, isolated vertices are the “last obstacle” to
connectivity. A slight modification of the proof above leads to the following more precise
result. For k ∈ {1, . . . , n/2}, let Zk be the number of connected components of size k in Gn. In
particular, Z1 is the number of isolated vertices. We consider the “critical window” pn =

cn

n ,
where cn := log n + s for some fixed s ∈ R. We show that, in that regime, asymptotically
the graph is typically composed of a large connected component together with some isolated
vertices. Formally, we prove Claim 2.3.8, which says that with probability close to 1, either
the graph is connected or there are some isolated vertices together with a (necessarily unique)
connected component of size greater than n/2.

Claim 2.3.8

Pn,pn [Z1 > 0] ≥
1

1+ es
+ o(1) and Pn,pn

[
n/2∑
k=2

Zk > 0

]
= o(1).

The limit of Pn,pn [Z1 > 0] can be computed explicitly using the method of moments. See
Exercise 2.19.
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Proof of Claim 2.3.8 We first consider isolated vertices. From (2.3.5), (2.3.6), and the sec-
ond moment method,

Pn,pn [Z1 > 0] ≥
(

e− log n+npn+np2
n +

1

1− pn

)−1

=
1

1+ es
+ o(1),

as n→+∞ by our choice of pn.
To bound the number of components of size k > 1, we note first that the random variable

Yk used in the previous claim (which imposes no condition on the edges between the vertices
in the subsets of size k) is too loose to provide a suitable bound. Instead, to bound the
probability that a subset of k vertices forms a connected component, we observe that a
connected component is characterized by two properties: it is disconnected from the rest of
the graph; and it contains a spanning tree. Formally, for k = 2, . . . , n/2, we let Z ′k be the
number of (not necessarily induced) maximal trees of size k or, put differently, the number
of spanning trees of connected components of size k. Then, by the first moment method, the
probability that a connected component of size > 1 is present in Gn is bounded by

Pn,pn

[
n/2∑
k=2

Zk > 0

]
≤ Pn,pn

[
n/2∑
k=2

Z ′k > 0

]
≤

n/2∑
k=2

En,pn [Z
′

k]. (2.3.7)

To bound the expectation of Z ′k , we use Cayley’s formula, which states that there are kk−2

trees on a set of k labeled vertices. Recall further that a tree on k vertices has k − 1 edges
(see Exercise 1.7). Hence,

En,pn [Z
′

k] =
(

n

k

)
kk−2︸ ︷︷ ︸

(a)

pk−1
n︸︷︷︸
(b)

(1− pn)k(n−k)︸ ︷︷ ︸
(c)

,

where (a) is the number of trees of size k (as subgraphs) in a complete graph of size n,
(b) is the probability that such a tree is present in the graph, and (c) is the probability that
this tree is disconnected from every other vertex in the graph. Using that k! ≥ (k/e)k (see
Appendix A) and 1− x ≤ e−x for all x ∈ R (see Exercise 1.16),

En,pn [Z
′

k] ≤
nk

k!
kk−2pk−1

n (1− pn)k(n−k)

≤
nkek

kk
kknpk

ne−pnk(n−k)

≤ n
(

ecne−(1−
k
n )cn

)k

= n
(

e(log n+ s)e−(1−
k
n )(log n+s)

)k
.

For k ≤ n/2, the expression in parentheses is o(1). In fact, for 2 ≤ k ≤ n/2, En,pn [Z
′

k] = o(1).
Furthermore, summing over k > 2,

n/2∑
k=3

En,pn [Z
′

k] ≤
+∞∑
k=3

n
(

e(log n+ s)e−
1
2 (log n+s)

)k
= O(n−1/2 log3 n) = o(1).

Plugging this back into (2.3.7) gives the second claim in the statement.
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2.3.3 F Percolation: Critical Value on Trees and Branching Number

Consider bond percolation (see Definition 1.2.1) on the infinite d-regular tree Td. Root the
tree arbitrarily at a vertex 0 and let C0 be the open cluster of the root. In this section, we
illustrate the use of the first and second moment methods on the identification of the critical
value

pc(Td) = sup{ p ∈ [0, 1] : θ ( p) = 0},

where recall that the percolation function is θ ( p) = Pp[|C0| = +∞]. We then consider
general trees, introduce the branching number, and present a weighted version of the second
moment method.

Regular tree Our main result for Td is the following.

Claim 2.3.9

pc(Td) =
1

d − 1
.

Proof Let ∂n be the nth level of Td, that is, the set of vertices at graph distance n from 0.
Let Xn be the number of vertices in ∂n ∩ C0. In order for the open cluster of the root to be
infinite, there must be at least one vertex on the nth level connected to the root by an open
path. By the first moment method (Theorem 2.2.6),

θ ( p) = Pp[|C0| = +∞] ≤ Pp[Xn > 0] ≤ EpXn = d(d − 1)n−1pn
→ 0, (2.3.8)

as n→ +∞, for any p < 1
d−1 . Here we used that there is a unique path between 0 and any

vertex in the tree to deduce that Pp[x ∈ C0] = pn for x ∈ ∂n. Equation (2.3.8) implies half of
the claim: pc(Td) ≥ 1

d−1 .
The second moment method gives a lower bound on Pp[Xn > 0]. To simplify the notation,

it is convenient to introduce the “branching ratio” b := d − 1. We say that x is a descendant
of z if the path between 0 and x goes through z. Each z 6= 0 has d − 1 descendant subtrees,
that is, subtrees of Td rooted at z made of all descendants of z. Let x ∧ y be the most recent
common ancestor of x and y, that is, the furthest vertex from 0 that lies on both the path from
0 to x and the path from 0 to y; see Figure 2.6. Letting

Figure 2.6 Most recent common ancestor of x and y.
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µn := Ep[Xn] = Ep

[∑
x∈∂n

1{x∈C0}

]
= (b+ 1)bn−1pn,

we have

Ep[X 2
n ] = Ep

(∑
x∈∂n

1{x∈C0}

)2


=

∑
x,y∈∂n

Pp[x, y ∈ C0]

=

∑
x∈∂n

Pp[x ∈ C0]+
n−1∑
m=0

∑
x,y∈∂n

1{x∧y∈∂m}p
mp2(n−m)

= µn + (b+ 1)bn−1
n−1∑
m=0

(b− 1)b(n−m)−1p2n−m

≤ µn + (b+ 1)(b− 1)b2n−2p2n
+∞∑
m=0

(bp)−m

= µn + µ
2
n ·

b− 1

b+ 1
·

1

1− (bp)−1
,

where, on the fourth line, we used that all vertices on the nth level are equivalent and that,
for a fixed x, the set { y : x∧ y ∈ ∂m} is composed of those vertices in ∂n that are descendants
of x∧ y but not in the descendant subtree of x∧ y containing x. When p > 1

d−1 =
1
b , dividing

by (EpXn)2
= µ2

n →+∞, we get

Ep[X 2
n ]

(EpXn)2
≤

1

µn
+

b− 1

b+ 1
·

1

1− (bp)−1
(2.3.9)

≤ 1+
b− 1

b+ 1
·

1

1− (bp)−1

=: Cb,p.

By the second moment method (Theorem 2.3.2) and monotonicity,

θ ( p) = Pp[|C0| = +∞] = Pp[∀n, Xn > 0] = lim
n
Pp[Xn > 0] ≥ C−1

b,p > 0,

which concludes the proof. (Note that the version of the second moment method in (2.3.1)
does not work here. Subtract 1 in (2.3.9) and take p close to 1/b.)

The argument in the proof of Claim 2.3.9 relies crucially on the fact that, in a tree, any
two vertices are connected by a unique path. For instance, approximating Pp[x ∈ C0] is
much harder on a lattice. Note furthermore that, intuitively, the reason why the first moment
captures the critical threshold exactly in this case is that bond percolation on Td is a “branch-
ing process” (defined formally and studied at length in Chapter 6), where Xn represents the
“population size at generation n.” The qualitative behavior of a branching process is gov-
erned by its expectation: when the mean number of children bp exceeds 1, the process grows
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exponentially on average and “explodes” with positive probability (see Theorem 6.1.6). We
will come back to this point of view in Section 6.2.4 where branching processes are used to
give a more refined analysis of bond percolation on Td.

General trees Let T be a locally finite tree (i.e., all its degrees are finite) with root 0. For
an edge e, let ve be the endvertex of e furthest from the root. We denote by |e| the graph
distance between 0 and ve. Generalizing a previous definition from Section 1.1.1 to infinite,
locally finite graphs, a cutset separating 0 and +∞ is a finite set of edges 5 such that all
infinite paths (which, recall, are self-avoiding by definition) starting at 0 go through 5. (For
our purposes, it will suffice to assume that cutsets are finite by default.) For a cutset 5, we
let 5v := {ve : e ∈ 5}. Repeating the argument in (2.3.8), for any cutset 5, by the first
moment method (i.e., union bound),

θ ( p) = Pp[|C0| = +∞]

≤ Pp[C0 ∩5v 6= ∅]

≤

∑
u∈5v

Pp[u ∈ C0]

=

∑
e∈5

p|e|. (2.3.10)

This bound naturally leads to the next definition.

Definition 2.3.10 (Branching number). The branching number of T is given by BRANCHING

NUMBER

br(T ) = sup

{
λ ≥ 1: inf

cutset 5

∑
e∈5

λ−|e| > 0

}
. (2.3.11)

Using the max-flow min-cut theorem (Theorem 1.1.15), the branching number can also be
characterized in terms of a “flow to+∞.” We will not do this here. (But see Theorem 3.3.30.)

Equation (2.3.10) implies that pc(T ) ≥ 1
br(T ) . Remarkably, this bound is tight. The proof

is based on a “weighted” second moment method.

Claim 2.3.11 For any rooted, locally finite tree T ,

pc(T ) =
1

br(T )
.

Proof Suppose p < 1
br(T ) . Then, p−1 > br(T ) and the sum in (2.3.10) can be made

arbitrarily small by definition of the branching number, that is, θ ( p) = 0. Hence we have
shown that pc(T ) ≥ 1

br(T ) .

To argue in the other direction, let p > 1
br(T ) , p−1 < λ < br(T ), and ε > 0 such that∑

e∈5

λ−|e| ≥ ε (2.3.12)

for all cutsets 5. The existence of such an ε is guaranteed by the definition of the branching
number. As in the proof of Claim 2.3.9, we use that θ ( p) is the limit as n → +∞ of the
probability that C0 reaches the nth level (i.e., the vertices at graph distance n from the root 0,
which is necessarily a finite set in a locally finite tree). However, this time, we use a weighted
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count on the nth level. Let Tn be the first n levels of T and, as before, let ∂n be the vertices
on the nth level. For a probability measure νn on ∂n, we define the weighted count

Xn =

∑
z∈∂n

1{z∈C0}

νn(z)

Pp[z ∈ C0]
.

The purpose of the denominator is normalization, that is,

EpXn =

∑
z∈∂n

νn(z) = 1.

Observe that, while νn(z) may be 0 for some zs (but not all), we still have that Xn > 0,∀n
implies {|C0| = +∞}, which is what we need to apply the second moment method.

Because of (2.3.12), a natural choice of νn follows from the max-flow min-cut theorem
(Theorem 1.1.15) applied to Tn with source 0, sink ∂n, and capacity constraint |φ(x, y)| ≤
κ(e) := ε−1λ−|e| for all edges e = {x, y}. Indeed, for all cutsets 5 in Tn separating 0 and
∂n, we have

∑
e∈5 κ(e) =

∑
e∈5 ε

−1λ−|e| ≥ 1 by (2.3.12). That then guarantees by Theo-
rem 1.1.15 the existence of a unit flow φ from 0 to ∂n satisfying the capacity constraints.
Define νn(z) to be the flow entering z ∈ ∂n under φ. In particular, because φ is a unit flow,
νn defines a probability measure. It remains to bound the second moment of Xn under this
choice. We have

EpX 2
n = Ep

(∑
z∈∂n

1{z∈C0}

νn(z)

Pp[z ∈ C0]

)2


=

∑
x,y∈∂n

νn(x)νn( y)
Pp[x, y ∈ C0]

Pp[x ∈ C0]Pp[ y ∈ C0]

=

n∑
m=0

∑
x,y∈∂n

1{x∧y∈∂m}νn(x)νn( y)
pmp2(n−m)

p2n

=

n∑
m=0

p−m
∑
z∈∂m

∑
x,y∈∂n

1{x∧y=z}νn(x)νn( y)

 .

In the expression in parentheses, for each x descendant of z, the sum over y is at most
νn(x)νn(z) by the definition of a flow; then the sum over those xs gives at most νn(z)2. So

EpX 2
n ≤

n∑
m=0

p−m
∑
z∈∂m

νn(z)2

≤

n∑
m=0

p−m
∑
z∈∂m

(ε−1λ−m)νn(z)

≤ ε−1
+∞∑
m=0

( pλ)−m

=
ε−1

1− ( pλ)−1
=: Cε,λ,p < +∞,
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where the second line follows from the capacity constraint, and we used pλ > 1 on the last
line. From the second moment method (recalling that EpXn = 1),

θ ( p) = Pp[|C0| = +∞] ≥ Pp[∀n, Xn > 0] = lim
n
Pp[Xn > 0] ≥ C−1

ε,λ,p > 0.

It follows that

θ ( p) ≥ C−1
ε,λ,p > 0,

and pc(T ) ≤ 1
br(T ) . That concludes the proof.

Note that Claims 2.3.9 and 2.3.11 imply that br(Td) = d − 1. The next example is more
striking and insightful.

Example 2.3.12 (The 3–1 tree). The 3–1 tree T̂3−1 is an infinite rooted tree. We give a
planar description. The root ρ (level 0) is at the top. It has two children below it (level 1).
Then on level n, for n ≥ 1, the first 2n−1 vertices starting from the left have exactly 1 child
and the next 2n−1 vertices have exactly 3 children. In particular, level n has 2n vertices, which
we denote by un,1, . . . , un,2n . For vertex un, j we refer to j/2n as its relative position (on level RELATIVE

POSITIONn). So vertices have 1 or 3 children according to whether their relative position is ≤ 1/2
or > 1/2.

Because the level size is growing at rate 2, it is tempting to conjecture that the branching
number is 2 – but that turns out to be way off.

Claim 2.3.13 br(T̂3−1) = 1.

What makes this tree entirely different from the infinite 2-ary tree, despite having the same
level growth, is that each infinite path from the root in T̂3−1 eventually “stops branching,”
with the sole exception of the rightmost path which we refer to as the main path. Indeed, let MAIN PATH

0 = v0 ∼ v1 ∼ v2 ∼ · · · with v0 = ρ be an infinite path distinct from the main path. Let
xi be the relative position of vi, i ≥ 1. Let vk be the first vertex of 0 not on the main path. It
lies on the kth level.

Lemma 2.3.14 Let v be a vertex that is not on the main path with relative position x and
assume that 0 ≤ x ≤ α < 1. Let w be a child of v and denote by y its relative position. Then,

y ≤

{
1
2 x if x ≤ 1/2,

x− 1
2 (1− α) otherwise.

Proof Assume without loss of generality that v = un, j for some n and j < 2n. If j ≤ 2n−1,
then by construction v has exactly one child with relative position

y =
j

2n+1
=

1

2
x.

That proves the first claim.
If j > 2n−1, then all vertices to the right of v have 3 children, all of whom are to the right

of the children of v. Hence, the children of v have relative position at most

y ≤
2n+1
− 3(2n

− j)

2n+1
=

3j− 2n

2n+1
=

3

2
x−

1

2
.

