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Abstract

We obtain the asymptotic behaviour of the longest increasing/non-decreasing subse-
quences in a random uniform multiset permutation in which each element in {1, . . . , n}
occurs k times, where k may depend on n. This generalises the famous Ulam–Hammersley
problem of the case k = 1. The proof relies on poissonisation and on a careful non-
asymptotic analysis of variants of the Hammersley–Aldous–Diaconis particle system.
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1. Introduction

A k-multiset permutation of size n is a word with letters in {1, 2, . . . , n} such that each
letter appears exactly k times. When this is convenient we identify a multiset permutation
s =(s(1), . . . , s(kn)) and the set of points {(i, s(i)), 1 ≤ i ≤ kn}. We introduce two partial
orders over the quarter-plane [0, ∞)2:

(x, y) ≺ (x′, y′) if x< x′ and y< y′,

(x, y) � (x′, y′) if x< x′ and y ≤ y′.

For a finite set P of points in the quarter-plane we put

L<(P) = max {L; there exists P1 ≺ P2 ≺ · · · ≺ PL, where each Pi ∈P} ,

L≤(P) = max {L; there exists P1 � P2 � · · ·� PL, where each Pi ∈P} .

In words the integer L<(P) (resp. L≤(P)) is the length of the longest increasing (resp.
non-decreasing) subsequence of P .

Let Sk;n be a k-multiset permutation of size n drawn uniformly among the (kn)!/k!n pos-
sibilities. In the case k = 1 the word S1;n is simply a uniform permutation and estimating
L<(S1;n) =L≤(S1;n) is known as the Hammersley or Ulam–Hammersley problem. The first
order was solved by Veršik and Kerov [VK77] and simultaneously by Logan and Shepp:

E[L<(S1;n)]
n→+∞∼ 2

√
n.

Note that the above limit also holds in probability: L<(S1;n) = 2
√

n + oP(
√

n). This prob-
lem has a long history and has revealed deep and unexpected connections between

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

https://doi.org/10.1017/S0305004124000124 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000124
https://doi.org/10.1017/S0305004124000124


2 LUCAS GERIN

Fig. 1. A uniform 5-multiset permutation S5;30 of size n = 30 and one of its longest non-de-
creasing subsequences.

combinatorics, interacting particle systems, calculus of variations, random matrix theory,
representation theory. We refer to Romik [Rom15] for a very nice description of this
problem and some of its ramifications.

In the context of card guessing games it is asked in [CDH+22, question 4·3] the behaviour
of L<(Sk;n) for a fixed k (see Fig. 1 for an example). Using the Veršik–Kerov Theorem
we can make an educated guess. The intuition is that, for fixed k, it is quite unlikely that
many points at the same height contribute to the same longest increasing/non-decreasing
subsequence. Thus at the first order everything should happen as if the kn points had distinct
heights and we expect that

L<(Sk;n) ≈L≤(Sk;n) ≈L<(S1;kn) ≈ 2
√

kn.

The original motivation of this paper was to make this approximation rigorous. We actually
adress this question in the case where k depends on n.

THEOREM 1 (Longest increasing subsequences). Let (kn) be a sequence of integers such
that kn ≤ n for all n. Then

E[L<(Skn;n)] = 2
√

nkn − kn + o(
√

nkn). (1)

(Of course if kn = o(n) then the RHS of (1) reduces to 2
√

nkn + o(
√

nkn).)

Remark 1. If kn ≥ n for some n then the following greedy strategy shows that
E[L<(Skn;n)] = n − o(n) so the picture is complete.

Indeed, first choose the leftmost point (x1, 1) in Skn;n which has height 1. Then recur-
sively define (x�, �) at the leftmost point (if any) in Skn;n with height � such that x� >
x�−1, and so on until you are stuck (either because �= n or because there is no point in
Skn;n ∩ (x�−1, kn] × {�}). A few elementary computations show that this strategy defines an
increasing path of length n − o(n) with probability tending to one. As L<(Skn;n) ≤ n a.s. this
yields E[L<(Skn;n)] = n − o(n).

