INVOLUTION AND THE HAAGERUP TENSOR PRODUCT

AJAY KUMAR

Department of Mathematics, Rajdhani College (University of Delhi), Raja Garden, New Delhi 110015, India (ajaykr@bol.net.in)

(Received 13 July 1999)

Abstract We show that the involution $\theta(a \otimes b) = a^* \otimes b^*$ on the Haagerup tensor product $A \otimes_H B$ of C^* -algebras A and B is an isometry if and only if A and B are commutative. The involutive Banach algebra $A \otimes_H A$ arising from the involution $a \otimes b \to b^* \otimes a^*$ is also studied.

Keywords: C*-algebras; Haagerup tensor product; second dual; closed ideals

AMS 2000 Mathematics subject classification: Primary 46L05; 46M05

1. Introduction

The Haagerup norm of an element u in the algebraic tensor product $A \otimes B$ of two C^* -algebras A and B is defined by

$$||u||_{\mathbf{H}} = \inf \left\| \sum_{j=1}^{n} a_j a_j^* \right\|^{1/2} \left\| \sum_{j=1}^{n} b_j^* b_j \right\|^{1/2} = \inf \|(a_1, a_2, \dots, a_n)\| \|(b_1, b_2, \dots, b_n)'\|,$$

where these infima are taken over all representations of $u = \sum_{j=1}^n a_j \otimes b_j, a_j \in A, b_j \in B$, and $(b_1, b_2, \dots, b_n)'$ is the transpose of the row operator. The Haagerup tensor product $A \otimes_H B$ is the Banach space obtained by completing the algebraic tensor product $A \otimes B$ in the Haagerup norm. A direct calculation with the definition and Cauchy–Schwarz inequality shows that $A \otimes_H B$ is a Banach algebra with the natural multiplication $(a \otimes b)(x \otimes y) = ax \otimes by, \ a, x \in A \ \text{and} \ b, y \in B \ [3]$. The Haagerup tensor product $A \otimes_H B$ is a C^* -algebra if and only if A or B equals \mathbb{C} [4]. This tensor product plays an important role in the theory of operator spaces [4–6, 8, 9] and is an injective tensor product [13]. The ideal structure of this Banach algebra has been studied in [1] and [2].

First we show that a natural involution $\theta: A \otimes B \to A \otimes B$ given by $\theta(a \otimes b) = a^* \otimes b^*$ lifts to a continuous map θ_H on $A \otimes_H B$ if and only if either A or B is finite dimensional, or A and B are infinite dimensional and subhomogeneous. Recall that a C^* -algebra is subhomogeneous if for some $k \in N$, every irreducible representation is on a Hilbert space of dimension not greater than k. Furthermore, it has been shown that θ_H is an isometry if and only if A and B are commutative. It follows from the definition of the Haagerup norm that the Haagerup tensor product $A \otimes_H A$ is an involutive Banach algebra with

318 A. Kumar

isometric involution given by $a \otimes b \to b^* \otimes a^*$. For a unital C^* -algebra A, we show that if $A \otimes_H A$ has a faithful *-representation on a Hilbert space, then A is commutative. As a corollary it follows that $A \otimes_H A$ is *-semi simple (Hermitian) if and only if A is commutative. Finally, the closed *-ideals of $A \otimes_H A$ are studied.

2. Results

For a Banach space X, X^* denotes the dual of X. Let M_n be the C^* -algebra of $n \times n$ complex matrices acting on the n-dimensional complex Hilbert space \mathbb{C}^n . For a complex Hilbert space H, let H be the algebra of bounded operators on H and H the ideal of compact operators. The following lemma is proved in [12] using the Cauchy–Schwarz inequality and the action of H on H on H as completely bounded operators.

