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Abstract We show that the involution θ(a⊗ b) = a∗ ⊗ b∗ on the Haagerup tensor product A⊗H B of
C∗-algebras A and B is an isometry if and only if A and B are commutative. The involutive Banach
algebra A⊗H A arising from the involution a⊗ b→ b∗ ⊗ a∗ is also studied.
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1. Introduction

The Haagerup norm of an element u in the algebraic tensor product A ⊗ B of two C∗-
algebras A and B is defined by

‖u‖H = inf
∥∥∥∥ n∑
j=1

aja
∗
j

∥∥∥∥1/2∥∥∥∥ n∑
j=1

b∗jbj

∥∥∥∥1/2

= inf ‖(a1, a2, . . . , an)‖ ‖(b1, b2, . . . , bn)′‖,

where these infima are taken over all representations of u =
∑n
j=1 aj ⊗ bj , aj ∈ A, bj ∈ B,

and (b1, b2, . . . , bn)′ is the transpose of the row operator. The Haagerup tensor product
A⊗H B is the Banach space obtained by completing the algebraic tensor product A⊗B
in the Haagerup norm. A direct calculation with the definition and Cauchy–Schwarz
inequality shows that A⊗H B is a Banach algebra with the natural multiplication (a⊗
b)(x⊗ y) = ax⊗ by, a, x ∈ A and b, y ∈ B [3]. The Haagerup tensor product A⊗H B is
a C∗-algebra if and only if A or B equals C [4]. This tensor product plays an important
role in the theory of operator spaces [4–6,8,9] and is an injective tensor product [13].
The ideal structure of this Banach algebra has been studied in [1] and [2].

First we show that a natural involution θ : A⊗B → A⊗B given by θ(a⊗ b) = a∗⊗ b∗
lifts to a continuous map θH on A⊗HB if and only if either A or B is finite dimensional,
or A and B are infinite dimensional and subhomogeneous. Recall that a C∗-algebra is
subhomogeneous if for some k ∈ N , every irreducible representation is on a Hilbert space
of dimension not greater than k. Furthermore, it has been shown that θH is an isometry
if and only if A and B are commutative. It follows from the definition of the Haagerup
norm that the Haagerup tensor product A ⊗H A is an involutive Banach algebra with
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isometric involution given by a⊗ b→ b∗ ⊗ a∗. For a unital C∗-algebra A, we show that
if A ⊗H A has a faithful ∗-representation on a Hilbert space, then A is commutative.
As a corollary it follows that A ⊗H A is ∗-semi simple (Hermitian) if and only if A is
commutative. Finally, the closed ∗-ideals of A⊗H A are studied.

2. Results

For a Banach space X, X∗ denotes the dual of X. Let Mn be the C∗-algebra of n × n
complex matrices acting on the n-dimensional complex Hilbert space Cn. For a complex
Hilbert space H, let B(H) be the algebra of bounded operators on H and K(H) the ideal
of compact operators. The following lemma is proved in [12] using the Cauchy–Schwarz
inequality and the action of Mn ⊗H Mn on Mn as completely bounded operators.

Lemma 2.1. For n ∈ N , if eij for 1 6 i, j 6 n are the matrix units in Mn and l∞n is
the diagonal algebra in Mn, then∥∥∥∥ n∑

j=1

e1j ⊗ ejj
∥∥∥∥

H
= n1/2 and

∥∥∥∥ n∑
j=1

ej1 ⊗ ejj
∥∥∥∥

H
= 1

in Mn ⊗H l
∞
n . Also in l∞n ⊗H Mn∥∥∥∥ n∑

j=1

ejj ⊗ ej1
∥∥∥∥

H
= n1/2 and

∥∥∥∥ n∑
j=1

ejj ⊗ e1j

∥∥∥∥
H

= 1.

Theorem 2.2. Let A and B be C∗-algebras and θ is the map on A ⊗ B given by
θ(a⊗ b) = a∗ ⊗ b∗. Then the following are equivalent.