THEOREM 2 (Longest non-decreasing subsequences). Let (kn) be an arbitrary sequence
of integers. Then

E[L≤(Skn;n)] = 2
√

nkn + kn + o(
√

nkn). (2)

Strategy of proof and organisation of the paper. In Section 2 we first provide the proof of
Theorems 1 and 2 in the case of a constant or slowly growing sequence (kn). The proof is
elementary (assuming the Veršik–Kerov Theorem is known).

https://doi.org/10.1017/S0305004124000124 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000124


The Ulam–Hammersley problem for multiset permutations 3

For the general case we first borrow a few tools in the literature. In particular we intro-
duce and analyse poissonised versions of L<(Skn;n), L≤(Skn;n). As already suggested by
Hammersley ([Ham72, section 9]) and achieved by Aldous–Diaconis [AD95] the case k = 1
can be tackled by considering an interacting particle system which is now known as the
Hammersley or Hammersley–Aldous–Diaconis (HAD) process.

In Section 3 we introduce and analyse the two variants of the Hammersley process adapted
to multiset permutations. The first one is the discrete-time HAD process [Fer96, FM06], the
second one appeared in [Boy22] with a connection to the O’Connell–Yor Brownian polymer.
The standard path to analyse Hammersley-like processes consists in using subadditivity to
prove the existence of a limiting shape and then proving that this limiting shape satisfies a
variational problem. Typically this variational problem is solved either using convex duality
[Sep97, CG19] or through the analysis of second class particles [CG06, CG19]. The issue
here is that since we allow kn to have different scales we cannot use this approach and we
need to derive non-asymptotic bounds for both processes. This is the purpose of Theorem 9
whose proof is the most technical part of the paper. In Section 4 we detail the multivariate
de-poissonisation procedure in order to conclude the proof of Theorem 1. De-poissonisation
is more convoluted for non-decreasing subsequences: see Section 5.

Beyond expectation. In the course of the proof we actually obtain results beyond the esti-
mation of the expectation. We obtain concentration inequalities for the poissonised version
of L<(Skn;n), L≤(Skn;n): see Theorem 9 and also the discussion in Section 6. We also obtain
the convergence in probability, unfortunately for some technical reasons we miss a small
range of scales of (kn)’s.

PROPOSITION 3. Let (kn) be either a small or a large sequence. Then

L<(Skn;n)

2
√

nkn − kn

prob.→ 1,
L≤(Skn;n)

2
√

nkn + kn

prob.→ 1.

We refer to (3),(31) below for the formal definitions of small/large sequences. Let us just
say that sequences such that kn =O((log n)1−ε) for some ε > 0 are small while sequences
such that (log n)1+ε =O(kn) are large. Sequences in-between are neither small nor large so
in Proposition 3 we miss scales like kn ≈ log (n).

Regarding fluctuations a famous result by Baik, Deift and Johansson [BDJ99, theorem
1·1] states that

L≤(S1;n) − 2
√

n

n1/6

(d)→ TW

where TW is the Tracy–Widom distribution. The intuition given by the comparison with the
Hammersley process would suggest that the fluctuations of L<(Skn;n), L≤(Skn;n) might be
of order (knn)1/6 as long as (kn) does not grow too fast. A natural question to explore for
furthering this work would involve understanding for which (kn) the model preserves KPZ
scaling exponents. The non-asymptotic estimates of Section 3 could serve as a first step in
this direction.

Comparison with previous works. There are only few random sets P for which the
asymptotics of L<(P), L≤(P) are known:
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(i) as already mentioned, the case of a uniform permutation (and its poissonised version)
is very well understood, via different approaches. For proofs close to the spirit of the
present paper, we refer to [AD95] and [CG05];

(ii) the case where P is given by a field of i.i.d. Bernoulli random variables on the square
grid has been solved by Seppäläinen in [Sep97] for L< and in [Sep98] for L≤. (See
[BEGG16] for an elementary proof of both results.)