Subtracting x and using x ≤ α gives the second claim.
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We now apply Lemma 2.3.14 to vk as defined above and its descendants on 0 with α =
1− 1/2k . We get that the relative position decreases from vk by 1/2k+1 on each level until it
falls below 1/2 at which point it gets cut in half at each level. Once this last regime is reached,
each vertex on 0 from then on has exactly one child – that is, there is no more branching.

We are now ready to prove the claim.

Proof of Claim 2.3.13 Take any λ > 1. From the definition of the branching number (Def-
inition 2.3.10), it suffices to find a sequence of cutsets (5n)n such that∑

e∈5n

λ−|e|→ 0,

as n→+∞. What does not work is to choose5n := 3n to be the edges between level n−1
and level n, since we then have ∑

e∈3n

λ−|e| = 2nλ−n,

which diverges whenever λ < 2. Instead, we construct a new cutset 8n based on 3n as
follows. We divide up 3n into the disjoint union 3−n ∪ 3

+

n , where 3−n are the edges whose
endvertex on level n has relative position ≤ 1/2 and 3+n are the rest of the edges. Start with
8n := ∅.
Step 1. For each edge e in 3−n , letting v be the endvertex of e on level n, add to 8n the edge
{v′, v′′} where v′ and v′′ are the unique descendants of v on level mn− 1 and mn, respectively.
The value of mn ≥ n is chosen so that

2nλ−mn ≤
1

2n
. (2.3.13)

Any infinite path from the root going through one of the edges in 3−n has to go through the
edge that replaced it in 8n since there is no branching below that point by Lemma 2.3.14.
Step 2. We also add to 8n the edge {w′, w′′} on the main path where w′ = u`n−1,2`n−1 is on
level `n − 1 and w′′ = u`n,2`n is on level `n. We mean for the value of `n to be such that any
infinite path going through an edge in 3+n has to go through {w′, w′′} first. That is, we need
all vertices of level n with relative position > 1/2 to be a descendant of w′′. The number of
descendants of w′′ on level J > `n is 3J−`n until the last J such that it is ≤ 2J−1, which we
denote by J∗. A quick calculation gives

J∗ =

⌊
`n log 3− log 2

log 3− log 2

⌋
.

After level J∗, the leftmost descendant of w′′ has relative position ≤ 1/2 by Lemma 2.3.14.
Therefore, we need n > J∗. Taking

`n =

⌊
log 3/2

log 3
n

⌋
, (2.3.14)

will do for n large enough, say n ≥ n0.
Finishing up. By construction, 8n is a cutset for all n ≥ n0. Moreover,∑

e∈8n

λ−|e| = 2n−1λ−mn + λ−`n <
1

n

for n large enough, where we used (2.3.13) and (2.3.14). Taking n → +∞ gives the
claim.
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As a consequence of Claims 2.3.11 and 2.3.13, |Cρ | < +∞ almost surely for all p < 1
on T̂3−1. J

2.4 Chernoff–Cramér Method

Chebyshev’s inequality (Theorem 2.1.2) gives a bound on the concentration around its mean
of a square integrable random variable. It is, in general, best possible. Indeed, take X to
be µ + bσ or µ − bσ with probability (2b2)−1 each, and µ otherwise. Then EX = µ,
VarX = σ 2, and for β = bσ ,

P[|X − EX | ≥ β] = P[|X − EX | = β] =
1

b2
=

VarX

β2
.

However, in many cases, much stronger bounds can be derived. For instance, if X ∼ N(0, 1),
by the following lemma

P[|X − EX | ≥ β] ∼

√
2

π
β−1 exp(−β2/2)�

1

β2
, (2.4.1)

as β →+∞. Indeed:

Lemma 2.4.1 For x > 0,

(x−1
− x−3) e−x2/2

≤

∫
+∞

x
e−y2/2dy ≤ x−1 e−x2/2.

Proof By the change of variable y = x+ z and using e−z2/2
≤ 1∫

+∞

x
e−y2/2dy ≤ e−x2/2

∫
+∞

0
e−xzdz = e−x2/2x−1.

For the other direction, by differentiation,∫
+∞

x
(1− 3y−4) e−y2/2dy = (x−1

− x−3) e−x2/2.

In this section, we discuss the Chernoff–Cramér method, which produces exponential tail
bounds, provided the moment-generating function (see Section 2.1.1) is finite in a neighbor-
hood of 0.

2.4.1 Tail Bounds via the Moment-Generating Function

Under a finite variance, squaring within Markov’s inequality (Theorem 2.1.1) produces
Chebyshev’s inequality (Theorem 2.1.2). This “boosting” can be pushed further when stronger
integrability conditions hold.

Chernoff–Cramér We refer to (2.4.2) in the next lemma as the Chernoff–Cramér bound. CHERNOFF–
CRAMÉR

BOUNDLemma 2.4.2 (Chernoff–Cramér bound). Assume X is a random variable such that MX (s) <
+∞ for s ∈ (−s0, s0) for some s0 > 0. For any β > 0 and s > 0,

P[X ≥ β] ≤ exp [−{sβ −9X (s)}] , (2.4.2)
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where

9X (s) := log MX (s)

is the cumulant-generating function of X .

Proof Exponentiating within Markov’s inequality gives for s > 0,

P[X ≥ β] = P[esX
≥ esβ] ≤

MX (s)

esβ
= exp [−{sβ −9X (s)}] .

Returning to the Gaussian case, let X ∼ N(0, ν), where ν > 0 is the variance and note
that

MX (s) =
∫
+∞

−∞

esx 1
√

2πν
e−

x2

2ν dx

=

∫
+∞

−∞

e
s2ν

2
1
√

2πν
e−

(x−sν)2

2ν dx

= exp
(

s2ν

2

)
.

By straightforward calculus, the optimal choice of s in (2.4.2) gives the exponent

sup
s>0

(sβ − s2ν/2) =
β2

2ν
, (2.4.3)

achieved at sβ = β/ν. For β > 0, this leads to the bound

P[X ≥ β] ≤ exp
(
−
β2

2ν

)
, (2.4.4)

which is much sharper than Chebyshev’s inequality for large β – compare to (2.4.1).
As another toy example, we consider simple random walk on Z.

Lemma 2.4.3 (Chernoff bound for simple random walk on Z). Let Z1, . . . , Zn be independ-
ent Rademacher variables, that is, they are {−1, 1}-valued random variables with P[Zi =RADEMACHER

VARIABLE 1] = P[Zi = −1] = 1/2. Let Sn =
∑

i≤n Zi. Then, for any β > 0,

P[Sn ≥ β] ≤ e−β
2/2n. (2.4.5)

Proof The moment-generating function of Z1 can be bounded as follows

MZ1 (s) =
es
+ e−s

2
=

∑
j≥0

s2j

(2j)!
≤

∑
j≥0

(s2/2)j

j!
= es2/2. (2.4.6)

Taking s = β/n in the Chernoff–Cramér bound (2.4.2), we get

P[Sn ≥ β] ≤ exp
(
−sβ + n9Z1 (s)

)
≤ exp

(
−sβ + ns2/2

)
= e−β

2/2n,

which concludes the proof.
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Observe the similarity between (2.4.5) and the Gaussian bound (2.4.4) if one takes ν to
be the variance of Sn, that is,

ν = Var[Sn] = nVar[Z1] = nE[Z2
1 ] = n,

where we used that Z1 is centered. The central limit theorem says that simple random walk is
well approximated by a Gaussian in the “bulk” of the distribution; the bound above extends
the approximation in the “large deviation” regime. The bounding technique used in the proof
of Lemma 2.4.3 will be substantially extended in Section 2.4.2.

Example 2.4.4 (Set balancing). Let v1, . . . , vm be arbitrary non-zero vectors in {0, 1}n. Think
of vi = (vi,1, . . . , vi,n) as representing a subset of [n] = {1, . . . , n}: vi, j = 1 indicates that
j is in subset i. Suppose we want to partition [n] into two groups such that the subsets
corresponding to the vis are as balanced as possible, that is, are as close as possible to
having the same number of elements from each group. More formally, we seek a vector
x = (x1, . . . , xn) ∈ {−1,+1}n such that B∗ = maxi=1,...,m |x · vi| is as small as possible.

A simple random choice does well: select each xi independently, uniformly at random in
{−1,+1}. Fix ε > 0. We claim that

P
[
B∗ ≥

√
2n(log m+ log(2ε−1))

]
≤ ε. (2.4.7)

Indeed, by (2.4.5) (considering only the non-zero entries of vi),

P
[
|x · vi| ≥

√
2n(log m+ log(2ε−1))

]
≤ 2 exp

(
−

2n(log m+ log(2ε−1))

2‖vi‖1

)
≤
ε

m
,

where we used that ‖vi‖1 ≤ n. Taking a union bound over the m vectors gives the result.
In (2.4.7), the

√
n term on the right-hand side of the inequality is to be expected since it

is the standard deviation of |x · vi| in the worst case. The power of the exponential tail
bound (2.4.5) appears in the logarithmic terms, which would have been much larger if one
had used Chebyshev’s inequality instead. J

The Chernoff–Cramér bound is particularly useful for sums of independent random
variables as the moment-generating function then factorizes; see (2.1.3). Let

9∗X (β) = sup
s∈R+

(sβ −9X (s))

be the Fenchel–Legendre dual of the cumulant-generating function of X . FENCHEL–
LEGENDRE

DUALTheorem 2.4.5 (Chernoff–Cramér method). Let Sn =
∑

i≤n Xi, where the Xis are i.i.d. ran-
dom variables. Assume MX1 (s) < +∞ on s ∈ (−s0, s0) for some s0 > 0. For any β > 0,

P[Sn ≥ β] ≤ exp
(
−n9∗X1

(
β

n

))
. (2.4.8)
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In particular, in the large deviations regime, that is, when β = bn for some b> 0, we
have

− lim sup
n

1

n
logP[Sn ≥ bn] ≥ 9∗X1

(b) . (2.4.9)

Proof By independence, we get

9∗Sn
(β) = sup

s>0
(sβ − n9X1 (s)) = sup

s>0
n

(
s

(
β

n

)
−9X1 (s)

)
= n9∗X1

(
β

n

)
,

and then we optimize over s in (2.4.2).

We use the Chernoff–Cramér method to derive a few standard bounds.

Poisson variables We start with the Poisson case. Let Z ∼ Poi(λ) be Poisson with mean λ,POISSON

where we recall that

P[Z = k] = e−λ
λk

k!
, k ∈ Z+.

Letting X = Z − λ,

9X (s) = log

(∑
`≥0

e−λ
λ`

`!
es(`−λ)

)

= log

(
e−(1+s)λ

∑
`≥0

(esλ)`

`!

)
= log

(
e−(1+s)λeesλ

)
= λ(es

− s− 1),

so that straightforward calculus gives for β > 0,

9∗X (β) = sup
s>0

(sβ − λ(es
− s− 1))

= λ

[(
1+

β

λ

)
log

(
1+

β

λ

)
−
β

λ

]
=: λ h

(
β

λ

)
,

achieved at sβ = log
(
1+ β

λ

)
, where h is defined as the expression in square brackets in the

above display. Plugging 9∗X (β) into Theorem 2.4.5 leads for β > 0 to the bound

P[Z ≥ λ+ β] ≤ exp
(
−λ h

(
β

λ

))
. (2.4.10)

A similar calculation for −(Z − λ) gives for β < 0,

P[Z ≤ λ+ β] ≤ exp
(
−λ h

(
β

λ

))
. (2.4.11)
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If Sn is a sum of n i.i.d. Poi(λ) variables, then by (2.4.9) for a > λ,

− lim sup
n

1

n
logP[Sn ≥ an] ≥ λ h

(
a− λ

λ

)
= a log

(a

λ

)
− a+ λ

=: IPoi
λ (a), (2.4.12)

and similarly for a < λ,

− lim sup
n

1

n
logP[Sn ≤ an] ≥ IPoi

λ (a). (2.4.13)

In fact, these bounds follow immediately from (2.4.10) and (2.4.11) by noting that Sn ∼

Poi(nλ) (see, for example, Exercise 6.7).

Binomial variables and Chernoff bounds Let Z ∼ Bin(n, p) be a binomial random varia- BINOMIAL

ble with parameters n and p. Recall that Z is a sum of i.i.d. indicators Y1, . . . , Yn equal to 1
with probability p. The Yis are also known as Bernoulli random variables or Bernoulli trials, BERNOULLI

and their law is denoted by Ber( p). We also refer to p as the success probability. Letting
Xi = Yi − p and Sn = Z − np,

9X1 (s) = log ( pes
+ (1− p))− ps.

For b ∈ (0, 1− p), letting a = b+ p, direct calculation gives

9∗X1
(b) = sup

s>0
(sb− (log [pes

+ (1− p)]− ps))

= (1− a) log
1− a

1− p
+ a log

a

p
=: D(a‖p), (2.4.14)

achieved at sb = log (1−p)a
p(1−a) . The function D(a‖p) in (2.4.14) is the so-called Kullback–Leibler KULLBACK–

LEIBLER

DIVERGENCE

divergence or relative entropy between two Bernoulli variables with parameters a and p,
respectively. By (2.4.8) for β > 0,

P[Z ≥ np+ β] ≤ exp (−n D ( p+ β/n‖p)) .

Applying the same argument to Z ′ = n− Z gives a bound in the other direction.

Remark 2.4.6 In the large deviations regime, it can be shown that the previous bound is
tight in the sense that

−
1

n
logP[Z ≥ np+ bn]→ D ( p+ b‖p) =: IBin

n,p (b),

as n → +∞. The theory of large deviations provides general results of this type. See, for
example, [Dur10, section 2.6]. Upper bounds will be enough for our purposes.

The following related bounds, proved in Exercise 2.7, are often useful.

Theorem 2.4.7 (Chernoff bounds for Poisson trials). Let Y1, . . . , Yn be independent {0, 1}-
valued random variables with P[Yi = 1] = pi and µ =

∑
i pi. These are called Poisson POISSON

TRIALStrials. Let Z =
∑

i Yi. Then:
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(i) Above the mean

(a) For any δ > 0,

P[Z ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)(1+δ)

)µ
.

(b) For any 0 < δ ≤ 1,

P[Z ≥ (1+ δ)µ] ≤ e−µδ
2/3.

(ii) Below the mean

(a) For any 0 < δ < 1,

P[Z ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
.

(b) For any 0 < δ < 1,

P[Z ≤ (1− δ)µ] ≤ e−µδ
2/2.

2.4.2 Sub-Gaussian and Sub-Exponential Random Variables

The bounds in Section 2.4.1 were obtained by computing the moment-generating function
explicitly (possibly with some approximations). This is not always possible. In this section,
we give some important examples of tail bounds derived from the Chernoff–Cramér method
for broad classes of random variables under natural conditions on their distributions.

Sub-Gaussian random variables

We begin with sub-Gaussian random variables which, as the name suggests, have a tail that
is bounded by that of a Gaussian.

General case Here is our key definition.

Definition 2.4.8 (Sub-Gaussian random variables). We say that a random variable X withSUB-
GAUSSIAN

VARIABLE
mean µ is sub-Gaussian with variance factor ν if

9X−µ(s) ≤
s2ν

2
∀s ∈ R (2.4.15)

for some ν > 0. We use the notation X ∈ sG(ν).

Note that the right-hand side in (2.4.15) is the cumulant-generating function of a N(0, ν).
By the Chernoff–Cramér method and (2.4.3) it follows immediately that

P [X − µ ≤ −β] ∨ P [X − µ ≥ β] ≤ exp
(
−
β2

2ν

)
, (2.4.16)

where we used that X ∈ sG(ν) implies −X ∈ sG(ν). As a quick example, note that this is
the approach we took in Lemma 2.4.3, that is, we showed that a uniform random variable in
{−1, 1} (i.e., a Rademacher variable) is sub-Gaussian with variance factor 1.