Lemma 2.1. For $n \in N$, if e_{ij} for $1 \le i, j \le n$ are the matrix units in M_n and l_n^{∞} is the diagonal algebra in M_n , then

$$\left\| \sum_{j=1}^{n} e_{1j} \otimes e_{jj} \right\|_{\mathcal{H}} = n^{1/2} \quad \text{and} \quad \left\| \sum_{j=1}^{n} e_{j1} \otimes e_{jj} \right\|_{\mathcal{H}} = 1$$

in $M_n \otimes_{\mathrm{H}} l_n^{\infty}$. Also in $l_n^{\infty} \otimes_{\mathrm{H}} M_n$

$$\left\| \sum_{j=1}^{n} e_{jj} \otimes e_{j1} \right\|_{\mathcal{H}} = n^{1/2} \quad and \quad \left\| \sum_{j=1}^{n} e_{jj} \otimes e_{1j} \right\|_{\mathcal{H}} = 1.$$

Theorem 2.2. Let A and B be C^* -algebras and θ is the map on $A \otimes B$ given by $\theta(a \otimes b) = a^* \otimes b^*$. Then the following are equivalent.

- (i) The Haagerup norm $\|\cdot\|_{H}$ is equivalent to the Banach space projective norm $\|\cdot\|_{\gamma}$.
- (ii) θ lifts to a continuous map θ_H on $A \otimes_H B$.
- (iii) Either A or B is finite dimensional or A and B are infinite dimensional and sub-homogeneous.

Proof. The equivalence of (i) and (iii) is shown in [12]. It is trivial that (i) implies (ii). We now show that (ii) implies (iii). Suppose that θ lifts to a continuous map θ_H on $A \otimes_H B$ and A and B are infinite dimensional. Then θ_H is a continuous map on $(A \otimes_H B)^{**}$ which contains $A^{**} \otimes_H B^{**}$ [5,10]. For $u \in (A \otimes_H B)^{**}$ and $\phi \in (A \otimes_H B)^*$, $(\theta_H u)(\phi) = u(\phi \circ \theta_H)$.

The dual space of the Haagerup tensor product of two C^* -algebras is the space of completely bounded bilinear forms on the algebras [9]. So, by [9], for $\phi \in (A \otimes_H B)^*$ there exist Hilbert spaces H and K, representations $\pi_1 : A \to B(H)$ and $\pi_2 : B \to B(K)$, vectors $\xi \in K$ and $\eta \in H$, and a bounded linear operator $T : K \to H$ such that

$$\phi(x \otimes y) = \langle \pi_1(x) T \pi_2(y) \xi, \eta \rangle$$

for all $x \in A$, $y \in B$. Assuming that the representations π_1 and π_2 of A and B are faithful, we can identify A with $\pi_1(A)$ and B with $\pi_2(B)$. The above expression can be rewritten as

$$\phi(x \otimes y) = \langle xTy\xi, \eta \rangle$$

for all $x \in A \subseteq B(H)$, $y \in B \subseteq B(K)$. For $v \in A^{**}$, $\omega \in B^{**}$, the element $v \otimes \omega$ of $A^{**} \otimes_H B^{**}$ can be viewed as an element of $(A \otimes_H B)^{**}$ by

$$v \otimes \omega(\phi) = \langle vT\omega\xi, \eta \rangle.$$

This inclusion is an isometry [5,10]. Thus $\theta_H^{**}(v \otimes \omega) = v^* \otimes \omega^*$.

If for some $\eta \in N$, the von Neumann algebras A^{**} or B^{**} (say A^{**}) contain an isomorphic copy of M_n , then, by Lemma 2.1,

$$n^{1/2} = \left\| \sum_{j=1}^{n} e_{1j} \otimes e_{jj} \right\|_{\mathcal{H}} = \left\| \theta_{\mathcal{H}}^{**} \left(\sum_{j=1}^{n} e_{j1} \otimes e_{jj} \right) \right\|_{\mathcal{H}} \leqslant \|\theta_{\mathcal{H}}^{**}\| \left\| \sum_{j=1}^{n} e_{j1} \otimes e_{jj} \right\|_{\mathcal{H}} = \|\theta_{\mathcal{H}}^{**}\|_{\mathcal{H}},$$

by the injectivity of the Haagerup norm [13]. It follows that A^{**} and B^{**} cannot contain a type I_n factor for $n > \|\theta_H\|^2$. So, A^{**} and B^{**} are of the form $\oplus N_j$, $j \leqslant \|\theta_H\|^2$, where N_j is a von Neumann algebra of type I_j . If π is an irreducible representation of A on a Hilbert space H, there is a normal representation π of A^{**} on H such that $\pi(A^{**}) = \overline{\pi(A)}$ (weak closure) = B(H). Hence, dim $H \leqslant \|\theta_H\|^2$. Similarly, B is also subhomogeneous.