We are not aware of previous results for multiset permutations. However Theorems 1 and
2 in the linear regime kn ∼ constant × n should be compared to a result by Biane ([Bia01,
theorem 3]).

We need a few notations to describe his result. Let WqN ;N be the random word given by
of qN i.i.d. uniform letters in {1, 2, . . . , N}. The word WqN ;N is not a multiset permutation
but since for large N there are in average qN/N points on each horizontal line of WqN ;N we
expect that L<(WqN ;N) ≈L<(SqN/N;N) and L≤(WqN ;N) ≈L≤(SqN/N;N).

Biane obtains the exact limiting shape of the random Young Tableau induced through the
RSK correspondence by WqN ;N in the regime where

√
qN/N → c for some constant c> 0.

As the length of the first row (resp. the number of rows) in the Young Tableau corresponds to
the length of the longest non-decreasing subsequence in Wk;n (resp. the length of the longest
decreasing sequence) a consequence of ([Bia01, theorem 3]) is that, in probability,

lim inf
1√
qN

L<(WqN ;N) ≥ (2 − c), lim sup
1√
qN

L≤(WqN ;N) ≤ (2 + c).

For that regime our Theorems 1 and 2 respectively suggest:

L<(WqN ;N) ≈L<(SqN/N;N) ≈L<(Sc2N;N) ∼ 2Nc − c2N ∼ (2 − c)
√

qN ,

L≤(WqN ;N) ≈L≤(SqN/N;N) ≈L≤(Sc2N;N) ∼ 2Nc + c2N ∼ (2 + c)
√

qN ,

which is indeed consistent with Biane’s result.

2. Preliminaries: the case of small kn

We first prove Theorems 1 and 2 in the case of a small sequence (kn). We say that a
sequence (kn) of integers is small if

k2
n(kn)! = o(

√
n). (3)

Note that a sequence of the form kn = (log n)1−ε is small while kn = log n is not small.

Proof of Theorems 1 and 2 in the case of a small sequence (kn). (In order to lighten
notation we skip the dependence in n and write k = kn.)

Let σkn be a random uniform permutation of size kn. We can associate to σkn a k-multiset
permutation Sk;n in the following way. For every 1 ≤ i ≤ kn we put

Sk;n(i) = �σ (i)/k�.

It is clear that Sk;n is uniform and we have

L<(Sk;n) ≤L≤(σkn) ≤L≤(Sk;n). (4)
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The Veršik–Kerov Theorem says that the middle term in the above inequality grows like
2
√

kn. Hence we need to show that if (kn) is small then

L≤(Sk;n) =L<(Sk;n) + oP(
√

kn),

which proves the small case of Proposition 3 and Theorems 1 and 2. For this purpose we
introduce for every δ > 0 the event

Eδ := {L≤(Sk;n) ≥L<(Sk;n) + δ
√

n
}

.

If Eδ occurs then in particular there exists a non-decreasing subsequence with δ
√

n ties, i.e.
points of Sk;n which are at the same height as their predecessor in the subsequence. These
ties have distinct heights 1 ≤ i1 < . . . < i� ≤ n for some δ

√
n/k ≤ �≤ δ√n. Fix

Integers m1, . . . , m� ≥ 2 such that (m1 − 1) + · · · + (m� − 1) = δ
√

n;
Column indices r1,1 < . . . < r1,m1 < r2,1 < r2,m1 < . . . < r�,1 < . . . < r1,m� .

We then introduce the event (Fig. 2)

F = F
(
(i�)�, (ri,j)i≤�,j≤mi

)
= {S(r1,1) = · · · = S(r1,m1) = i1, . . . , S(r�,1) = · · · = S(r1,m�) = i�

}
.

By the union bound (we skip the integer parts)

P(Eδ) ≤
∑

δ
√

n/k≤�≤δ√n

∑
1≤i1<···≤i�≤n

∑
(ri,j)i≤�,j≤mi

P
(
F
(
(i�)�, (ri,j)i≤�,j≤mi

))
.