When considering (weighted) sums of independent sub-Gaussian random variables, we
get the following.
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Theorem 2.4.9 (General Hoeffding inequality). Suppose X1, . . . , Xn are independent ran-
dom variables where, for each i, Xi ∈ sG(νi) with 0 < νi < +∞. For w1, . . . , wn ∈ R, let
Sn =

∑
i≤n wiXi. Then

Sn ∈ sG
(

n∑
i=1

w2
i νi

)
.

In particular, for all β > 0,

P [Sn − ESn ≥ β] ≤ exp
(
−

β2

2
∑n

i=1 w2
i νi

)
.

Proof Assume the Xis are centered. By independence and (2.1.3),

9Sn (s) =
∑
i≤n

9wiXi (s) =
∑
i≤n

9Xi (swi) ≤
∑
i≤n

(swi)2νi

2
=

s2
∑

i≤n w2
i νi

2
.

Bounded random variables For bounded random variables, the previous inequality reduces
to a standard bound.

Theorem 2.4.10 (Hoeffding’s inequality for bounded variables). Let X1, . . . , Xn be inde-
pendent random variables where, for each i, Xi takes values in [ai, bi] with−∞ < ai ≤ bi <

+∞. Let Sn =
∑

i≤n Xi. For all β > 0,

P[Sn − ESn ≥ β] ≤ exp

(
−

2β2∑
i≤n(bi − ai)2

)
.

By Theorem 2.4.9, it suffices to show that Xi − EXi ∈ sG(νi) with νi =
1
4 (bi − ai)2. We first

give a quick proof of a weaker version that uses a trick called symmetrization. Suppose the SYMMETRIZA-
TIONXis are centered and satisfy |Xi| ≤ ci for some ci > 0. Let X ′i be an independent copy of Xi

and let Zi be an independent uniform random variable in {−1, 1}. For any s,

E
[
esXi
]
= E

[
esE[Xi−X ′i |Xi]

]
≤ E

[
E
[
es(Xi−X ′i )

∣∣Xi

]]
= E

[
es(Xi−X ′i )

]
,

where the first line comes from the taking out what is known lemma (Lemma B.6.16)
and the fact that X ′i is centered and independent of Xi, the second line follows from the
conditional Jensen’s inequality (Lemma B.6.12), and the third line uses the tower prop-
erty (Lemma B.6.16). Observe that Xi − X ′i is symmetric, that is, identically distributed to
−(Xi − X ′i ). Hence, using that Zi is independent of both Xi and X ′i , we get

E
[
es(Xi−X ′i )

]
= E

[
E
[
es(Xi−X ′i )

∣∣Zi

]]
= E

[
E
[
esZi(Xi−X ′i )

∣∣Zi

]]
= E

[
esZi(Xi−X ′i )

]
= E

[
E
[
esZi(Xi−X ′i )

∣∣Xi − X ′i
]]

.
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From (2.4.6) (together with Lemma B.6.15), the last line is

≤ E
[
e(s(Xi−X ′i ))2/2

]
≤ e−4c2

i s2/2

since |Xi|, |X ′i | ≤ ci. Putting everything together, we arrive at

E
[
esXi
]
≤ e−4c2

i s2/2.

That is, Xi is sub-Gaussian with variance factor 4c2
i . By Theorem 2.4.9, Sn is sub-Gaussian

with variance factor
∑

i≤n 4c2
i and

P[Sn ≥ t] ≤ exp

(
−

t2

8
∑

i≤n c2
i

)
.

Proof of Theorem 2.4.10 As pointed out above, it suffices to show that Xi − EXi is sub-
Gaussian with variance factor 1

4 (bi − ai)2. This is the content of Hoeffding’s lemma below
(which we will use again in Chapter 3). First an observation:

Lemma 2.4.11 (Variance of bounded random variables). For any random variable Z taking
values in [a, b] with −∞ < a ≤ b < +∞, we have

Var[Z] ≤
1

4
(b− a)2.

Proof Indeed, ∣∣∣∣Z − a+ b

2

∣∣∣∣ ≤ b− a

2

and

Var[Z] = Var
[

Z −
a+ b

2

]
≤ E

[(
Z −

a+ b

2

)2
]
≤

(
b− a

2

)2

.

Lemma 2.4.12 (Hoeffding’s lemma). Let X be a random variable taking values in [a, b] forHOEFFDING’S

LEMMA −∞ < a ≤ b < +∞. Then, X ∈ sG
(

1
4 (b− a)2

)
.

Proof Note first that X−EX ∈ [a−EX , b−EX ] and 1
4 ((b−EX )−(a−EX ))2

=
1
4 (b−a)2.

So without loss of generality we assume that EX = 0. Because X is bounded, MX (s) is finite
for all s ∈ R. Hence, by (2.1.2),

9X (0) = log MX (0) = 0, 9 ′X (0) =
M ′X (0)

MX (0)
= EX = 0,

and by a Taylor expansion,

9X (s) = 9X (0)+ s9 ′X (0)+
s2

2
9 ′′X (s∗) =

s2

2
9 ′′X (s∗)

for some s∗ ∈ [0, s]. Therefore, it suffices to show that for all s,

9 ′′X (s) ≤
1

4
(b− a)2. (2.4.17)
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Note that

9 ′′X (s) =
M ′′X (s)

MX (s)
−

(
M ′X (s)

MX (s)

)2

=
1

MX (s)
E
[
X 2esX

]
−

(
1

MX (s)
E
[
XesX

])2

= E
[

X 2 esX

MX (s)

]
−

(
E
[

X
esX

MX (s)

])2

.

The trick to conclude is to notice that esx

MX (s) defines a density on [a, b] with respect to the

law of X . The variance under this density – the last line above – is less than 1
4 (b − a)2 by

Lemma 2.4.11. This establishes (2.4.17) and concludes the proof.

Remark 2.4.13 The change of measure above is known as tilting and is a standard trick in
large deviation theory. See, for example, [Dur10, section 2.6].

Since we have shown that Xi − EXi is sub-Gaussian with variance factor 1
4 (bi − ai)2,

Theorem 2.4.10 follows from Theorem 2.4.9.

Sub-exponential random variables

Unfortunately, not every random variable of interest is sub-Gaussian. A simple example is
the square of a Gaussian variable. Indeed, suppose X ∼ N(0, 1). Then W = X 2 is χ2-
distributed and its moment-generating function can be computed explicitly. Using the change
of variable u = x

√
1− 2s, for s < 1/2,

MW (s) =
1
√

2π

∫
+∞

−∞

esx2
e−x2/2 dx

=
1

√
1− 2s

×
1
√

2π

∫
+∞

−∞

e−u2/2 du

=
1

(1− 2s)1/2
. (2.4.18)

When s ≥ 1/2, however, we clearly have MW (s) = +∞. In particular, W cannot be sub-
Gaussian for any variance factor ν > 0. (Note that centering W produces an additional factor
of e−s in the moment-generating function which does not prevent it from diverging.) Further
confirming this observation, arguing as in (2.4.1), the upper tail of W decays as

P[W ≥ β] = P[X ≥
√
β]

∼

√
1

2π
[
√
β]−1 exp(−[

√
β]2/2)

∼

√
1

2πβ
exp(−β/2),

as β → +∞. That is, it decays exponentially with β, but much slower than the Gaussian
tail.
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General case We now define a broad class of distributions which have such exponential tail
decay.

Definition 2.4.14 (Sub-exponential random variable). We say that a random variable X withSUB-
EXPONENTIAL

VARIABLE
mean µ is sub-exponential with parameters (ν,α) if

9X−µ(s) ≤
s2ν

2
∀|s| ≤

1

α
(2.4.19)

for some ν,α > 0. We write X ∈ sE(ν,α).1

Observe that the key difference between (2.4.15) and (2.4.19) is the interval of s over which
it holds. As we will see, the parameter α dictates the exponential decay rate of the tail. The
specific form of the bound in (2.4.19) is natural once one notices that, as |s| → 0, a centered
random variable with variance ν should roughly satisfy

logE[esX ] ≈ log
{

1+ sE[X ]+
s2

2
E[X 2]

}
≈ log

{
1+

s2ν

2

}
≈

s2ν

2
.

Returning to the χ2 distribution, note that from (2.4.18) we have for |s| ≤ 1/4:

9W−1(s) = −s−
1

2
log(1− 2s)

= −s−
1

2

[
−

+∞∑
i=1

(2s)i

i

]

=
s2

2

[
4
+∞∑
i=2

(2s)i−2

i

]

≤
s2

2

[
2
+∞∑
i=2

|1/2|i−2

]

≤
s2

2
× 4.

Hence, W ∈ sE(4, 4).
Using the Chernoff–Cramér bound (Lemma 2.4.2), we obtain the following tail bound for

sub-exponential variables.

Theorem 2.4.15 (Sub-exponential tail bound). Suppose the random variable X with mean
µ is sub-exponential with parameters (ν,α). Then, for all β ∈ R+,

P[X − µ ≥ β] ≤

{
exp(− β2

2ν ) if 0 ≤ β ≤ ν/α,

exp(− β

2α ) if β > ν/α.
(2.4.20)

In words, the tail decays exponentially fast at large deviations but behaves as in the sub-
Gaussian case for smaller deviations. We will see that this awkward double-tail allows to
extrapolate naturally between different regimes. First we prove the claim.

Proof of Theorem 2.4.15 We start by applying the Chernoff–Cramér bound. For any β > 0
and |s| ≤ 1/α,

P[X − µ ≥ β] ≤ exp (−sβ +9X (s)) ≤ exp
(
−sβ + s2ν/2

)
.

1 More commonly, “sub-exponential” refers to the case α =
√
ν.
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At this point, the proof diverges from the sub-Gaussian case because the optimal choice of
s depends on β because of the additional constraint |s| ≤ 1/α. When s∗ = β/ν satisfies
s∗ ≤ 1/α, the quadratic function of s in the exponent is minimized at s∗, giving the bound

P[X ≥ β] ≤ exp
(
−
β2

2ν

)
for 0 ≤ β ≤ ν/α.

On the other hand, when β > ν/α, the exponent is strictly decreasing over the interval
s ≤ 1/α. Hence, the optimal choice is s∗ = 1/α, which produces the bound

P[X ≥ β] ≤ exp
(
−
β

α
+

ν

2α2

)
< exp

(
−
β

α
+
β

2α

)
= exp

(
−
β

2α

)
,

where we used that ν < βα on the second line.

For (weighted) sums of independent sub-exponential random variables, we get the
following.

Theorem 2.4.16 (General Bernstein inequality). Suppose X1, . . . , Xn are independent ran-
dom variables where, for each i, Xi ∈ sE(νi,αi) with 0 < νi,αi < +∞. For w1, . . . , wn ∈ R,
let Sn =

∑
i≤n wiXi. Then,

Sn ∈ sE
(

n∑
i=1

w2
i νi, max

i
|wi|αi

)
.

In particular, for all β > 0,

P [Sn − ESn ≥ β] ≤

exp
(
−

β2

2
∑n

i=1 w2
i νi

)
if 0 ≤ β ≤

∑n
i=1 w2

i νi

maxi |wi|αi
,

exp
(
−

β

2 maxi |wi|αi

)
if β >

∑n
i=1 w2

i νi

maxi |wi|αi
.

Proof Assume the Xis are centered. By independence and (2.1.3),

9Sn (s) =
∑
i≤n

9wiXi (s) =
∑
i≤n

9Xi (swi) ≤
∑
i≤n

(swi)2νi

2
=

s2
∑

i≤n w2
i νi

2
,

provided |swi| ≤ 1/αi for all i, that is,

|s| ≤
1

maxi |wi|αi
.

Bounded random variables: revisited We apply the previous result to bounded random
variables.

Theorem 2.4.17 (Bernstein’s inequality for bounded variables). Let X1, . . . , Xn be inde-
pendent random variables, where, for each i, Xi has mean µi, variance νi, and satisfies
|Xi − µi| ≤ c for some 0 < c < +∞. Let Sn =

∑
i≤n Xi. For all β > 0,
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P [Sn − ESn ≥ β] ≤

{
exp

(
−

β2

4
∑n

i=1 νi

)
if 0 ≤ β ≤

∑n
i=1 νi

c ,

exp
(
−

β

4c

)
if β >

∑n
i=1 νi

c .

Proof We claim that Xi ∈ sE(2νi, 2c). To establish the claim, we derive a bound on all
moments of Xi. Note that for all integers k ≥ 2,

E|Xi − µi|
k
≤ ck−2E|Xi − µi|

2
= ck−2νi.

Hence, first applying the dominated convergence theorem (Proposition B.4.14) to establish
the limit, we have for |s| ≤ 1

2c ,

E[es(Xi−µi)] =
+∞∑
k=0

sk

k!
E[(Xi − µi)k]

≤ 1+ sE[(Xi − µi)]+
+∞∑
k=2

sk

k!
ck−2νi

≤ 1+
s2νi

2
+

s2νi

3!

+∞∑
k=3

(cs)k−2

= 1+
s2νi

2

{
1+

1

3

cs

1− cs

}
≤ 1+

s2νi

2

{
1+

1

3

1/2

1− 1/2

}
≤ 1+

s2

2
2νi

≤ exp
(

s2

2
2νi

)
.

Using the general Bernstein inequality (Theorem 2.4.16) gives the result.

It may seem counter-intuitive to derive a tail bound based on the sub-exponential prop-
erty of bounded random variables when we have already done so using their sub-Gaussian
behavior. After all, the latter is on the surface a strengthening of the former. However, note
that we have obtained a better bound in Theorem 2.4.17 than we did in Theorem 2.4.10 –
when β is not too large. That improvement stems from the use of the (actual) variance for
moderate deviations. This is easier to appreciate through an example.

Example 2.4.18 (Erdős–Rényi: maximum degree). Let Gn = (Vn, En) ∼ Gn,pn be a random
graph with n vertices and density pn under the Erdős–Rényi model (Definition 1.2.2). Recall
that two vertices u, v ∈ Vn are adjacent if {u, v} ∈ En and that the set of adjacent vertices
of v, denoted by N(v), is called the neighborhood of v. The degree of v is the size of its
neighborhood, that is, δ(v) = |N(v)|. Here we study the maximum degree of Gn,

Dn = max
v∈Vn

δ(v).

We focus on the regime npn = ω(log n). Note that for any vertex v ∈ Vn, its degree is Bin(n−
1, pn) by independence of the edges. In particular, its expected degree is (n− 1)pn. To prove
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a high-probability upper bound on the maximum Dn, we need to control the deviation of the
degree of each vertex from its expectation. Observe that the degrees are not independent.
Instead, we apply a union bound over all vertices, after using a tail bound.

Claim 2.4.19 For any ε > 0, as n→+∞,

P
[
|Dn − npn| ≥ 2

√
(1+ ε)npn log n

]
→ 0.