(i) The Haagerup norm ‖ · ‖H is equivalent to the Banach space projective norm ‖ · ‖γ .

(ii) θ lifts to a continuous map θH on A⊗H B.

(iii) Either A or B is finite dimensional or A and B are infinite dimensional and sub-
homogeneous.

Proof. The equivalence of (i) and (iii) is shown in [12]. It is trivial that (i) implies
(ii). We now show that (ii) implies (iii). Suppose that θ lifts to a continuous map θH

on A ⊗H B and A and B are infinite dimensional. Then θH is a continuous map on
(A⊗H B)∗∗ which contains A∗∗ ⊗H B

∗∗ [5,10]. For u ∈ (A⊗H B)∗∗ and φ ∈ (A⊗H B)∗,
(θHu)(φ) = u(φ ◦ θH).

The dual space of the Haagerup tensor product of two C∗-algebras is the space of
completely bounded bilinear forms on the algebras [9]. So, by [9], for φ ∈ (A ⊗H B)∗

there exist Hilbert spaces H and K, representations π1 : A→ B(H) and π2 : B → B(K),
vectors ξ ∈ K and η ∈ H, and a bounded linear operator T : K → H such that

φ(x⊗ y) = 〈π1(x)Tπ2(y)ξ, η〉
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for all x ∈ A, y ∈ B. Assuming that the representations π1 and π2 of A and B are
faithful, we can identify A with π1(A) and B with π2(B). The above expression can be
rewritten as

φ(x⊗ y) = 〈xTyξ, η〉
for all x ∈ A ⊆ B(H), y ∈ B ⊆ B(K). For v ∈ A∗∗, ω ∈ B∗∗, the element v ⊗ ω of
A∗∗ ⊗H B

∗∗ can be viewed as an element of (A⊗H B)∗∗ by

v ⊗ ω(φ) = 〈vTωξ, η〉.

This inclusion is an isometry [5,10]. Thus θ∗∗H (v ⊗ ω) = v∗ ⊗ ω∗.
If for some η ∈ N , the von Neumann algebras A∗∗ or B∗∗ (say A∗∗) contain an

isomorphic copy of Mn, then, by Lemma 2.1,

n1/2 =
∥∥∥∥ n∑
j=1

e1j ⊗ ejj
∥∥∥∥

H
=
∥∥∥∥θ∗∗H ( n∑

j=1

ej1 ⊗ ejj
)∥∥∥∥

H
6 ‖θ∗∗H ‖

∥∥∥∥ n∑
j=1

ej1 ⊗ ejj
∥∥∥∥

H
= ‖θ∗∗H ‖H,

by the injectivity of the Haagerup norm [13]. It follows that A∗∗ and B∗∗ cannot contain
a type In factor for n > ‖θH‖2. So, A∗∗ and B∗∗ are of the form ⊕Nj , j 6 ‖θH‖2,
where Nj is a von Neumann algebra of type Ij . If π is an irreducible representation
of A on a Hilbert space H, there is a normal representation π of A∗∗ on H such that
π(A∗∗) = π(A) (weak closure) = B(H). Hence, dimH 6 ‖θH‖2. Similarly, B is also
subhomogeneous. �

Theorem 2.3. Let A and B be infinite-dimensional C∗-algebras and θ(a⊗b) = a∗⊗b∗.
If θ lifts to a continuous map θH on A⊗H B, then θH is an isometry if and only if A and
B are commutative.

Proof. If A and B are commutative, by the definition of the Haagerup norm, θH is
an isometry. Conversely, if θH is an isometry on A⊗HB, then θH lifts to an isometry θ∗∗H
on (A⊗H B)∗∗. As in Theorem 2.2, θ∗∗H (v⊗ ω) = v∗ ⊗ ω∗ for all v ∈ A∗∗ and ω ∈ B∗∗. If
at least one of the von Neumann algebras A∗∗ or B∗∗ is not commutative, say A∗∗, then
by the decomposition of a von Neumann algebra into type I, II1, II∞, III, it follows that
A∗∗ ⊃Mn for some n > 1 [11]. Lemma 2.1 and the injectivity of Haagerup norm [13] now
show that θ∗∗H is not an isometry. Hence A∗∗ and B∗∗ are commutative, and in particular
so are A and B. �

Let A be a C∗-algebra. By the definition of Haagerup norm, A ⊗H A is a Banach ∗-
algebra with isometric involution given by a⊗ b→ b∗ ⊗ a∗, a, b ∈ A. For a Hilbert space
H, π : A ⊗H A → B(H) will be called a ∗-representation if π is a bounded algebraic
homomorphism satisfying π(b∗ ⊗ a∗) = (π(a ⊗ b))∗ for all a, b ∈ A. If, in addition,
π(A⊗H A) is σ-weakly dense in B(H), then π is said to be irreducible.

Theorem 2.4. Let A be a unital C∗-algebra. If A⊗HA has a faithful ∗-representation,
then A is commutative.
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Proof. Let π be a faithful ∗-representation of A⊗H A on a Hilbert space H. Putting
π1(a) = π(a ⊗ 1) and π2(a) = π(1 ⊗ a), a ∈ A, it is easy to verify that π1 and π2

are bounded monomorphisms from A into B(H) satisfying π(a ⊗ b) = π1(a)π2(b) =
π2(b)π1(a) for all a, b ∈ A and π1(a∗) = π2(a)∗, a ∈ A. If h is a self-adjoint element of
A, then ‖ exp ith‖ = 1 for all t ∈ R. The ∗-homomorphism π from the Banach ∗-algebra
A⊗H A to B(H) is norm reducing [14, Proposition 1.5.2]. Thus

‖ exp itπ1(h)‖ = ‖π(exp it(h⊗ 1))‖ 6 ‖ exp it(h⊗ 1)‖H = ‖ exp ith‖ = 1,

for all t ∈ R. Hence, ‖ exp itπ1(h)‖ = 1 for all t ∈ R. So π1(h) is a self-adjoint element of
B(H). Let a = h+ ik, where h and k are self-adjoint elements of A. Now

π1(a∗) = π1(h− ik) = π1(h)− iπ1(k) = (π1(h) + iπ1(k))∗ = (π1(a))∗.

This implies that π1(a∗) = π1(a)∗ = π2(a)∗ for all a ∈ A and, thus, π1(a) = π2(a) for all
a ∈ A. But π1(a)π2(b) = π2(b)π1(a), so π(ab− ba⊗ 1) = π1(ab− ba) = 0 for all a, b ∈ A.
Since π is faithful, we have ab− ba = 0 for all a, b ∈ A, i.e. A is commutative. �

It is well known for a C∗-algebra A, ∩{kerπ : π is a ∗-representation of A} = {0},
i.e. A is ∗-semi simple. An equivalent form of the above result is the following.

Corollary 2.5. Let A be a unital C∗-algebra. Then A ⊗H A is ∗-semi simple if and
only if A is commutative.

Recall that a Banach ∗-algebra A is said to be Hermitian if every self-adjoint element
of A has real spectrum [7]. Moreover, in a Hermitian Banach ∗-algebra A, the radical
of A equals the star radical of A [7, Theorem 4.9]. Since rad(A ⊗H A) = (0) by [1,
Proposition 5.16], we have the following.

Corollary 2.6. Let A be a unital C∗-algebra. Then A⊗H A is Hermitian if and only
if A is commutative.

A careful reading of the proof of Theorem 2.4 shows the following.

Proposition 2.7. Let A is a unital C∗-algebra and π a ∗-representation of A ⊗H A,
then there is a ∗-representation π0 of A satisfying π(a⊗b) = π0(ab) and π0(A) is abelian.

Suppose that A is a C∗-algebra having only a finite number of closed two-sided ideals.
Let K be a closed ∗-ideal of A ⊗H A. By [1, Theorem 5.3], K =

∑
j(Kj ⊗H Ij), where

Kj , Ij are closed ideals of A and, hence, ∗-ideals. Thus any ∗-ideal of A ⊗H A is of the
form ∑

j

(Kj ⊗H Ij + Ij ⊗H Kj).