Using that

card
{∑

mi = δ
√

n + �; each mi ≥ 2
}

= card
{∑

pi = δ
√

n; each pi ≥ 1
}

=
(
δ
√

n − 1

�− 1

)
we obtain∑

(ri,j)i≤�,j≤mi

P(F) = 1( kn
k k ... k

) ( nk∑
mi

)
︸ ︷︷ ︸

choices of r’s

(
δ
√

n − 1

�− 1

)
︸ ︷︷ ︸
choices of m′

is

×
(

kn −∑mi

(k − m1) (k − m2) . . . (k − m�)k . . . k

)
︸ ︷︷ ︸

choices of kn −∑mi remaining points

= (k!)�(δ√n − 1)!
(δ

√
n + �)!(δ√n − �)!(�− 1)!(k − m1)!(k − m2)! × · · · × (k − m�)! .

Bounding each factor (k − mi)! by 1 we get∑
(ri,j)i≤�,j≤mi

P(F) ≤ (k!)�
(δ

√
n)�+1(δ

√
n − �)!(�− 1)! .
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Fig. 2. The event F: a subsequence with δ
√

n (ties are surrounded) is depicted with ×’s.

We now sum over 1 ≤ i1 < · · · ≤ i� ≤ n and then sum over �:

P(Eδ) ≤
δ
√

n∑
�=δ√n/k

(
n

�

)
(k!)�

(δ
√

n)�+1(δ
√

n − �)!(�− 1)!

≤
δ
√

n−3∑
�=δ√n/k

(
n

�

)
(k!)�

(δ
√

n)�+1(δ
√

n − �)!(�− 1)! + 3

(
n

δ
√

n

)
(k!)δ√n

(δ
√

n)δ
√

n−2(δ
√

n − 3)! (5)

Using the two following inequalities valid for every j ≤ m (see e.g. [CLRS09, equation
(C.5)]) (

m

j

)
≤
(

me

j

)j

, m! ≥ mm exp(−m)

we first obtain that if kn! = o(
√

n) (which is the case if (kn) is small) then the last term of (5)
tends to zero. Regarding the sum we write

P(Eδ) ≤
δ
√

n−3∑
�=δ√n/k

(ne

�

)� (k!)�
(δ

√
n)�+1(δ

√
n − �)δ

√
n−�e−δ√n+�(�− 1)�−1e−�+1

+ o(1)

≤
δ
√

n−3∑
�=δ√n/k

(
nek!(δ√n − �)

δ
√

n�(�− 1)

)� (�− 1)e−1

δ
√

n︸ ︷︷ ︸
≤1

(
e

δ
√

n − �︸ ︷︷ ︸
≤e/3<1

)δ√n

+ o(1)

≤
δ
√

n−3∑
�=δ√n/k

(√
nek!(δ√n − �)

δ�(�− 1)

)�( e

δ
√

n − �

)�
+ o(1)

≤
δ
√

n−3∑
�=δ√n/k

( √
ne2k!

δ�(�− 1)

)�
+ o(1) ≤

δ
√

n−3∑
�=δ√n/k

(
e2k2k!
δ3

√
n

)�
+ o(1) (6)
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which tends to zero for every δ > 0, as long as (kn) satisfies (3). This proves that L≤(Sk;n) =
L<(Sk;n) + oP(

√
kn). Combining this with (4), this proves that

L<(Skn;n)

2
√

nkn

prob.→ 1,
L≤(Skn;n)

2
√

nkn

prob.→ 1,

which is the “small” case of Proposition 3 since kn = o(
√

nkn).
To conclude the proof of small cases of Theorems 1 and 2 we observe that we have the

crude bounds L<(Sk;n) ≤ n and L≤(Sk;n) ≤ nkn. This allows us to write

E
[∣∣L≤(Sk;n) −L<(Sk;n)

∣∣]≤ δ√n + nkn × P(not Eδ).
Together with equation (6) this implies that

E[L≤(Sk;n)] =E[L<(Sk;n)] + o(
√

nkn).