Proof For a fixed vertex v, think of δ(v) = Sn−1 ∼ Bin(n − 1, pn) as a sum of n − 1
independent {0, 1}-valued random variables, one for each possible edge. That is, Sn−1 =∑n−1

i=1 Xi, where Xi is a bounded random variable. The mean of Xi is pn and its variance is
pn(1 − pn). So in Bernstein’s inequality (Theorem 2.4.17), we can take µi := pn, νi :=
pn(1− pn), and c := 1 for all i. We get

P [Sn−1 ≥ (n− 1)pn + β] ≤

{
exp

(
−
β2

4ν

)
if 0 ≤ β ≤ ν,

exp
(
−
β

4

)
if β > ν,

where ν = (n − 1)pn(1 − pn) = ω(log n) by assumption. We choose β to be the smallest
value that will produce a tail probability less than n−1−ε for ε > 0, that is,

β =
√

4(n− 1)pn(1− pn)×
√

(1+ ε) log n = o(ν),

which falls in the lower regime of the tail bound. In particular, β = o(npn) (i.e., the deviation
is much smaller than the expectation). Finally, by a union bound over v ∈ Vn,

P
[
Dn ≥ (n− 1)pn +

√
4(1+ ε)pn(1− pn)(n− 1) log n

]
≤ n×

1

n1+ε
→ 0.

The same holds in the other direction. That proves the claim.

Had we used Hoeffding’s inequality (Theorem 2.4.10) in the proof of Claim 2.4.19 we
would have had to take β =

√
(1+ ε)n log n. That would have produced a much weaker

bound when pn = o(1). Indeed, the advantage of Bernstein’s inequality is that it makes
explicit use of the variance, which when pn = o(1) is much smaller than the worst case for
bounded variables. J

2.4.3 F Probabilistic Analysis of Algorithms: Knapsack Problem

In a knapsack problem, we have n items. Item i has weight Wi and value Vi. Given a weight
bound W , we want to pack as valuable a collection of items in the knapsack under the
constraint that the total weight is less than or equal to W . Formally, we seek a solution to
the optimization problem

Z∗ = max


n∑

j=1

xjVj : x1, . . . , xn ∈ [0, 1],
n∑

j=1

xjWj ≤W

 . (2.4.21)

This is the fractional knapsack problem, where we allow a fraction of an item to be added to KNAPSACK

PROBLEMthe knapsack.
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Figure 2.7 Vizualization of the greedy algorithm.

It is used as a computationally tractable relaxation of the 0-1 knapsack problem, which
also includes the combinatorial constraint xj ∈ {0, 1},∀j. Indeed, it turns out that the
optimization problem (2.4.21) is solved exactly by a simple greedy solution (see Exercise 2.8
for a formal proof of correctness): let π be a permutation of {1, . . . , n} that puts the items in
decreasing order of value per unit weight

Vπ(1)

Wπ (1)
≥

Vπ(2)

Wπ (2)
≥ · · · ≥

Vπ (n)

Wπ (n)
;

add the items in that order until the first time the weight constraints is violated; include
whatever fraction of that last item that will fit. This greedy algorithm has a natural geometric
interpretation, depicted in Figure 2.7, that will be useful. We associate item j to a point
(Wj, Vj) ∈ [0, 1]2 and keep only those items falling on or above a line with slope θ chosen to
satisfy the total weight constraint. Specifically, let

1θ =
{
j ∈ [n] : Vj > θWj

}
,

3θ =
{
j ∈ [n] : Vj = θWj

}
,

and

2∗ = inf
{
θ ≥ 0 : W1θ <W

}
,

where, for a subset of items J ⊂ [n], WJ =
∑

j∈J Wj.
We consider a stochastic version of the fractional knapsack problem where the weights

and values are i.i.d. random variables picked uniformly at random in [0, 1]. Characterizing
Z∗ (e.g., its moments or distribution) is not straightforward. Here we show that Z∗ is highly
concentrated around a natural quantity. Observe that, under our probabilistic model, almost
surely |3θ | ∈ {0, 1} for any θ ≥ 0. Hence, there are two cases. Either 2∗ = 0, in which case
all items fit in the knapsack so that Z∗ =

∑n
j=1 Wj, or 2∗ > 0, in which case |32∗ | = 1 and

Z∗ = V12∗ + (W −W12∗ )V32∗ . (2.4.22)
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One interesting regime is W = τn for some constant τ > 0. Clearly, τ > 1 is trivial. In
fact, because

E

 n∑
j=1

Wj

 = nE[W1] =
1

2
n,

we assume that τ ≤ 1/2. To further simplify the calculations, we restrict ourselves to the
case τ ∈ (1/6, 1/2). (See Exercise 2.8 for the remaining case.) In this regime, we show that
Z∗ grows linearly with n and give a bound on its deviation.

Although Z∗ is technically a sum of random variables, the choice of 2∗ correlates them
and we cannot apply our concentration bounds directly. Instead, we show that 2∗ itself can
be controlled well. It is natural to conjecture that 2∗ is approximately equal to a solution θτ
of the expected constraint equation E[W1θτ

] =W , that is,

nw̄θτ = nτ , (2.4.23)

where w̄θ is defined through

E[W1θ ] = E

∑
j∈1θ

Wj


= E

 n∑
j=1

1{Vj > θWj}Wj


= nE [1{V1 > θW1}W1]

=: nw̄θ .

Similarly, we define

v̄θ := E [1{V1 > θW1}V1] .

We see directly from the definitions that both w̄θ and v̄θ are monotone as functions of θ .
Our main claim is the following.

Claim 2.4.20 There is a constant c > 0 such that for any δ > 0,

P
[
|Z∗ − nv̄θτ | ≥

√
cn log δ−1

]
≤ δ

for all n large enough.

Proof Because all weights and values are in [0, 1], it follows from (2.4.22) that

V12∗ ≤ Z∗ ≤ V12∗ + 1, (2.4.24)

and it will suffice to work with V12∗ . The idea of the proof is to show that2∗ is close to θτ by
establishing that W1θ is highly likely to be less than τn when θ > θτ , while the opposite holds
when θ < θτ . For this, we view W1θ as a sum of independent bounded random variables and
use Hoeffding’s inequality (Theorem 2.4.10).
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Controlling 2∗. First, it will be useful to compute w̄θ and θτ analytically. By definition,

w̄θ = E [1{V1 > θW1}W1]

=

∫ 1

0

∫ 1

0
1{ y > θx}x dy dx

=

∫ 1∧1/θ

0
(1− θx)x dx

=

{
1
2 −

1
3θ if θ ≤ 1,

1
6θ2 otherwise.

(2.4.25)

Plugging back into (2.4.23), we get the unique solution

θτ := 3
(

1

2
− τ

)
∈ (0, 1)

for the range τ ∈ (1/6, 1/2).
Now observe that, for each fixed θ , the quantity

W1θ =

n∑
j=1

1{Vj > θWj}Wj

is a sum of independent random variables taking values in [0, 1]. Hence, for any β > 0,
Hoeffding’s inequality gives

P
[
W1θ − nw̄θ ≥ β

]
≤ exp

(
−

2β2

n

)
.

Using this inequality with θ = θτ − C
√

n (with n large enough that θ < 1) and β = 3C
√

n
gives

P
[

W1
θτ−

C√
n

− 3n

(
1

2
− θτ +

C
√

n

)
≥ 3C

√
n

]
≤ exp

(
−2(3C)2

)
,

where we used (2.4.25). After rearranging and using that 3n
(

1
2 − θτ

)
= nτ by (2.4.23)

and (2.4.25), we get

P
[
2∗ ≥ θτ −

C
√

n

]
= P

[
W1

θτ−
C√

n

≥ nτ

]
≤ exp

(
−2(3C)2

)
.

Applying the same argument to −W1θ with θ = θτ + C
√

n and combining with the previous
inequality gives

P
[
|2∗ − θτ | >

C
√

n

]
≤ 2 exp

(
−2(3C)2

)
. (2.4.26)

Controlling Z∗. We conclude by applying Hoeffding’s inequality to V1θ . Arguing as above
with the same θ ’s and β, we obtain

P
[

V1
θτ−

C√
n

− nv̄θτ− C
√

n
≥ 3C

√
n

]
≤ exp

(
−2(3C)2

)
(2.4.27)
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and

P
[

V1
θτ+

C√
n

− nv̄θτ+ C
√

n
≤ −3C

√
n

]
≤ exp

(
−2(3C)2

)
. (2.4.28)

Again, it will be useful to compute v̄θ analytically. By definition,

v̄θ = E [1{V1 > θW1}V1]

=

∫ 1

0

∫ 1

0
1{ y > θx}y dx dy

=

∫ 1∧θ

0

y2

θ
dy+

∫ 1

1∧θ
y dy

=

{
1
2 −

1
6θ

2 if θ ≤ 1,
1

3θ otherwise.

Assuming n is large enough that θτ + C/
√

n < 1 (recall that θτ < 1), we get

v̄θτ − v̄θτ+ C
√

n
=

1

6

(
2

C
√

n
θτ +

C2

n

)
≤

C
√

n
.

A quick check reveals that, similarly, v̄θτ− C
√

n
− v̄θτ ≤

C
√

n . Plugging back into (2.4.27)
and (2.4.28) gives

P
[

V1
θτ−

C√
n

≥ nv̄θτ + 4C
√

n

]
≤ exp

(
−2(3C)2

)
(2.4.29)

and

P
[

V1
θτ+

C√
n

≤ nv̄θτ − 4C
√

n

]
≤ exp

(
−2(3C)2

)
. (2.4.30)

Observe that the following monotonicity property holds almost surely

θ0 ≤ θ1 ≤ θ2 =⇒ V1θ0 ≥ V1θ1 ≥ V1θ2 . (2.4.31)

Combining (2.4.24), (2.4.26), (2.4.29), (2.4.30), and (2.4.31), we obtain

P
[∣∣Z∗ − nv̄θτ

∣∣ > 5C
√

n
]
≤ 4 exp

(
−2(3C)2

)
for n large enough. Choosing C appropriately gives the claim.

A similar bound is proved for the 0-1 knapsack problem in Exercise 2.9.

2.4.4 Epsilon-Nets and Chaining

Suppose we are interested in bounding the expectation or tail of the supremum of a stochastic
process

sup
t∈T

Xt,
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where T is an arbitrary index set and the Xts are real-valued random variables. To avoid
measurability issues, we assume throughout that T is countable.2 Note that t does not in
general need to be a “time” index.

So far we have developed tools that can handle cases where T is finite. When the supre-
mum is over an infinite index set, however, new ideas are required. One way to proceed is
to apply a tail inequality to a sufficiently dense finite subset of the index set and then extend
the resulting bound by a Lipschitz continuity argument. We present this type of approach in
this section, as well as a multi-scale version known as chaining.

First we summarize one important special case that will be useful below: T is finite and
Xt is sub-Gaussian.

Theorem 2.4.21 (Maximal inequalities: sub-Gaussian case). Let {Xt}t∈T be a stochastic
process with finite index set T . Assume that there is ν > 0 such that, for all t, Xt ∈ sG(ν)
and E[Xt] = 0. Then,

E
[

sup
t∈T

Xt

]
≤

√
2ν log |T |,

and, for all β > 0,

P
[

sup
t∈T

Xt ≥
√

2ν log |T | + β
]
≤ exp

(
−
β2

2ν

)
.

Proof For the expectation, we apply a variation on the Chernoff–Cramér method (Sec-
tion 2.4). Naively, we could bound the supremum supt∈T Xt by the sum

∑
t∈T |Xt|, but that

would lead to a bound growing linearly with the cardinality |T |. Instead we first take an
exponential, which tends to amplify the largest term and produces a much stronger bound.
Specifically, by Jensen’s inequality (Theorem B.4.15), for any s > 0,

E
[

sup
t∈T

Xt

]
=

1

s
E
[

sup
t∈T

sXt

]
≤

1

s
logE

[
exp

(
sup
t∈T

sXt

)]
.

Since ea∨b
≤ ea
+ eb by the non-negativity of the exponential, we can bound

E
[

sup
t∈T

Xt

]
≤

1

s
log

[∑
t∈T

E [exp (sXt)]

]

=
1

s
log

[∑
t∈T

MXi (s)

]

≤
1

s
log

[
|T | e

s2ν
2

]
=

log |T |

s
+

sν

2
.

2 Technically, it suffices to assume that there is a countable T0 ⊆ T such that supt∈T Xt = supt∈T0
Xt almost

surely.
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The optimal choice of s (i.e., leading to the least bound) is when the two terms in the sum
above are equal, that is, s =

√
2ν−1 log |T |, which gives finally

E
[

sup
t∈T

Xt

]
≤

√
2ν log |T |,

as claimed.
For the tail inequality, we use a union bound and (2.4.16):

P
[

sup
t∈T

Xt ≥
√

2ν log |T | + β
]
≤

∑
t∈T

P
[
Xt ≥

√
2ν log |T | + β

]
≤ |T | exp

(
−

(
√

2ν log |T | + β)2

2ν

)

≤ exp
(
−
β2

2ν

)
,

as claimed, where we used that β > 0 on the last line.

Epsilon-nets and covering numbers

Moving on to infinite index sets, we first define the notion of an ε-net. This notion requires
that a pseudometric ρ (i.e., ρ : T × T → R+ is symmetric and satisfies the triangle ine-
quality) be defined over T .

Definition 2.4.22 (ε-net). Let T be a subset of a pseudometric space (M , ρ) and let ε > 0.
The collection of points N ⊆ M is called an ε-net of T if ε-NET

T ⊆
⋃
t∈N

Bρ(t, ε),

where Bρ(t, ε) = {s ∈ T : ρ(s, t) ≤ ε}, that is, each element of T is within distance ε of an
element in N. The smallest cardinality of an ε-net of T is called the covering number COVERING

NUMBER
N (T , ρ, ε) = inf{|N | : N is an ε-net of T }.

A natural way to construct an ε-net is the following algorithm. Start with N = ∅ and succes-
sively add a point from T to N at distance at least ε from all other previous points until it is
not possible to do so anymore. Provided T is compact, this procedure will terminate after a
finite number of steps. This leads to the following dual perspective.

Definition 2.4.23 (ε-packing). Let T be a subset of a pseudometric space (M , ρ) and let
ε > 0. The collection of points N ⊆ T is called an ε-packing of T if

t /∈ Bρ(t′, ε) ∀t 6= t′ ∈ N ,

that is, every pair of elements of N is at distance strictly greater than ε. The largest cardi-
nality of an ε-packing of T is called the packing number PACKING

NUMBER
P(T , ρ, ε) = sup{|N | : N is an ε-packing of T }.

Lemma 2.4.24 (Covering and packing numbers). For any T ⊆ M and all ε > 0,

N (T , ρ, ε) ≤ P(T , ρ, ε).
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Proof Observe that a maximal ε-packing N is an ε-net. Indeed, by maximality, any element
of T \ N is at distance at most ε from an element of N .

Example 2.4.25 (Sphere in Rk). We let Bk(x, ε) be the ball of radius ε around x ∈ Rk with
the Euclidean metric. We let S := Sk−1 be the sphere of radius 1 centered around the origin
0, that is, the surface of Bk(0, 1). Let 0 < ε < 1.

Claim 2.4.26

N (S, ρ, ε) ≤
(

3

ε

)k

.

Proof Let N be any maximal ε-packing of S. We show that |N | ≤ (3/ε)k , which implies the
claim by Lemma 2.4.24. The balls of radius ε/2 around points in N , {Bk(xi, ε/2) : xi ∈ N},
satisfy two properties:

1. They are pairwise disjoint: if z ∈ Bk(xi, ε/2) ∩ Bk(xj, ε/2), then ‖xi − xj‖2 ≤ ‖xi − z‖2 +

‖xj − z‖2 ≤ ε, a contradiction.
2. They are included in the ball of radius 3/2 around the origin: if z ∈ Bk(xi, ε/2), then
‖z‖2 ≤ ‖z− xi‖2 + ‖xi‖ ≤ ε/2+ 1 ≤ 3/2.