Theorem 2.3. Let A and B be infinite-dimensional C^* -algebras and $\theta(a \otimes b) = a^* \otimes b^*$. If θ lifts to a continuous map θ_H on $A \otimes_H B$, then θ_H is an isometry if and only if A and B are commutative.

Proof. If A and B are commutative, by the definition of the Haagerup norm, $\theta_{\rm H}$ is an isometry. Conversely, if $\theta_{\rm H}$ is an isometry on $A \otimes_{\rm H} B$, then $\theta_{\rm H}$ lifts to an isometry $\theta_{\rm H}^{**}$ on $(A \otimes_{\rm H} B)^{**}$. As in Theorem 2.2, $\theta_{\rm H}^{**}(v \otimes \omega) = v^* \otimes \omega^*$ for all $v \in A^{**}$ and $\omega \in B^{**}$. If at least one of the von Neumann algebras A^{**} or B^{**} is not commutative, say A^{**} , then by the decomposition of a von Neumann algebra into type I, II₁, II_{\infty}, III, it follows that $A^{**} \supset M_n$ for some n > 1 [11]. Lemma 2.1 and the injectivity of Haagerup norm [13] now show that $\theta_{\rm H}^{**}$ is not an isometry. Hence A^{**} and B^{**} are commutative, and in particular so are A and B.

Let A be a C^* -algebra. By the definition of Haagerup norm, $A \otimes_H A$ is a Banach *-algebra with isometric involution given by $a \otimes b \to b^* \otimes a^*$, $a, b \in A$. For a Hilbert space H, $\pi: A \otimes_H A \to B(H)$ will be called a *-representation if π is a bounded algebraic homomorphism satisfying $\pi(b^* \otimes a^*) = (\pi(a \otimes b))^*$ for all $a, b \in A$. If, in addition, $\pi(A \otimes_H A)$ is σ -weakly dense in B(H), then π is said to be irreducible.

Theorem 2.4. Let A be a unital C^* -algebra. If $A \otimes_H A$ has a faithful *-representation, then A is commutative.

320 A. Kumar

Proof. Let π be a faithful *-representation of $A \otimes_H A$ on a Hilbert space H. Putting $\pi_1(a) = \pi(a \otimes 1)$ and $\pi_2(a) = \pi(1 \otimes a)$, $a \in A$, it is easy to verify that π_1 and π_2 are bounded monomorphisms from A into B(H) satisfying $\pi(a \otimes b) = \pi_1(a)\pi_2(b) = \pi_2(b)\pi_1(a)$ for all $a, b \in A$ and $\pi_1(a^*) = \pi_2(a)^*$, $a \in A$. If h is a self-adjoint element of A, then $\|\exp ith\| = 1$ for all $t \in \mathbb{R}$. The *-homomorphism π from the Banach *-algebra $A \otimes_H A$ to B(H) is norm reducing [14, Proposition 1.5.2]. Thus

$$\|\exp it\pi_1(h)\| = \|\pi(\exp it(h\otimes 1))\| \le \|\exp it(h\otimes 1)\|_H = \|\exp ith\| = 1,$$

for all $t \in \mathbb{R}$. Hence, $\|\exp it\pi_1(h)\| = 1$ for all $t \in \mathbb{R}$. So $\pi_1(h)$ is a self-adjoint element of B(H). Let a = h + ik, where h and k are self-adjoint elements of A. Now

$$\pi_1(a^*) = \pi_1(h - ik) = \pi_1(h) - i\pi_1(k) = (\pi_1(h) + i\pi_1(k))^* = (\pi_1(a))^*.$$

This implies that $\pi_1(a^*) = \pi_1(a)^* = \pi_2(a)^*$ for all $a \in A$ and, thus, $\pi_1(a) = \pi_2(a)$ for all $a \in A$. But $\pi_1(a)\pi_2(b) = \pi_2(b)\pi_1(a)$, so $\pi(ab - ba \otimes 1) = \pi_1(ab - ba) = 0$ for all $a, b \in A$. Since π is faithful, we have ab - ba = 0 for all $a, b \in A$, i.e. A is commutative. \square

It is well known for a C^* -algebra A, $\cap \{\ker \pi : \pi \text{ is a *-representation of } A\} = \{0\}$, i.e. A is *-semi simple. An equivalent form of the above result is the following.