We use again Veršik–Kerov and (4) to deduce that both sides are 2
√

nkn + o(
√

nkn).

3. Poissonisation: variants of the Hammersley process

In this section we define formally and analyse two semi-discrete variants of the
Hammersley process.

Remark 2. In the sequel, Poisson(μ) (resp. Binomial(n, q)) stand for generic random vari-
ables with Poisson distribution with mean μ (resp. Binomial distribution with parameters
n, q).

Notation Geometric≥0(1 − β) stands for a geometric random variable with the convention
P(Geometric≥0(1 − β) = k) = (1 − β)βk for k ≥ 0. In particular E[Geometric≥0(1 − β)] =
β/(1 − β).

3·1. Definitions of the processes L<(t) and L≤(t)

For a parameter λ> 0 let �(λ) be the random set �(λ) = ∪i�
(λ)
i where �(λ)

i ’s are inde-

pendent and each �(λ)
i is a homogeneous Poisson Point Process (PPP) with intensity λ on

(0, ∞) × {i}. For simplicity set

�
(λ)
x,t =�(λ) ∩([0, x] × {1, . . . , t}) .

The goal of this section is to obtain non-asymptotic bounds for L<
(
�

(λ)
x,t

)
and L≤

(
�

(λ)
x,t

)
.

Indeed if we then choose

λn ≈ 1

n
, x = kn, t = n

then there are kn +O(
√

kn) points on each line of a �(λ)
x,t and we expect that

L<
(
�

(λn)
kn,n

)
≈L<(Sk;n), L≤

(
�

(λn)
kn,n

)
≈L≤(Sk;n).

Fix x> 1 throughout the section. For every t ∈ {0, 1, 2, . . . } the function y ∈ [0, x] �→
L<(y, t) (resp. L≤(y, t)) is a non-decreasing integer-valued function whose all steps are equal
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to +1. Therefore this function is completely determined by the finite set

L<(t) := {y ≤ x, L<(y, t) =L<(y, t−) + 1
}

.

(Respectively:

L≤(t) := {y ≤ x, L≤(y, t) =L≤(y, t−) + 1
}

.)

Sets L<(t) and L≤(t) are finite subsets of [0, x] whose elements are considered as particles. It
is easy to see that for fixed x> 0 both processes (L<(t))t and (L≤(t))t are Markov processes
taking their values in the family of point processes of [0, x].

Exactly the same way as for the classical Hammersley process ([Ham72, section 9],
[AD95]) the individual dynamic of particles is very easy to describe:

The process L<. We put L<(0) = ∅. In order to define L<(t + 1) from L<(t) we consider
particles from left to right. A particle at y in L<(t) moves at time t + 1 at the location of the
leftmost available point z in �(λ)

t+1 ∩ (0, y) (if any, otherwise it stays at y). This point z is not

available anymore for subsequent particles, as well as every other point of �(λ)
t+1 ∩ (0, y).

If there is a point in �(λ)
t+1 which is on the right of y′ := max{L<(t)} then a new particle

is created in L<(t + 1), located at the leftmost point in �(λ)
t+1 ∩ (y′, x). (In pictures this new

particle comes from the right.)
A realization of L< is shown on top-left of Fig. 3.

The process L≤. We put L≤(0) = ∅. In order to define L≤(t + 1) from L≤(t) we also con-
sider particles from left to right. A particle at y in L≤(t) moves at time t + 1 at the location
of the leftmost available point z in �(λ)

t+1 ∩ (0, y). This point z is not available anymore for
subsequent particles, other points in (z, y) remain available.

If there is a point in�(λ)
t+1 which is on the right of y′ := max{L<(t)} then new particles

are created in L<(t + 1), one for each point in �(λ)
t+1 ∩ (y′, x).