The volume of a ball of radius ε/2 is π k/2(ε/2)k

0(k/2+1) and that of a ball of radius 3/2 is π k/2(3/2)k

0(k/2+1) .
Dividing one by the other proves the claim.

This bound will be useful later. J

The basic approach to use an ε-net for controlling the supremum of a stochastic process
is the following. We say that a stochastic process {Xt}t∈T is Lipschitz for pseudometric ρ onLIPSCHITZ

PROCESS T if there is a random variable 0 < K < +∞ such that

|Xt − Xs| ≤ Kρ(s, t), ∀s, t ∈ T .

If in addition Xt is sub-Gaussian for all t, then we can bound the expectation or tail proba-
bility of the supremum of {Xt}t∈T – if we can bound the expectation or tail probability of
the (random) Lipschitz constant K itself. To see this, let N be an ε-net of T and, for each
t ∈ T , let π (t) be the closest element of N to t. We will refer to π as the projection map of
N . We then have the inequality

sup
t∈T

Xt ≤ sup
t∈T

(Xt − Xπ(t))+ sup
t∈T

Xπ (t) ≤ Kε + sup
s∈N

Xs, (2.4.32)

where we can use Theorem 2.4.21 to bound the last term. We give an example of this type
of argument next (although we do not apply the above bound directly). Another example
(where (2.4.32) is used this time) can be found in Section 2.4.5.

Example 2.4.27 (Spectral norm of a random matrix). For an m × n matrix A ∈ Rm×n, theSPECTRAL

NORM spectral norm (or induced 2-norm, or 2-norm for short) is defined as

‖A‖2 := sup
x∈Rn\{0}

‖Ax‖2

‖x‖2
= sup

x∈Sn−1

‖Ax‖2 = sup
x∈Sn−1

y∈Sm−1

〈Ax, y〉, (2.4.33)

where Sn−1 is the sphere of Euclidean radius 1 around the origin in Rn. The rightmost ex-
pression, which is central to our developments, is justified in Exercise 5.4.
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We will be interested in the case where A is a random matrix with independent entries.
One key observation is that the quantity 〈Ax, y〉 can then be seen as a linear combination of
independent random variables

〈Ax, y〉 =
∑

i, j

xiyjAij.

Hence we will be able to apply our previous tail bounds. However, we also need to deal with
the supremum.

Theorem 2.4.28 (Upper tail of the spectral norm). Let A ∈ Rm×n be a random matrix whose
entries are centered, independent, and sub-Gaussian with variance factor ν. Then there
exists a constant 0 < C < +∞ such that, for all t > 0,

‖A‖2 ≤ C
√
ν(
√

m+
√

n+ t),

with probability at least 1− e−t2
.

Without the independence assumption, the norm can be much larger in general (see Exer-
cise 2.15).

Proof Fix ε = 1/4. By Claim 2.4.26, there is an ε-net N (respectively M) of Sn−1 (respec-
tively Sm−1) with |N | ≤ 12n (respectively |M | ≤ 12m). We proceed in two steps:

1. We first apply the general Hoeffding inequality (Theorem 2.4.9) to control the deviations
of the supremum in (2.4.33) restricted to N and M .

2. We then extend the bound to the full supremum by Lipschitz continuity.

Formally, the result follows from the following two lemmas.

Lemma 2.4.29 (Spectral norm: ε-net). Let N and M be as above. For C large enough, for
all t > 0,

P

max
x∈N
y∈M

〈Ax, y〉 ≥
1

2
C
√
ν(
√

m+
√

n+ t)

 ≤ e−t2
.

Lemma 2.4.30 (Spectral norm: Lipschitz constant). For any ε-nets N and M of Sn−1 and
Sm−1, respectively, the following inequalities hold:

sup
x∈N
y∈M

〈Ax, y〉 ≤ ‖A‖2 ≤
1

1− 2ε
sup
x∈N
y∈M

〈Ax, y〉.

Proof of Lemma 2.4.29 Recall that

〈Ax, y〉 =
∑

i, j

xiyjAij

is a linear combination of independent random variables. By the general Hoeffding inequal-
ity, 〈Ax, y〉 is sub-Gaussian with variance factor∑

i, j

(xiyj)2 ν = ‖x‖2
2 ‖y‖

2
2 ν = ν
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for all x ∈ N and y ∈ M . In particular, for all β > 0,

P [〈Ax, y〉 ≥ β] ≤ exp
(
−
β2

2ν

)
.

Hence, by a union bound over N and M ,

P

max
x∈N
y∈M

〈Ax, y〉 ≥
1

2
C
√
ν(
√

m+
√

n+ t)


≤

∑
x∈N
y∈M

P
[
〈Ax, y〉 ≥

1

2
C
√
ν(
√

m+
√

n+ t)
]

≤ |N ||M | exp

(
−

1

2ν

{
1

2
C
√
ν(
√

m+
√

n+ t)
}2
)

≤ 12n+m exp
(
−

C2

8

{
m+ n+ t2

})
≤ e−t2

for C2/8 = log 12 ≥ 1, where in the third inequality we ignored all cross-products since
they are non-negative.

Proof of Lemma 2.4.30 The first inequality is immediate by definition of the spectral norm.
For the second inequality, we will use the following observation:

〈Ax, y〉 − 〈Ax0, y0〉 = 〈Ax, y− y0〉 + 〈A(x− x0), y0〉. (2.4.34)

Fix x ∈ Sn−1 and y ∈ Sm−1 such that 〈Ax, y〉 = ‖A‖2 (which exist by compactness), and let
x0 ∈ N and y0 ∈ M such that

‖x− x0‖2 ≤ ε and ‖y− y0‖2 ≤ ε.

Then (2.4.34), Cauchy–Schwarz and the definition of the spectral norm imply

‖A‖2 − 〈Ax0, y0〉 ≤ ‖A‖2‖x‖2‖y− y0‖2 + ‖A‖2‖x− x0‖2‖y0‖2 ≤ 2ε‖A‖2.

Rearranging gives the claim.

Putting the two lemmas together concludes the proof of Theorem 2.4.28.

We will give an application of this bound in Section 5.1.4. J

Chaining method

We go back to the inequality

sup
t∈T

Xt ≤ sup
t∈T

(Xt − Xπ (t))+ sup
t∈T

Xπ (t). (2.4.35)

Previously we controlled the first term on the right-hand side with a random Lipschitz con-
stant and the second term with a maximal inequality for finite sets. Now we consider cases
where we may not have a good almost sure bound on the Lipschitz constant, but where
we can control increments uniformly in the following probabilistic sense. We say that a
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stochastic process {Xt}t∈T has sub-Gaussian increments on (T , ρ) if there exists a deter- SUB-
GAUSSIAN

INCREMENTS
ministic constant 0 < K < +∞ such that

Xt − Xs ∈ sG(K2ρ(s, t)2) ∀s, t ∈ T .

Even with this assumption, in (2.4.35) the first term on the right-hand side remains a supre-
mum over an infinite set. To control it, the chaining method repeats the argument above at CHAINING

METHODprogressively smaller scales, leading to the following inequality. The diameter of T , denoted
by diam(T ), is defined as

diam(T ) = sup{ρ(s, t) : s, t,∈ T }.

Theorem 2.4.31 (Discrete Dudley inequality). Let {Xt}t∈T be a zero-mean stochastic proc-
ess with sub-Gaussian increments on (T , ρ) and assume diam(T ) ≤ 1. Then

E
[

sup
t∈T

Xt

]
≤ C

+∞∑
k=0

2−k
√

logN (T , ρ, 2−k)

for some constant 0 ≤ C < +∞.

Proof Recall that we assume that T is countable. Let Tj ⊆ T , j ≥ 1, be a sequence of
finite sets such that Tj ↑ T . By monotone convergence (Proposition B.4.14),

E
[

sup
t∈T

Xt

]
= sup

j≥1
E

[
sup
t∈Tj

Xt

]
.

Moreover, N (Tj, ρ, ε) ≤ N (T , ρ, ε) for any ε > 0 since Tj ⊆ T . Hence, it suffices to
handle the case |T | < +∞.
ε-nets at all scales. For each k ≥ 0, let Nk be an 2−k-net of T with |Nk| = N (T , ρ, 2−k)
and projection map πk . Because diam(T ) ≤ 1, N0 = {t0}, where t0 ∈ T can be taken
arbitrarily. Moreover, because T is finite, there is 1 ≤ κ < +∞ such that Nk = T for all
k ≥ κ . In particular, πκ (t) = t for all t ∈ T . By a telescoping argument,

Xt = Xt0 +

κ−1∑
k=0

(
Xπk+1(t) − Xπk (t)

)
.

Taking a supremum and then an expectation gives

E
[

sup
t∈T

Xt

]
≤

κ−1∑
k=0

E
[

sup
t∈T

(
Xπk+1(t) − Xπk (t)

)]
, (2.4.36)

where we used E[Xt0 ] = 0.
Sub-Gaussian bound. We use the maximal inequality (Theorem 2.4.21) to bound the expec-
tation in (2.4.36). For each k, the number of distinct elements in the supremum is at most∣∣{(πk(t),πk+1(t)) : t ∈ T }

∣∣ ≤ |Nk × Nk+1|

= |Nk| × |Nk+1|

≤ (N (T , ρ, 2−k−1))2.
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For any t ∈ T , by the triangle inequality,

ρ(πk(t),πk+1(t)) ≤ ρ(πk(t), t)+ ρ(t,πk+1(t)) ≤ 2−k
+ 2−k−1

≤ 2−k+1,

so that

Xπk+1(t) − Xπk (t) ∈ sG(K22−2k+2)

for some 0 < K < +∞ by the sub-Gaussian increments assumption. We can therefore
apply Theorem 2.4.21 to get

E
[

sup
t∈T

(
Xπk+1(t) − Xπk (t)

)]
≤

√
2K22−2k+2 log(N (T , ρ, 2−k−1)2)

≤ C2−k−1
√

logN (T , ρ, 2−k−1)

for some constant 0 ≤ C < +∞.
To finish the argument, we plug back into (2.4.36),

E
[

sup
t∈T

Xt

]
≤

κ−1∑
k=0

C2−k−1
√

logN (T , ρ, 2−k−1),

which implies the claim.

Using a similar argument, one can derive a tail inequality.

Theorem 2.4.32 (Chaining tail inequality). Let {Xt}t∈T be a zero-mean stochastic process
with sub-Gaussian increments on (T , ρ) and assume diam(T ) ≤ 1. Then, for all t0 ∈ T
and β > 0,

P

[
sup
t∈T

(Xt − Xt0 ) ≥ C
+∞∑
k=0

2−k
√

logN (T , ρ, 2−k)+ β

]
≤ C exp

(
−
β2

C

)
for some constant 0 ≤ C < +∞.

We give an application of the discrete Dudley inequality in Section 2.4.6.

2.4.5 F Data Science: Johnson–Lindenstrauss Lemma and Application to
Compressed Sensing

In this section, we discuss an application of the Chernoff–Cramér method (Section 2.4.1) to
dimension reduction in data science. We use once again an ε-net argument (Section 2.4.4).

Johnson–Lindenstrauss lemma

The Johnson–Lindenstrauss lemma states roughly that, for any collection of points in a high-
dimensional Euclidean space, one can find an embedding of much lower dimension that
roughly preserves the metric relationships of the points, that is, their distances. Remarkably,
no structure is assumed on the original points and the result is independent of the input
dimension. The method of proof simply involves performing a random projection.
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Lemma 2.4.33 (Johnson–Lindenstrauss lemma). For any set of points x(1), . . . , x(m) in Rn

and θ ∈ (0, 1), there exists a mapping f : Rn
→ Rd with d = 2(θ−2 log m) such that the

following hold: for all i, j,

(1− θ )‖x(i)
− x( j)

‖2 ≤ ‖f (x(i))− f (x( j))‖2 ≤ (1+ θ )‖x(i)
− x( j)

‖2. (2.4.37)

We use the probabilistic method: we derive a “distributional” version of the result that,
in turn, implies Lemma 2.4.33 by showing that a mapping with the desired properties exists
with positive probability. Before stating this claim formally, we define the explicit random
linear mapping we will employ. Let A be a d × n matrix whose entries are independent
N(0, 1). Note that, for any fixed z ∈ Rn,

E ‖Az‖2
2 = E

 d∑
i=1

 n∑
j=1

Aijzj

2 = d Var

 n∑
j=1

A1jzj

 = d‖z‖2
2, (2.4.38)

where we used the independence of the Aijs (and, in particular, of the rows of A) and the fact
that

E

 n∑
j=1

Aijzj

 = 0. (2.4.39)

Hence, the normalized mapping

L =
1
√

d
A

preserves the squared Euclidean norm “on average,” that is, E ‖Lz‖2
2 = ‖z‖

2
2. We use the

Chernoff–Cramér method to prove a high-probability result.

Lemma 2.4.34 Fix δ, θ ∈ (0, 1). Then the random linear mapping L above with d =
2(θ−2 log δ−1) is such that for any z ∈ Rn with ‖z‖2 = 1,

P [|‖Lz‖2 − 1| ≥ θ ] ≤ δ. (2.4.40)

Before proving Lemma 2.4.34, we argue that it implies the Johnson–Lindenstrauss lemma
(Lemma 2.4.33). Simply take δ = 1/(2

(m
2

)
), apply the previous lemma to each normalized

pairwise difference z = (x(i)
− x( j))/‖x(i)

− x( j)
‖2, and use a union bound over all

(m
2

)
such

pairs. The probability that any of the inequalities (2.4.37) is not satisfied by the linear map-
ping f (z) = Lz is then at most 1/2. Hence, a mapping with the desired properties exists for
d = 2(θ−2 log m).

Proof of Lemma 2.4.34 We prove one direction. Specifically, we establish

P [‖L z‖2 ≥ 1+ θ ] ≤ exp
(
−

3

4
dθ 2

)
. (2.4.41)

Note that the right-hand side is ≤ δ for d = 2(θ−2 log δ−1). An inequality in the other
direction can be proved similarly by working with −W below.

Recall that a sum of independent Gaussians is Gaussian (just compute the convolution
and complete the squares). So

(A z)k ∼ N(0, ‖z‖2
2) = N(0, 1) ∀k,
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where we argued as in (2.4.38) to compute the variance. Hence,

W = ‖Az‖2
2 =

d∑
k=1

(Az)2
k

is a sum of squares of independent Gaussians, that is, χ2-distributed random variables.
By (2.4.18) and independence,

MW (s) =
1

(1− 2s)d/2
.

Applying the Chernoff–Cramér bound (2.4.2) with s = 1
2 (1− d/β) gives

P[W ≥ β] ≤
MW (s)

esβ
=

1

esβ(1− 2s)d/2
= e(d−β)/2

(
β

d

)d/2

.

Finally, take β = d(1+ θ )2. Rearranging we get

P[‖Lz‖2 ≥ 1+ θ ] = P[‖Az‖2
2 ≥ d(1+ θ )2]

= P[W ≥ β]

≤ ed[1−(1+θ)2]/2
[
(1+ θ )2

]d/2

= exp
(
−d(θ + θ 2/2− log(1+ θ ))

)
≤ exp

(
−

3

4
dθ 2

)
,

where we used log(1+ x) ≤ x− x2/4 on [0, 1] (see Exercise 1.16).

Remark 2.4.35 The Johnson–Lindenstrauss lemma is essentially optimal [Alo03, section
9]: any set of n points with all pairwise distances in [1− θ , 1+ θ ] requires at least �(log n/
(θ2 log θ−1)) dimensions. Note, however, that it relies crucially on the use of the Euclidean
norm [BC03].