Corollary 2.5. Let A be a unital C^* -algebra. Then $A \otimes_H A$ is *-semi simple if and only if A is commutative.

Recall that a Banach *-algebra A is said to be Hermitian if every self-adjoint element of A has real spectrum [7]. Moreover, in a Hermitian Banach *-algebra A, the radical of A equals the star radical of A [7, Theorem 4.9]. Since $\operatorname{rad}(A \otimes_H A) = (0)$ by [1, Proposition 5.16], we have the following.

Corollary 2.6. Let A be a unital C^* -algebra. Then $A \otimes_H A$ is Hermitian if and only if A is commutative.

A careful reading of the proof of Theorem 2.4 shows the following.

Proposition 2.7. Let A is a unital C^* -algebra and π a *-representation of $A \otimes_H A$, then there is a *-representation π_0 of A satisfying $\pi(a \otimes b) = \pi_0(ab)$ and $\pi_0(A)$ is abelian.

Suppose that A is a C^* -algebra having only a finite number of closed two-sided ideals. Let K be a closed *-ideal of $A \otimes_H A$. By [1, Theorem 5.3], $K = \sum_j (K_j \otimes_H I_j)$, where K_j , I_j are closed ideals of A and, hence, *-ideals. Thus any *-ideal of $A \otimes_H A$ is of the form

$$\sum_{j} (K_j \otimes_{\mathrm{H}} I_j + I_j \otimes_{\mathrm{H}} K_j).$$

In particular, the only closed proper *-ideals of $B(H) \otimes_H B(H)$ are $B(H) \otimes_H K(H) + K(H) \otimes_H B(H)$ and $K(H) \otimes_H K(H)$.

Our next result characterizes the *-ideals of $A \otimes_{\mathrm{H}} A$ annihilated by a *-representation of $A \otimes_{\mathrm{H}} A$.

Theorem 2.8. Let A be a unital C^* -algebra. Then a closed two-sided *-ideal J of $A \otimes_H A$ is annihilated by a *-representation π of $A \otimes_H A$ if and only if there is a *-representation π_0 of A with $\pi_0(A)$ abelian such that $J \subseteq J_0 \otimes_H A + A \otimes_H J_0$, $J_0 = \ker \pi_0$.

Proof. Suppose that $J \subseteq \ker \pi$, where π is a *-representation of $A \otimes_H A$ on a Hilbert space H. Let π_0 be a *-representation of A as in Proposition 2.7 and $J_0 = \ker \pi_0$. Clearly, $\ker \pi \supseteq J_0 \otimes_H A + A \otimes_H J_0$ and $A/J_0 \otimes_H A/J_0$ is commutative. Let $q: A \otimes_H A \to A/J_0 \otimes_H A/J_0$ be the quotient map with kernel $J_0 \otimes_H A + A \otimes_H J_0$. The representation π induces a faithful representation π_0 of $A/J_0 \otimes_H A/J_0$ on H. Moreover, the following diagram commutes.

So $\pi(J) = 0$ implies that q(J) = 0. Thus $J \subseteq J_0 \otimes_H A + A \otimes_H J_0$. Conversely, suppose that $J \subseteq J_0 \otimes_H A + A \otimes_H J_0$, $J_0 = \ker \pi_0$, π_0 is a *-representation of A with $\pi_0(A)$ abelian. Defining π by $\pi(a \otimes b) = \pi_0(ab)$ on $A \otimes_H A$, it is easy to verify that π is a *-representation of $A \otimes_H A$ and $J \subseteq \ker \pi$.

Let H be a separable infinite-dimensional Hilbert space, it follows from the above theorem that the *-ideal $K(H) \otimes_H K(H)$ cannot be annihilated by a *-representation of $B(H) \otimes_H B(H)$.

In contrast to Theorem 2.8, if the involution $a \otimes b \to b^* \otimes a^*$ is dropped, then of course for every proper closed two-sided ideal J there is a bounded algebraic homomorphism $\pi: A \otimes_H A \to B(H)$, satisfying $\pi(a^* \otimes b^*) = \pi(a \otimes b)^*$, $a, b \in A$ such that $J \subseteq \ker \pi$. The proof of this result is implicitly contained in [1] (see also [2]), but to be more explicit, we outline the proof.