A realization of L≤ is shown in top-right of Figure 3.
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Fig. 3. Our four variants of the Hammersley process (time goes from bottom to top). Top left:
the process L<(t). Top right: the process L≤(t). Bottom left: the process L(α,p)

< (t). Bottom right:

the process L(β,β
)
≤ (t).

Processes L<(t) and L≤(t) are designed in such a way that they record the length of longest
increasing/non-decreasing paths in �. In fact particles trajectories correspond to the level

sets of the functions (x, t) �→L<
(
�

(λ)
x,t

)
, (x, t) �→L≤

(
�

(λ)
x,t

)
.

PROPOSITION 4. For every x,

L<
(
�

(λ)
x,t

)
= card(L<(t)), L≤

(
�

(λ)
x,t

)
= card(L≤(t)),

where on each right-hand side we consider the particle system on [0, x].

Proof. We are merely restating the original construction from Hammersley ([Ham72,
section 9]). We only do the case of L<(t).

Let us call each particle trajectory a Hammersley line. By construction each Hammersley
line is a broken line starting from the right of the box [0, x] × [0, t] and is formed by a
succession of north/west line segments. Because of this, two distinct points in a given longest
increasing subsequence of�(λ)

x,t cannot belong to the same Hammersley line. Since there are

L<(t) Hammersley’s lines this gives L<
(
�

(λ)
x,t

)
≤ card(L<(t)).

In order to prove the converse inequality we build from this graphical construction a
longest increcreasing subsequence of�(λ)

x,t with exactly one point on each Hammersley line.
To do so, we order Hammersley’s lines from bottom-left to top-right, and we build our
path starting from the top-right corner. We first choose any point of �(λ)

x,t belonging to the
last Hammersley line. We then proceed by induction: we choose the next point among the
points of of �(λ)

x,t lying on the previous Hammersley line such that the subsequence remains
increasing. (This is possible since Hammersley’s lines only have North/West line segments.)

This proves L<
(
�

(λ)
x,t

)
≥ card(L<(t)).
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3·2. Sources and sinks: stationarity

Proposition 4 tells us that in on our way to prove Theorem 1 and Theorem 2 we need to
understand the asymptotic behaviour of processes L<, L≤.

It is proved in [FM06] that the homogeneous PPP with intensity α on R is stationary for
(L<(t))t. However we need non-asymptotic estimates for (L<(t))t (and (L≤(t))t) on a given
interval (0, x). To solve this issue we use the trick of sources/sinks introduced formally and
exploited by Cator and Groeneboom [CG05] for the continuous HAD process:

Sources form a finite subset of [0, x] × {0} which plays the role of the initial
configuration L<(0), L≤(0).
Sinks are points of {0} × [1, t] which add up to �(λ) when one defines the dynamics
of L<(t), L≤(t). For L≤(t) it makes sense to add several sinks at the same location (0,
i) so sinks may have a multiplicity.

Examples of dynamics of L<, L≤ under the influence of sources/sinks is illustrated at the
bottom of Figure 3.

Here is the discrete-time analogous of [CG05, theorem 3·1]:

LEMMA 5. For every λ, α > 0 let L(α,p)
< (t) be the Hammersley process defined L<(t) with:

(i) sources distributed according to a homogeneous PPP with intensity α on [0, x] × {0};
(ii) sinks distributed according to i.i.d. Bernoulli(p) with

λ

λ+ α
= p. (7)

If sources, sinks, and �(λ) are independent then the process
(

L(α,p)
< (t)

)
t≥0

is

stationary.

LEMMA 6. For every β > λ> 0, let L(β,β
)
≤ (t) be the Hammersley process defined like

L≤(t) with additional sources and sinks:

(i) sources distributed according to a homogeneous PPP with intensity β on [0, x] × {0};
(ii) sinks distributed according to i.i.d. Geometric≥0(1 − β
) with

β
β = λ. (8)

If sources, sinks and �(λ) are independent then the process
(

L(β,β
)
≤ (t)

)
t≥0

is stationary.