To give some further geometric insights into the proof, we make a series of observations:

1. The d rows of 1
√

n A are “on average” orthonormal. Indeed, note that for i 6= j,

E

[
1

n

n∑
k=1

AikAjk

]
= E[Ai1]E[Aj1] = 0

by independence and

E

[
1

n

n∑
k=1

A2
ik

]
= E[A2

i1] = 1

since the Aiks have mean 0 and variance 1. When n is large, those two quantities are con-
centrated around their mean. Fix a unit vector z. Then 1

√
n Az corresponds approximately to

an orthogonal projection of z onto a uniformly chosen random subspace of dimension d.

https://doi.org/10.1017/9781009305129.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009305129.003


2.4 Chernoff–Cramér Method 75

2. Now observe that projecting z on a uniform random subspace of dimension d can be done
in the following way: first apply a uniformly chosen random rotation to z; and then project
the resulting vector on the first d dimensions. In other words, 1

√
n‖Az‖2 is approximately

distributed as the norm of the first d components of a uniform unit vector in Rn. To
analyze this quantity, note that a vector in Rn whose components are independent N(0, 1),
when divided by its norm, produces a uniform vector in Rn. When d is large, the norm of
the first d components of that vector is therefore a ratio whose numerator is concentrated
around

√
d and whose denominator is concentrated around

√
n (by calculations similar

to those in the first point).
3. Hence, ‖Lz‖2 =

√ n
d ×

1
√

n‖Az‖2 should be concentrated around 1.

The Johnson–Lindenstrauss lemma makes it possible to solve certain computational prob-
lems (e.g., finding the nearest point to a query) more efficiently by working in a smaller
dimension. We discuss a different type of application next.

Compressed sensing

In the compressed sensing problem, one seeks to recover a signal x ∈ Rn from a small
number of linear measurements (Lx)i, i = 1, . . . , d. In complete generality, one needs n such
measurements to recover any unknown x ∈ Rn as the sensing matrix L must be invertible (or, SENSING

MATRIXmore precisely, injective). However, by imposing extra structure on the signal and choosing
the sensing matrix appropriately, much better results can be obtained. Compressed sensing
relies on sparsity.

Definition 2.4.36 (Sparse vectors). We say that a vector z ∈ Rn is k-sparse if it has at most K-SPARSE

VECTORk non-zero entries. We let S n
k be the set of k-sparse vectors in Rn. Note that S n

k is a union
of
(n

k

)
linear subspaces, one for each support of the non-zero entries.

To solve the compressed sensing problem over k-sparse vectors, it suffices to find a sens-
ing matrix L satisfying that all subsets of 2k columns are linearly independent. Indeed, if
x, x′ ∈ S n

k , then x−x′ has at most 2k non-zero entries. Hence, in order to have L(x−x′) = 0,
it must be that x − x′ = 0 under the previous condition on L. That implies the required in-
jectivity. The implication goes in the other direction as well. Observe for instance that the
matrix used in the proof of the Johnson–Lindenstrauss lemma satisfies this property as long
as d ≥ 2k: because of the continuous density of its entries, the probability that 2k of its
columns are linearly dependent is 0 when d ≥ 2k. For practical applications, however, other
requirements must be met, in particular, computational efficiency. We describe such a com-
putationally efficient approach.

The following definition will play a key role. Roughly speaking, a restricted isometry
preserves enough of the metric structure of S n

k to be invertible on its image.

Definition 2.4.37 (Restricted isometry property). A d × n linear mapping L satisfies the RESTRICTED

ISOMETRY

PROPERTY
(k, θ )-restricted isometry property (RIP) if for all z ∈ S n

k ,

(1− θ )‖z‖2 ≤ ‖Lz‖2 ≤ (1+ θ )‖z‖2. (2.4.42)

We say that L is (k, θ )-RIP.

Given a (k, θ )-RIP matrix L, can we recover z ∈ S n
k from Lz? And how small can d be? The

next two claims answer these questions.
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Figure 2.8 Because `1 balls (square) have corners, minimizing the `1 norm over a
linear subspace (line) tends to produce sparse solutions.

Lemma 2.4.38 (Sensing matrix). Let A be a d × n matrix whose entries are i.i.d. N(0, 1)
and let L = 1

√
d
A. There is a constant 0 < C < +∞ such that if d ≥ Ck log n, then L is

(10k, 1/3)-RIP with probability at least 1− 1/n.

Lemma 2.4.39 (Sparse signal recovery). Let L be (10k, 1/3)-RIP. Then for any x ∈ S n
k , the

unique solution to the following minimization problem

min
z∈Rn
‖z‖1 subject to Lz = Lx (2.4.43)

is z∗ = x.

It may seem that a more natural alternative approach to (2.4.43) is to instead minimize
the number of non-zero entries in z, that is, ‖z‖0. However, the advantage of the `1 norm
is that the problem can then be formulated as a linear program, that is, the minimization
of a linear objective subject to linear inequalities (see Exercise 2.13). This permits much
faster computation of the solution using standard techniques – while still leading to a sparse
solution. See Figure 2.8 for some insights as to why `1 indeed promotes sparsity.

Putting the two lemmas together shows we obtain the next claim:

Claim 2.4.40 Let L be as in Lemma 2.4.38 with d = 2(k log n). With probability 1− o(1),
any x ∈ S n

k can be recovered from the input Lx by solving (2.4.43).

Note that d can in general be much smaller than n and not far from the 2k bound we derived
above.

ε-net argument We start with the proof of Lemma 2.4.38. The claim does not follow im-
mediately from the (distributional) Johnson–Lindenstrauss lemma (i.e., Lemma 2.4.34). In-
deed, that lemma implies that a (normalized) matrix with i.i.d. standard Gaussian entries is
an approximate isometry on a finite set of points. Here we need a linear mapping that is an
approximate isometry for all vectors in S n

k , an uncountable space.
For a subset of indices J ⊆ [n] and a vector y ∈ Rn, we let yJ be the vector y restricted

to the entries in J , that is, the subvector (yj)j∈J . Fix a subset of indices I ⊆ [n] of size 10k.
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We need the RIP condition (Definition 2.4.37) to hold for all z ∈ Rn with non-zero entries
in I (and all such I). The way to achieve this is to use an ε-net argument, as described in
Section 2.4.4. Indeed, notice that, for z 6= 0, the function ‖Lz‖2/‖z‖2

1. does not depend on the norm of z, so that we can restrict ourselves to the compact set
∂BI := {z : z[n]\I = 0, ‖z‖2 = 1}, and

2. is continuous on ∂BI , so that it suffices to construct a fine enough covering of ∂BI by a
finite collection of balls (i.e., an ε-net) and apply Lemma 2.4.34 to the centers of those
balls.

Proof of Lemma 2.4.38 Let I ⊆ [n] be a subset of indices of size k′ := 10k. There are(n
k′

)
≤ nk′

= exp(k′ log n) such subsets and we denote their collection by I(k′, n). We let NI

be an ε-net of ∂BI . By Claim 2.4.26, we can choose one of size at most (3/ε)k′ . We take

ε =
1

C′
√

6n log n

for a constant C′ that will be determined below. The reason for this choice will become clear
when we set C′. The union of all ε-nets has size

∣∣∪I∈I(k′,n)NI

∣∣ ≤ nk′
(

3

ε

)k′

≤ exp(C′′k′ log n)

for some C′′ > 0. Our goal is to show that

sup
z∈∪I∈I(k′ ,n)∂BI

|‖Lz‖2 − 1| ≤
1

3
. (2.4.44)

We seek to apply the inequality (2.4.32).

Applying Johnson–Lindenstrauss to the ε-nets: The first step is to control the supremum
in (2.4.44) – restricted to the ε-nets. Lemma 2.4.34 is exactly what we need for this. Take
θ = 1/6, δ = 1/(2n| ∪I NI |), and

d = 2
(
θ−2 log(2n| ∪I NI |)

)
= 2(k′ log n),

as required by the lemma. Then, by a union bound over the NIs, with probability 1− 1/(2n),
we have

sup
z∈∪I NI

|‖Lz‖2 − 1| ≤
1

6
. (2.4.45)

Lipschitz continuity: The next step is to establish Lipschitz continuity of |‖Lz‖2 − 1|. For
vectors y, z ∈ Rn, by repeated applications of the triangle inequality, we have

||‖Lz‖2 − 1| − |‖Ly‖2 − 1|| ≤ |‖Lz‖2 − ‖Ly‖2| ≤ ‖L(z− y)‖2.

To bound the rightmost expression, we let A∗ be the largest entry of A in absolute value and
note that
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‖L(z− y)‖2
2 =

d∑
i=1

 n∑
j=1

Lij(zj − yj)

2

≤

d∑
i=1

 n∑
j=1

L2
ij

 n∑
j=1

(zj − yj)2


≤ dn

(
1
√

d
A∗

)2

‖z− y‖2
2

≤ nA2
∗
‖z− y‖2

2,

where we used Cauchy–Schwarz (Theorem B.4.8) on the second line. Taking the square root,
we see that the (random) Lipschitz constant of |‖Lz‖2 − 1| (with respect to the Euclidean
metric) is at most K :=

√
nA∗.

Controlling the Lipschitz constant: So it remains to control A∗. For this we use the Chernoff–
Cramér bound for Gaussians (see (2.4.4)), which implies by a union bound over the entries
of A that

P[A∗ ≥ C′
√

log n] ≤ P
[
∃i, j, |Aij| ≥ C′

√
log n

]
≤ n2 exp

(
−

(C′
√

log n)2

2

)
≤

1

2n

for a C′ > 0 large enough. Hence, with probability 1− 1/(2n), we have A∗ < C′
√

log n and

Kε ≤
1

6
(2.4.46)

by the choice of ε made previously.

Putting everything together: We apply (2.4.32). Combining (2.4.45) and (2.4.46), with prob-
ability 1− 1/n, the claim (2.4.44) holds. That concludes the proof.

`1 minimization Finally we prove Lemma 2.4.39 (which can be skipped).

Proof of Lemma 2.4.39 Let z∗ be a solution to (2.4.43) and note that such a solution exists
because z = x satisfies the constraint. Without loss of generality assume that only the first k
entries of x are non-zero, that is, x[n]\[k] = 0. Moreover, order the remaining entries of x so
that the residual r = z∗ − x has its entries r[n]\[k] in non-increasing order in absolute value.
Our goal is to show that ‖r‖2 = 0.

In order to leverage the RIP condition, we break up the vector r into 9k-long subvectors.
Let

I0 = [k], Ii = {(9(i− 1)+ 1)k + 1, . . . , (9i+ 1)k} ∀i ≥ 1,

and Īi =
⋃

j>i Ij. We will also need I01 = I0 ∪ I1 and Ī01 = Ī1.
We first use the optimality of z∗. Note that xĪ0

= 0 implies that

‖z∗‖1 = ‖z
∗

I0
‖1 + ‖z

∗

Ī0
‖1 = ‖z

∗

I0
‖1 + ‖rĪ0

‖1
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and

‖x‖1 = ‖xI0‖1 ≤ ‖z
∗

I0
‖1 + ‖rI0‖1

by the triangle inequality. Since ‖z∗‖1 ≤ ‖x‖1 by optimality (and the fact that x satisfies the
constraint), we then have

‖rĪ0
‖1 ≤ ‖rI0‖1. (2.4.47)

On the other hand, the RIP condition gives a similar inequality in the other direction. In-
deed, notice that Lr = 0 by the constraint in (2.4.43) or, put differently, LrI01 = −

∑
i≥2 LrIi .

Then, by the RIP condition and the triangle inequality, we have

2

3
‖rI01‖2 ≤ ‖LrI01‖2 ≤

∑
i≥2

‖LrIi‖2 ≤
4

3

∑
i≥2

‖rIi‖2, (2.4.48)

where we used the fact that by construction rI01 is 10k-sparse and each rIi is 9k-sparse.
We note that by the ordering of the entries of x,

‖rIi+1‖
2
2 ≤ 9k

(
‖rIi‖1

9k

)2

=
‖rIi‖

2
1

9k
, (2.4.49)

where we bounded rIi+1 entrywise by the expression in parenthesis. Combining (2.4.47)
and (2.4.49), and using that ‖rI0‖1 ≤

√
k‖rI0‖2 by Cauchy–Schwarz, we have∑

i≥2

‖rIi‖2 ≤

∑
j≥1

‖rIj‖1
√

9k
=
‖rĪ0
‖1

3
√

k
≤
‖rI0‖1

3
√

k
≤
‖rI0‖2

3
≤
‖rI01‖2

3
.

Plugging this back into (2.4.48) gives

‖rI01‖2 ≤ 2
∑
i≥2

‖rIi‖2 ≤
2

3
‖rI01‖2,

which implies rI01 = 0. In particular, rI0 = 0 and, by (2.4.47), rĪ0
= 0 as well. We have

shown that r = 0. Or, in other words, z∗ = x.

Remark 2.4.41 Lemma 2.4.39 can be extended to noisy measurements using a modifica-
tion of (2.4.43). This provides some robustness to noise which is important in applications.
See [CRT06b].

2.4.6 F Data Science: Classification, Empirical Risk Minimization,
and VC Dimension

In the binary classification problem, one is given samples Sn = {(Xi, C(Xi))}ni=1 where Xi ∈ BINARY

CLASSIFICATIONRd is a feature vector and C(Xi) ∈ {0, 1} is a label. The feature vectors are assumed to be
independent samples from an unknown probability measure µ, and C : Rd

→ {0, 1} is a
measurable Boolean function. For instance, the feature vector might be an image (encoded
as a vector) and the label might indicate “cat” (label 0) or “dog” (label 1). Our goal is to
learn the function (or concept) C from the samples.

More precisely, we seek to construct a hypothesis h : Rd
→ {0, 1} that is a good approx- HYPOTHESIS

imation to C in the sense that it predicts the label well on a new sample (from the same
distribution). Formally, we want h to have small true risk (or generalization error): TRUE RISK
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R(h) = P[h(X ) 6= C(X )],

where X ∼ µ. Because we only have access to the distribution µ through the samples, it is
natural to estimate the true risk of the hypothesis h using the samples as

Rn(h) =
1

n

n∑
i=1

1{h(Xi) 6= C(Xi)},

which is called the empirical risk. Indeed, observe that ERn(h) = R(h) and, by the law ofEMPIRICAL

RISK large numbers, Rn(h)→ R(h) almost surely as n→ +∞. Ignoring computational consider-
ations, one can then formally define an empirical risk minimizerEMPIRICAL

RISK

MINIMIZER h∗ ∈ ERMH(Sn) = {h ∈ H : Rn(h) ≤ Rn(h′),∀h′ ∈ H},

where H, the hypothesis class, is a given collection of Boolean functions overRd. We assumeHYPOTHESIS

CLASS further that h∗ can be defined as a measurable function of the samples.

Overfitting Why restrict the hypothesis class? It turns out that minimizing the empirical
risk over all Boolean functions makes it impossible to achieve an arbitrarily small risk.
Intuitively considering too rich a class of functions, that is, functions that too intricately
follow the data, leads to overfitting: the learned hypothesis will fit the sampled data, but
it may not generalize well to unseen examples. A learner A is a map from samples toLEARNER

measurable Boolean functions over Rd, that is, for any n and any Sn ∈ (Rd
× {0, 1})n, the

learner outputs a function A( · ,Sn) : Rd
→ {0, 1}. The following theorem shows that any

learner has fundamental limitations if all concepts are possible.