In particular, the only closed proper ∗-ideals of B(H) ⊗H B(H) are B(H) ⊗H K(H) +
K(H)⊗H B(H) and K(H)⊗H K(H).

Our next result characterizes the ∗-ideals of A⊗H A annihilated by a ∗-representation
of A⊗H A.
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Theorem 2.8. Let A be a unital C∗-algebra. Then a closed two-sided ∗-ideal J of
A ⊗H A is annihilated by a ∗-representation π of A ⊗H A if and only if there is a ∗-
representation π0 of A with π0(A) abelian such that J ⊆ J0⊗HA+A⊗H J0, J0 = kerπ0.

Proof. Suppose that J ⊆ kerπ, where π is a ∗-representation of A⊗H A on a Hilbert
space H. Let π0 be a ∗-representation of A as in Proposition 2.7 and J0 = kerπ0. Clearly,
kerπ ⊇ J0 ⊗H A + A ⊗H J0 and A/J0 ⊗H A/J0 is commutative. Let q : A ⊗H A →
A/J0 ⊗H A/J0 be the quotient map with kernel J0 ⊗H A+A⊗H J0. The representation
π induces a faithful representation π0 of A/J0 ⊗H A/J0 on H. Moreover, the following
diagram commutes.

So π(J) = 0 implies that q(J) = 0. Thus J ⊆ J0 ⊗H A + A ⊗H J0. Conversely, suppose
that J ⊆ J0⊗HA+A⊗HJ0, J0 = kerπ0, π0 is a ∗-representation of A with π0(A) abelian.
Defining π by π(a⊗b) = π0(ab) on A⊗HA, it is easy to verify that π is a ∗-representation
of A⊗H A and J ⊆ kerπ. �

Let H be a separable infinite-dimensional Hilbert space, it follows from the above
theorem that the ∗-ideal K(H)⊗H K(H) cannot be annihilated by a ∗-representation of
B(H)⊗H B(H).

In contrast to Theorem 2.8, if the involution a⊗ b→ b∗⊗a∗ is dropped, then of course
for every proper closed two-sided ideal J there is a bounded algebraic homomorphism
π : A⊗HA→ B(H), satisfying π(a∗⊗ b∗) = π(a⊗ b)∗, a, b ∈ A such that J ⊆ kerπ. The
proof of this result is implicitly contained in [1] (see also [2]), but to be more explicit,
we outline the proof.

Theorem 2.9. Let A and B be unital C∗-algebras. Then every proper closed two-sided
ideal of A⊗H B is annihilated by a representation of A⊗H B.

Proof. Let J be a proper closed two-sided ideal of A ⊗H B and Jmin be the closure
of J in A ⊗min B, where A ⊗min B is the completion of the algebraic tensor product
with ‖ · ‖min norm. If Jmin = A⊗minB, then Jmin will contain all elementary tensors, so,
by [1, Theorem 4.4], J will be equal to A⊗H B. Thus, Jmin is a proper closed two-sided
ideal in the C∗-algebra A ⊗min B. Let π be an irreducible representation of A ⊗min B

on a Hilbert space H annihilating Jmin. Let π1(a) = π(a ⊗ 1) and π2(b) = π(1 ⊗ b),
for all a ∈ A and b ∈ B. Then π1 and π2 are commuting representations of A and B,
respectively. Let M = kerπ1 and N = kerπ2. Let q : A ⊗H B → A/M ⊗H B/N be the
quotient map and let π1 · π2 : A/M ⊗H B/N → B(H) be the faithful representation
of A/M ⊗H B/N induced by π1 and π2 (see [1] for details). So π(J) = 0 implies that
q(J) = 0. But A/M ⊗HB/N ' A⊗HB/M ⊗HB+A⊗HN , thus J ⊆M ⊗HB+A⊗HN .
Since M ⊗H B + A ⊗H N is primitive [1, Theorem 5.13], there is a representation σ of
A⊗H B such that J ⊆ kerσ. �
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