Theorem 2.9. Let A and B be unital C^* -algebras. Then every proper closed two-sided ideal of $A \otimes_H B$ is annihilated by a representation of $A \otimes_H B$.

Proof. Let J be a proper closed two-sided ideal of $A \otimes_H B$ and J_{\min} be the closure of J in $A \otimes_{\min} B$, where $A \otimes_{\min} B$ is the completion of the algebraic tensor product with $\|\cdot\|_{\min}$ norm. If $J_{\min} = A \otimes_{\min} B$, then J_{\min} will contain all elementary tensors, so, by [1, Theorem 4.4], J will be equal to $A \otimes_H B$. Thus, J_{\min} is a proper closed two-sided ideal in the C^* -algebra $A \otimes_{\min} B$. Let π be an irreducible representation of $A \otimes_{\min} B$ on a Hilbert space H annihilating J_{\min} . Let $\pi_1(a) = \pi(a \otimes 1)$ and $\pi_2(b) = \pi(1 \otimes b)$, for all $a \in A$ and $b \in B$. Then π_1 and π_2 are commuting representations of A and B, respectively. Let $M = \ker \pi_1$ and $N = \ker \pi_2$. Let $q: A \otimes_H B \to A/M \otimes_H B/N$ be the quotient map and let $\pi_1 \cdot \pi_2 : A/M \otimes_H B/N \to B(H)$ be the faithful representation of $A/M \otimes_H B/N$ induced by π_1 and π_2 (see [1] for details). So $\pi(J) = 0$ implies that q(J) = 0. But $A/M \otimes_H B/N \simeq A \otimes_H B/M \otimes_H B + A \otimes_H N$, thus $J \subseteq M \otimes_H B + A \otimes_H N$. Since $M \otimes_H B + A \otimes_H N$ is primitive [1, Theorem 5.13], there is a representation σ of $A \otimes_H B$ such that $J \subseteq \ker \sigma$.

322 A. Kumar

Acknowledgements. The author is grateful to Professor A. M. Sinclair for many valuable comments.

References

- 1. S. D. Allen, A. M. Sinclair and R. R. Smith, The ideal structure of the Haagerup tensor product of C^* -algebras, J. Reine Angew. Math. 442 (1993), 111–148.
- 2. R. J. Archbold, D. W. B. Somerset, E. Kaniuth and G. Schlichting, Ideal spaces of the Haagerup tensor product of C^* -algebras, Int. J. Math. 8 (1997), 1–29.
- D. P. BLECHER, Geometry of tensor product of C*-algebras, Math. Proc. Camb. Phil. Soc. 104 (1988), 119–127.
- 4. D. P. BLECHER AND V. I. PAULSEN, Tensor product of operator spaces, *J. Funct. Analysis* **99** (1991), 262–292.
- D. P. BLECHER AND R. R. SMITH, The dual of the Haagerup tensor product, J. Lond. Math. Soc. 45 (1992), 126–144.
- D. P. BLECHER, Z. J. RUAN AND A. M. SINCLAIR, A characterization of operator algebras, J. Funct. Analysis 89 (1990), 188–201.
- 7. F. F. BONSALL AND J. DUNCAN, Complete normed algebras (Berlin: Springer, 1973).
- 8. E. CHRISTENSEN AND A. M. SINCLAIR, A survey of completely bounded operators, *Bull. Lond. Math. Soc.* **21** (1989), 417–448.
- 9. E. G. Effros and A. Kishimoto, Module maps and Hochschild–Johnson cohomology, *Indiana Univ. Math. J.* **36** (1987), 257–276.
- E. G. Effros and Z. J. Ruan, Self duality for the Haagerup tensor product and Hilbert space factorization, J. Funct. Analysis. 100 (1991), 257–284.
- R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vol. II (Academic, 1983).
- A. Kumar and A. M. Sinclair, Equivalence of norms on operator space tensor products of C*-algebras, Trans. Am. Math. Soc. 350 (1998) 2033–2048.
- V. I. PAULSEN AND R. R. SMITH, Multilinear maps and tensor norms on operator systems, J. Funct. Analysis 73 (1987), 258–276.
- 14. M. TAKESAKI, Theory of operator algebras, vol. I (Berlin: Springer, 1979).