Theorem 2.4.42 (No free lunch). For any learner A and any finite X ⊆ Rd of even size
|X | =: 2m > 4, there exist a concept C : X → {0, 1} and a distribution µ over X such that

P[R(A( · ,Sm)) ≥ 1/8] ≥ 1/8, (2.4.50)

where Sm = {(Xi, C(Xi))}mi=1 with independent Xi ∼ µ.

The gist of the proof is intuitive. In essence, if the target concept is arbitrary and we only get
to see half of the possible instances, then we have learned nothing about the other half and
cannot expect low generalization error.

Proof of Theorem 2.4.42 We let µ be uniform over X . To prove the existence of a concept
satisfying (2.4.50), we use the probabilistic method (Section 2.2.1) and pick C at random.
For each x ∈ X , we set C(x) := Yx, where the Yxs are i.i.d. uniform in {0, 1}.

We first bound E[R(A( · ,Sm))], where the expectation runs over both random labels
{Yx}x∈X and the samples Sm = {(Xi, C(Xi))}mi=1. For an additional independent sample X ∼ µ,
we will need the event that the learner, given samples Sm, makes an incorrect prediction
on X

B = {A(X ,Sm)) 6= YX },

and the event that X is observed in the samples Sm

O = {X ∈ {X1, . . . , Xm}}.
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By the tower property (Lemma B.6.16),

E[R(A( · ,Sm))] = P[B]

= E[P[B |Sm]]

= E [P[B |O,Sm]P[O |Sm]+ P[B |Oc,Sm]P[Oc
|Sm]]

≥ E [P[B |Oc,Sm]P[Oc
|Sm]]

≥
1

2
×

1

2
,

where we used that

• P[Oc
|Sm] ≥ 1/2 because |X | = 2m and µ is uniform, and

• P[B |Oc,Sm] = 1/2 because for any x /∈ {X1, . . . , Xm} the prediction A(x,Sm) ∈ {0, 1} is
independent of Yx and the latter is uniform.

Conditioning over the concept, we have proved that

E [E[R(A( · ,Sm)) | {Yx}x∈X ]] ≥
1

4
.

Hence, by the first moment principle (Theorem 2.2.1),

P[E[R(A( · ,Sm)) | {Yx}x∈X ] ≥ 1/4] > 0,

where the probability is taken over {Yx}x∈X . That is, there exists a choice { yx}x∈X ∈ {0, 1}X

such that

E[R(A( · ,Sm)) | {Yx = yx}x∈X ] ≥ 1/4. (2.4.51)

Finally, to prove (2.4.50), we use a variation on Markov’s inequality (Theorem 2.1.1)
for [0, 1]-valued random variables. If Z ∈ [0, 1] is a random variable with E[Z] = µ and
α ∈ [0, 1], then

E[Z] ≤ α × P[Z < α]+ 1× P[Z ≥ α] ≤ P[Z ≥ α]+ α.

Taking α = µ/2 gives

P[Z ≥ µ/2] ≥ µ/2.

Going back to (2.4.51), we obtain

P
[

R(A( · ,Sm)) ≥
1

8

∣∣∣∣ {Yx = yx}x∈X

]
≥

1

8
,

establishing the claim.

The way out is to “limit the complexity” of the hypotheses. For instance, we could restrict
ourselves to half-spaces

HH =
{
h(x) = 1{xT u ≥ α} : u ∈ Rd,α ∈ R

}
,

or axis-aligned boxes

HB = {h(x) = 1{xi ∈ [αi,βi], ∀i} : −∞ ≤ αi ≤ βi ≤ ∞, ∀i} .

In order for the empirical risk minimizer h∗ to have a generalization error close to the best
achievable error, we need the empirical risk of the learned hypothesis Rn(h∗) to be close to
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its expectation R(h∗), which is guaranteed by the law of large numbers for sufficiently large
n. But that is not enough, we also need that same property to hold for all hypotheses in
H simultaneously. Otherwise we could be fooled by a poorly performing hypothesis with
unusually good empirical risk on the samples. The hypothesis class is typically infinite and,
therefore, controlling empirical risk deviations from their expectations uniformly over H is
not straightforward.

Uniform deviations Our goal in this section is to show how to bound

E
[

sup
h∈H
{Rn(h)− R(h)}

]
= E

[
sup
h∈H

{
1

n

n∑
i=1

`(h, Xi)− E[`(h, X )]

}]
(2.4.52)

in terms of a measure of complexity of the class H, where we defined the loss `(h, x) =
1{h(x) 6= C(x)} to simplify the notation. We assume that H is countable. (Observe for in-
stance that, for HH and HB, nothing is lost by assuming that the parameters defining the
hypotheses are rational-valued.)

Controlling deviations uniformly over H as in (2.4.52) allows one to provide guarantees
on the empirical risk minimizer. Indeed, for any h′ ∈ H,

R(h∗) = Rn(h∗)+ {R(h∗)− Rn(h∗)}

≤ Rn(h∗)+ sup
h∈H
{R(h)− Rn(h)}

≤ Rn(h′)+ sup
h∈H
{R(h)− Rn(h)}

= R(h′)+
{
Rn(h′)− R(h′)

}
+ sup

h∈H
{R(h)− Rn(h)}

≤ R(h′)+ sup
h∈H
{Rn(h)− R(h)} + sup

h∈H
{R(h)− Rn(h)} ,

where, on the third line, we used the definition of the empirical risk minimizer. Taking an
infimum over h′, then an expectation over the samples, and rearranging gives

E[R(h∗)]− inf
h′∈H

R(h′)

≤ E
[

sup
h∈H
{Rn(h)− R(h)}

]
+ E

[
sup
h∈H
{R(h)− Rn(h)}

]
. (2.4.53)

This inequality allows us to relate two quantities of interest: the expected true risk of the
empirical risk minimizer (i.e., E[R(h∗)]) and the best possible true risk (i.e., infh′∈H R(h′)).
The first term on the right-hand side is (2.4.52) and the second one can be bounded in a
similar fashion as we argue below. Observe that the suprema are inside the expectations and
that the random variables Rn(h)−R(h) are highly correlated. Indeed, two similar hypotheses
will produce similar predictions. While the absence of independence in some sense makes
bounding this type expectation harder, the correlation is ultimately what allows us to tackle
infinite classes H.

To bound (2.4.52), we use the methods of Section 2.4.4. As a first step, we apply the
symmetrization trick, which we introduced in Section 2.4.2 to give a proof of Hoeffding’s
lemma (Lemma 2.4.12). Let (εi)n

i=1 be i.i.d. uniform random variables in {−1,+1} (i.e.,
Rademacher variables) and let (X ′i )n

i=1 be an independent copy of (Xi)n
i=1. Then,
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E
[

sup
h∈H
{Rn(h)− R(h)}

]
= E

[
sup
h∈H

{
1

n

n∑
i=1

`(h, Xi)− E[`(h, X )]

}]

= E

[
sup
h∈H

{
1

n

n∑
i=1

[`(h, Xi)− E[`(h, X ′i ) | (Xj)n
j=1]]

}]

= E

[
sup
h∈H

E

[
1

n

n∑
i=1

[`(h, Xi)− `(h, X ′i )]

∣∣∣∣∣ (Xj)n
j=1

]]

≤ E

[
sup
h∈H

{
1

n

n∑
i=1

[`(h, Xi)− `(h, X ′i )]

}]
,

where on the fourth line we used taking it out what is known (Lemma B.6.13) and on the
fifth line we used suph EYh ≤ E[suph Yh] and the tower property. Next we note that `(h, Xi)−
`(h, X ′i ) is symmetric and independent of εi (which is also symmetric) to deduce that the last
line above is

= E

[
sup
h∈H

{
1

n

n∑
i=1

εi[`(h, Xi)− `(h, X ′i )]

}]

≤ E

[
sup
h∈H

1

n

n∑
i=1

εi`(h, Xi)+ sup
h∈H

1

n

n∑
i=1

(−εi)`(h, X ′i )

]

= 2E

[
sup
h∈H

1

n

n∑
i=1

εi`(h, Xi)

]
.

The exact same argument also applies to the second term on the right-hand side of (2.4.53),
so

E[R(h∗)]− inf
h′∈H

R(h′) ≤ 4E

[
sup
h∈H

1

n

n∑
i=1

εi`(h, Xi)

]
. (2.4.54)

Changing the normalization slightly, we define the process

Zn(h) =
1
√

n

n∑
i=1

εi`(h, Xi), h ∈ H. (2.4.55)

Our task reduces to upper bounding

E
[

sup
h∈H

Zn(h)
]

. (2.4.56)

Note that we will not compute the best possible true risk (which in general could be “bad,”
i.e., large) – only how close the empirical risk minimizer gets to it.

VC dimension We make two observations about Zn(h).

1. It is centered. Also, as a weighted sum of independent random variables in [−1, 1], it is
sub-Gaussian with variance factor 1 by the general Hoeffding inequality (Theorem 2.4.9)
and Hoeffding’s lemma (Lemma 2.4.12).

https://doi.org/10.1017/9781009305129.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009305129.003


84 Moments and Tails

2. It depends only on the values of the hypothesis h at a finite number of points, X1, . . . , Xn.
Hence, while the supremum in (2.4.56) is over a potentially infinite class of functions H,
it is in effect a supremum over at most 2n functions, that is, all the possible restrictions of
the hs to (Xi)n

i=1.

A naive application of the maximal inequality in Lemma 2.4.21, together with the two ob-
servations above, gives

E
[

sup
h∈H

Zn(h)
]
≤
√

2 log 2n =
√

2n log 2.

Unfortunately, plugging this back into (2.4.54) gives an upper bound, which fails to converge
to 0 as n→+∞.

To obtain a better bound, we show that in general the number of distinct restrictions of H
to n points can grow much slower than 2n.

Definition 2.4.43 (Shattering). Let 3 = {`1, . . . , `n} ⊆ Rd be a finite set and let H be a
class of Boolean functions on Rd. The restriction of H to 3 is

H3 = {(h(`1), . . . , h(`n)) : h ∈ H}.

We say that 3 is shattered by H if |H3| = 2|3|, that is, if all Boolean functions over 3 canSHATTERING

be obtained by restricting a function in H to the points in 3.

Definition 2.4.44 (VC dimension). Let H be a class of Boolean functions on Rd. The VCVC
DIMENSION dimension of H, denoted vc(H), is the maximum cardinality of a set shattered by H.

We prove the following combinatorial lemma at the end of this section.

Lemma 2.4.45 (Sauer’s lemma). Let H be a class of Boolean functions onRd. For any finite
set 3 = {`1, . . . , `n} ⊆ Rd,

|H3| ≤

(
en

vc(H)

)vc(H)

.

That is, the number of distinct restrictions of H to any n points grows at most as ∝ nvc(H).
Returning to E[suph∈H Zn(h)], we get the following inequality.

Lemma 2.4.46 There exists a constant 0 < C < +∞ such that, for any countable class of
measurable Boolean functions H over Rd,

E
[

sup
h∈H

Zn(h)
]
≤ C

√
vc(H) log n. (2.4.57)

Proof Recall that Zn(h) ∈ sG(1). Since the supremum over H, when seen as restricted to

{X1, . . . , Xn}, is in fact a supremum over at most
(

en
vc(H)

)vc(H)
functions by Sauer’s lemma

(Lemma 2.4.45), we have by Lemma 2.4.21,

E
[

sup
h∈H

Zn(h)
]
≤

√√√√2 log

[(
en

vc(H)

)vc(H)
]

.

That proves the claim.
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Returning to (2.4.54), the previous lemma finally implies

E[R(h∗)]− inf
h′∈H

R(h′) ≤ 4C

√
vc(H) log n

n
.

For hypothesis classes with finite VC dimension, the bound goes to 0 as n→+∞.
We give some examples.

Example 2.4.47 (VC dimension of half-spaces). Consider the class of half-spaces.

Claim 2.4.48

vc(HH) = d + 1.

We only prove the case d = 1, where HH reduces to half-lines (−∞, γ ] or [γ ,+∞). Clearly,
any set 3 = {`1, `2} ⊆ R with elements is shattered by HH. On the other hand, for any
3 = {`1, `2, `3} with `1 < `2 < `3, any half-line containing `1 and `3 necessarily includes
`2 as well. Hence, no set of size 3 is shattered by HH. J

Example 2.4.49 (VC dimension of boxes). Consider the class of axis-aligned boxes.

Claim 2.4.50

vc(HB) = 2d.

We only prove the case d = 2, where HB reduces to rectangles. The four-point set 3 =
{(−1, 0), (1, 0), (0,−1), (0, 1)} is shattered by HB. Indeed, the rectangle [−1, 1] × [−1, 1]
contains 3, with each side of the rectangle containing one of the points. Moving any side
inward by ε < 1 removes the corresponding point from the rectangle without affecting the
other ones. Hence, any subset of 3 can be obtained by this procedure.

On the other hand, let 3 = {`1, . . . , `5} ⊆ R2 be any set of five distinct points. If the
points all lie on the same axis-aligned line, then an argument similar to the half-line case in
Claim 2.4.48 shows that 3 is not shattered. Otherwise consider the axis-aligned rectangle
with smallest area containing 3. For each side of the rectangle, choose one point of 3 that
lies on it. These necessarily exist (otherwise the rectangle could be made even smaller) and
denote them by xN for the highest, xE for the rightmost, xS for the lowest, and xW for the
leftmost. Note that they may not be distinct, but in any case at least one point in 3, say
`5 without loss of generality, is not in the list. Now observe that any axis-aligned rectangle
containing xN, xE, xS, xW must also contain `5 since its coordinates are sandwiched between
the bounds defined by those points. Hence, no set of size 5 is shattered. That proves the
claim. J

These two examples also provide insights into Sauer’s lemma. Consider the case of rect-
angles for instance. Over a collection of n sample points, a rectangle defines the same {0, 1}-
labeling as the minimal-area rectangle containing the same points. Because each side of a
minimal-area rectangle must touch at least one point in the sample, there are at most n4 such
rectangles, and hence there are at most n4

� 2n restrictions of HB to these sample points.

Application of chaining It turns out that the
√

log n factor in (2.4.57) is not optimal. We
use chaining (Section 2.4.4) to improve the bound.

We claim that the process {Zn(h)}h∈H has sub-Gaussian increments under an appropriately
defined pseudometric. Indeed, conditioning on (Xi)n

i=1, by the general Hoeffding inequality
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(Theorem 2.4.9) and Hoeffding’s lemma (Lemma 2.4.12), we have that the increment (as a
function of the εis which have variance factor 1)

Zn(g)− Zn(h) =
n∑

i=1

εi
`(g, Xi)− `(h, Xi)

√
n

is sub-Gaussian with variance factor
n∑

i=1

(
`(g, Xi)− `(h, Xi)

√
n

)2

× 1 =
1

n

n∑
i=1

[`(g, Xi)− `(h, Xi)]2.

Define the pseudometric

ρn(g, h) =

[
1

n

n∑
i=1

[`(g, Xi)− `(h, Xi)]2

]1/2

=

[
1

n

n∑
i=1

[g(Xi)− h(Xi)]2

]1/2

,

where we used that `(h, x) = 1{h(x) 6= C(x)} by definition. It satisfies the triangle inequality
since it can be expressed as a Euclidean norm. In fact, it will be useful to recast it in a more
general setting. For a probability measure η over Rd, define

‖g − h‖2
L2(η) =

∫
Rd

(f (x)− g(x))2dη(x).

Let µn be the empirical measureEMPIRICAL

MEASURE

µn = µ(Xi)n
i=1

:=
1

n

n∑
i=1

δXi , (2.4.58)

where δx is the probability measure that puts mass 1 on x. Then, we can rewrite

ρn(g, h) = ‖g − h‖L2(µn).

Hence we have shown that, conditioned on the samples, the process {Zn(h)}h∈H has sub-
Gaussian increments with respect to ‖ · ‖L2(µn). Note that the pseudometric here is random
as it depends on the samples. Though, by the law of large numbers, ‖g− h‖L2(µn) approaches
its expectation, ‖g − h‖L2(µ), as n→+∞.

Applying the discrete Dudley inequality (Theorem 2.4.31), we obtain the following bound.

Lemma 2.4.51 There exists a constant 0 < C < +∞ such that, for any countable class of
measurable Boolean functions H over Rd,

E
[

sup
h∈H

Zn(h)
]
≤ C E

[
+∞∑
k=0

2−k
√

logN (H, ‖ · ‖L2(µn), 2−k)

]
,

where µn is the empirical measure over the samples (Xi)n
i=1.

Proof Because H comprises only Boolean functions, it follows that under the pseudo-
metric ‖ · ‖L2(µn) the diameter is bounded by 1. We apply the discrete Dudley inequality
conditioned on (Xi)n

i=1. Then we take an expectation over the samples.
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Our use of the symmetrization trick is more intuitive than it may have appeared at first. The
central limit theorem indicates that the fluctuations of centered averages such as

(Rn(g)− R(g))− (Rn(h)− R(h))

tend to cancel out and that, in the limit, the variance alone characterizes the overall behavior.
The εis in some sense explicitly capture the canceling part of this phenomenon, while ρn

captures the scale of the resulting global fluctuations in the increments.
Our final task is to bound the covering numbers N (H, ‖ · ‖L2(µn), 2−k).

Theorem 2.4.52 (Covering numbers via VC dimension). There exists a constant 0 < C <

+∞ such that, for any class of measurable Boolean functions H over Rd, any probability
measure η over Rd, and any ε ∈ (0, 1),

N (H, ‖ · ‖L2(η), ε) ≤
(

2

ε

)C vc(H)

.

Before proving Theorem 2.4.52, we derive its implications for uniform deviations. Compare
the following bound to Lemma 2.4.46.

Lemma 2.4.53 There exists a constant 0 < C < +∞ such that, for any countable class of
measurable Boolean functions H over Rd,

E
[

sup
h∈H

Zn(h)
]
≤ C

√
vc(H).

Proof By Lemma 2.4.51,

E
[

sup
h∈H

Zn(h)
]
≤ C E

[
+∞∑
k=0

2−k
√

logN (H, ‖ · ‖L2(µn), 2−k)

]

≤ C E

+∞∑
k=0

2−k

√
log

(
2

2−k

)C′ vc(H)


= C
√

vc(H)E

[
+∞∑
k=0

2−k
√

k + 1
√

C′ log 2

]
≤ C′′

√
vc(H)

for some 0 < C′′ < +∞.

It remains to prove Theorem 2.4.52.

Proof of Theorem 2.4.52 Let G = {g1, . . . , gN} ⊆ H be a maximal ε-packing of H with
N ≥ N (H, ‖ · ‖L2(η), ε), which exists by Lemma 2.4.24. We use the probabilistic method
(Section 2.2) and Hoeffding’s inequality for bounded variables (Theorem 2.4.10) to show
that there exists a small number of points {x1, . . . , xm} such that G is still a good packing
when H is restricted to the xis. Then we use Sauer’s lemma (Lemma 2.4.45) to conclude.

1. Restriction. By construction, the collection G satisfies

‖gi − gj‖L2(η) > ε, ∀i 6= j.
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For an integer m that we will choose as small as possible below, let X = {X1, . . . , Xm}

be i.i.d. samples from η and let µX be the corresponding empirical measure (as defined
in (2.4.58)). Observe that, for any i 6= j,

E
[
‖gi − gj‖

2
L2(µX)

]
= E

[
1

m

m∑
k=1

[gi(Xk)− gj(Xk)]2

]
= ‖gi − gj‖

2
L2(η).

Moreover, [gi(Xk) − gj(Xk)]2
∈ [0, 1]. Hence, by Hoeffding’s inequality there exists a

constant 0 < C < +∞ and an m ≤ Cε−4 log N such that

P
[
‖gi − gj‖

2
L2(η) − ‖gi − gj‖

2
L2(µX) ≥

3ε2

4

]
= P

[
m‖gi − gj‖

2
L2(η) −

m∑
k=1

[gi(Xk)− gj(Xk)]2
≥ m

3ε2

4

]

≤ exp
(
−

2(m · 3ε2/4)2

m

)
= exp

(
−

9

8
mε4

)
<

1

N2
.

This implies that, for this choice of m,

P
[
‖gi − gj‖L2(µX) >

ε

2
∀i 6= j

]
> 0,

where the probability is over the samples. Therefore, there must be a setX = {x1, . . . , xm} ⊆

Rd such that

‖gi − gj‖L2(µX ) >
ε

2
∀i 6= j. (2.4.59)

2. VC bound. In particular, by (2.4.59), the functions in G restricted to X are distinct. By
Sauer’s lemma (Lemma 2.4.45),

N = |GX | ≤ |HX | ≤

(
em

vc(H)

)vc(H)

≤

(
eCε−4 log N

vc(H)

)vc(H)

. (2.4.60)

Using that 1
2D log N = log N1/2D

≤ N1/2D, where D = vc(H), we get(
eCε−4 log N

vc(H)

)vc(H)

≤
(
C′ε−4

)vc(H)
N1/2, (2.4.61)

where C′ = 2eC. Plugging (2.4.61) back into (2.4.60) and rearranging gives

N ≤
(
C′ε−4

)2 vc(H)
.

That concludes the proof.
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Proof of Sauer’s lemma Recall from Appendix A (see also Exercise 1.4) that for integers
0 < d ≤ n,

d∑
k=0

(
n

k

)
≤

(en

d

)d
. (2.4.62)

Sauer’s lemma (Lemma 2.4.45) follows from the following claim.

Lemma 2.4.54 (Pajor). LetH be a class of Boolean functions onRd and let3 = {`1, . . . , `n} PAJOR’S

LEMMA⊆ Rd be any finite subset. Then

|H3| ≤ |{S ⊆ 3 : S is shattered by H}| ,

where the right-hand side includes the empty set.

Going back to Sauer’s lemma, by Lemma 2.4.54 we have the upper bound

|H3| ≤ |{S ⊆ 3 : S is shattered by H}| .

By definition of the VC-dimension (Definition 2.4.44), the subsets S ⊆ 3 that are shattered
by H have size at most vc(H). So the right-hand side is bounded above by the total number
of subsets of size at most d = vc(H) of a set of size n. By (2.4.62), this gives

|H3| ≤

(
en

vc(H)

)vc(H)

,

which establishes Sauer’s lemma.
So it remains to prove Lemma 2.4.54.

Proof of Lemma 2.4.54 We prove the claim by induction on the size n of 3. The result is
trivial for n = 1. Assume the result is true for any H and any subset of size n− 1. To apply
induction, for ι = 0, 1 we let

Hι
= {h ∈ H : h(`n) = ι},

and we set

3′ = {`1, . . . , `n−1}.

It will be convenient to introduce the following notation:

S(3;H) = |{S ⊆ 3 : S is shattered by H}| .

Because |H3| = |H0
3′ | + |H1

3′ | and the induction hypothesis implies S(3′;Hι) ≥ |Hι
3′ | for

ι = 0, 1, it suffices to show that

S(3;H) ≥ S(3′;H0)+ S(3′;H1). (2.4.63)

There are two types of sets that contribute to the right-hand side.

• One but not both. Let S ⊆ 3′ be a set that contributes to one of S(3′;H0) or S(3′;H1)
but not both. Then, S is a subset of the larger set 3 and it is certainly shattered by the
larger collection H. Hence, it also contributes to the left-hand side of (2.4.63).
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• Both. Let S ⊆ 3′ be a set that contributes to both S(3′;H0) and S(3′;H1). Hence,
it contributes two to the right-hand side of (2.4.63). As in the previous point, it is also
included in S(3;H), but it only contributes one to the left-hand side of (2.4.63). It turns
out that there is another set that contributes one to the left-hand side but zero to the right-
hand side: the subset S ∪ {`n}. Indeed, by definition of Hι, the subset S ∪ {`n} cannot be
shattered by it since all functions in it take the same value on `n. On the other hand, any
Boolean function h on S ∪ {`n} with h(`n) = ι is realized in Hι since S itself is shattered
by Hι.

That concludes the proof.

Exercises

Exercise 2.1 (Moments of non-negative random variables). Prove (B.5.1). (Hint: Use Fu-
bini’s Theorem to compute the integral.)

Exercise 2.2 (Bonferroni inequalities). Let A1, . . . , An be events and Bn := ∪iAi. Define

S(r) :=
∑

1≤i1<···<ir≤n

P[Ai1 ∩ · · · ∩ Air ]

and

Xn :=
n∑

i=1

1Ai .

(i) Let x0 ≤ x1 ≤ · · · ≤ xs ≥ xs+1 ≥ · · · ≥ xm be a unimodal sequence of non-negative
reals such that

∑m
j=0(−1)jxj = 0. Show that

∑`

j=0(−1)jxj is ≥ 0 for even ` and ≤ 0
for odd `.

(ii) Show that, for all r, ∑
1≤i1<···<ir≤n

1Ai1
1Ai2
· · · 1Air

=

(
Xn

r

)
.

(iii) Use (i) and (ii) to show that when ` ∈ [n] is odd

P[Bn] ≤
`∑

r=1

(−1)r−1S(r)

and when ` ∈ [n] is even

P[Bn] ≥
`∑

r=1

(−1)r−1S(r).

These inequalities are called Bonferroni inequalities. The case ` = 1 is Boole’s
inequality.

Exercise 2.3 (Percolation on Z2: a better bound). Let E1 be the event that all edges are open
in [−N , N] × [−N , N] and E2 be the event that there is no closed self-avoiding dual cycle
surrounding [−N , N]2. By looking at E1 ∩ E2, show that θ ( p) > 0 for p > 2/3.
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Exercise 2.4 (Percolation on Zd: existence of critical threshold). Consider bond percolation
on Ld.

(i) Show that pc(Ld) > 0. (Hint: Count self-avoiding paths.)
(ii) Show that pc(Ld) < 1. (Hint: Use the result for L2.)

Exercise 2.5 (Sums of uncorrelated variables). Centered random variables X1, X2, . . . are
uncorrelated if

E[XrXs] = 0 ∀r 6= s.

(i) Assume further that Var[Xr] ≤ C < +∞ for all r. Show that

P

[
1

n

∑
r≤n

Xr ≥ β

]
≤

C2

β2n
.

(ii) Use (i) to prove Theorem 2.1.6.

Exercise 2.6 (Pairwise independence: lack of concentration). Let U = (U1, . . . , U`) be
uniformly distributed over {0, 1}`. Let n = 2` − 1. For all v ∈ {0, 1}`\0, define

Xv = (U · v) mod 2.

(i) Show that the random variables Xv, v ∈ {0, 1}`\0, are uniformly distributed in {0, 1}
and pairwise independent.

(ii) Show that for any event A measurable with respect to σ (Xv, v ∈ {0, 1}`\0), P[A] is
either 0 or ≥ 1/(n+ 1).

Exercise 2.5 shows that pairwise independence implies “polynomial concentration” of the
average of square-integrable Xvs. On the other hand, the current exercise suggests that in
general pairwise independence cannot imply “exponential concentration.”

Exercise 2.7 (Chernoff bound for Poisson trials). Using the Chernoff–Cramér method,
prove part (i) of Theorem 2.4.7. Show that part (ii) follows from part (i).

Exercise 2.8 (Stochastic knapsack: some details). Consider the stochastic fractional knap-
sack problem in Section 2.4.3.

(i) Prove that the greedy algorithm described there gives an optimal solution to prob-
lem (2.4.21).

(ii) Prove Claim 2.4.20 for τ ∈ (0, 1/6).

Exercise 2.9 (Stochastic knapsack: 0-1 version). Consider the stochastic fractional knap-
sack problem in Section 2.4.3.

(i) Adapt the greedy algorithm for the 0-1 knapsack problem and show that it is not
optimal in general. (Hint: Construct a counter-example with two items.)

(ii) Prove Claim 2.4.20 for the greedy solution of (i).

Exercise 2.10 (A proof of Pólya’s theorem). Let (St) be simple random walk on Ld started
at the origin 0.
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(i) For d = 1, use Stirling’s formula (see Appendix A) to show that P[S2n = 0] =
2(n−1/2).

(ii) For j = 1, . . . , d, let N ( j)
t be the number of steps in the jth coordinate by time t.

Show that

P
[

N ( j)
n ∈

[
n

2d
,

3n

2d

]
, ∀j

]
≥ 1− exp(−κdn)

for some constant κd > 0.
(iii) Use (i) and (ii) to show that, for any d ≥ 3, P[S2n = 0] = O(n−d/2).

Exercise 2.11 (Maximum degree). Let Gn = (Vn, En) ∼ Gn,pn be an Erdős–Rényi graph
with n vertices and density pn. Suppose npn = C log n for some C > 0. Let Dn be the
maximum degree of Gn. Use Bernstein’s inequality to show that for any ε > 0,

P [Dn ≥ (n− 1)pn +max{C, 4(1+ ε)} log n]→ 0,

as n→+∞.

Exercise 2.12 (RIP versus orthogonality). Show that a (k, 0)-RIP matrix with k ≥ 2 is
orthogonal, that is, its columns are orthonormal.

Exercise 2.13 (Compressed sensing: linear programming formulation). Formulate (2.4.43)
as a linear program, that is, the minimization of a linear objective subject to linear inequali-
ties.

Exercise 2.14 (Compressed sensing: almost sparse case). By adapting the proof of Lemma
2.4.39, show the following “almost sparse” version. Let L be (10k, 1/3)-RIP. Then, for
any x ∈ Rn, the solution to (2.4.43) satisfies ‖z∗ − x‖2 = O(η(x)/

√
k), where η(x) :=

minx′
∈S n

k
‖x− x′‖1.

Exercise 2.15 (Spectral norm without independence). Give an example of a random matrix
A ∈ Rn×n whose entries are bounded, but not independent, such that the spectral norm is
�(n) with high probability.

Exercise 2.16 (Spectral norm: symmetric matrix). Let A ∈ Rn×n be a symmetric random
matrix. We assume that entries on and above the diagonal Ai, j, i ≤ j, are centered, independ-
ent, and sub-Gaussian with variance factor ν. Each entry below the diagonal is equal to the
corresponding entry above it. Prove an analogue of Theorem 2.4.28 for A. (Hint: Mimic the
proof of Theorem 2.4.28.)

Exercise 2.17 (Chaining tail inequality). Prove Theorem 2.4.32.

Exercise 2.18 (Poisson convergence: method of moments). Let A1, . . . , An be events and
A := ∪iAi. Define

S(r) :=
∑

1≤i1<···<ir≤n

P[Ai1 ∩ · · · ∩ Air ]

and

Xn :=
n∑

i=1

Ai.
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Assume that there is µ > 0 such that, for all r,

S(r)
→

µr

r!
.

Use Exercise 2.2 and a Taylor expansion of e−µ to show that

P[Xn = 0]→ e−µ.

In fact, Xn
d
→ Poi(µ) (no need to prove this). This is a special case of the method of moments.

Exercise 2.19 (Connectivity: critical window). Using Exercise 2.18 show that, when pn =
log n+s

n , the probability that an Erdős–Rényi graph Gn ∼ Gn,pn contains no isolated vertex
converges to e−e−s

.
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