Proof of Lemmas 5 and 6. Lemma 6 could be obtained from minor adjustments of
[Boy22, chapter 3, lemma 3·2]. (Be aware that we have to switch x ↔ t and sources ↔
sinks in [Boy22] in order to fit our setup.) For the sake of the reader we however propose
the following alternative proof which explains where (8) come from.

Consider for some fixed t ≥ 1 the process (Hy)0≤y≤x given by the number of Hammersley
lines passing through the point (y, t) (Fig. 4).
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Fig. 4. A sample of the process H.

The initial value H0 is the number of sinks at (0, t), which is distributed as a
Geometric≥0(1 − β
). The process (Hy) is a random walk (reflected at zero) with ’+1 rate’
equal to λ and ’−1 rate’ equal to β. (Jumps of (Hy) are independent from sinks as sinks are
independent from�(λ).) The Geometric≥0(1 − β
) distribution is stationary for this random

walk exactly when (8) holds. The set of points of L(β,β
)
≤ (t) is given by the union of �(λ)

t

and the points of L(β,β
)
≤ (t) that do not correspond to a ’−1’ jump. Computations given in

Appendix B show that this is distributed as a homogeneous PPP with intensity β.
Lemma 5 is proved exactly in the same way, calculations are even easier. In this case the

corresponding process (Hy)0≤y≤x takes its values in {0, 1} and its stationary distribution is
the Bernoulli distribution with mean λ/(α + λ), hence (7).

3·3. Processes L<(t) and L≤(t): non-asymptotic bounds

From Lemmas 5 and 6 it is straightforward to derive non-asymptotic upper bounds for
L<(t), L≤(t).

For y ≤ x let So(α)
x be the random set of sources with intensity α and for s ≤ t let Si(p)

t the
random set of sinks with intensity p. In particular,

card(So(α)
x )

(d)= Poisson(αx), card(Si(p)
t )

(d)= Binomial(t, p).

It is convenient to use the notation L=<(P) which is, as before, the length of the longest
increasing path taking points in P but when the path is also allowed to go through several
sources (which have however the same y-coordinate) or several sinks (which have the same
x-coordinate). Formally,

L=<(P) = max {L; there exists P1 =≺ P2 =≺ · · · =≺ PL, where each Pi ∈P} ,

where

(x, y) =≺ (x′, y′) if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x< x′ and y< y′,

or x = x′ = 0 and y< y′,

or x< x′ and y = y′ = 0.

Proposition 4 generalises easily to the settings of sinks and sources.
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Claim 1.

L=<
(
�

(λ)
x,t ∪ So(α)

x ∪ Si(p)
t

)
= L(α,p)

< (t) + card(Si(p)
t ). (9)

Proof of the Claim. By the same reasoning as in the proof of Proposition 4 the LHS is
exactly the number of broken lines in the box [0, x] × [0, t]. Each such line escapes the box
either through the left (it thus corresponds to a sink) or through the top (and is thus counted
by L(α,p)

< (t)).

LEMMA 7 (Domination for L<). For every α, p ∈ (0, 1) such that (7) holds, there is a
stochastic domination of the form:

L<
(
�

(λ)
x,t

)
� Poisson(xα) + Binomial(t, p). (10)

(The Poisson and Binomial random variables involved in (10) are not independent.)

Proof. Adding sources and sinks may not decrease longest increasing paths. Thus,

L<
(
�

(λ)
x,t

)
�L=<

(
�

(λ)
x,t ∪ So(α)

x ∪ Si(p)
t

)
= L(α,p)

< (t) + card(Si(p)) (using (9))

(d)= L(α,p)
< (0) + card(Si(p)) (using stationarity: Lemma 5)

(d)= Poisson(xα) + Binomial(t, p).

Taking expectations in (10) we obtain

E

[
L<
(
�

(λ)
x,t

)]
≤ xα + tp.

The LHS in the above equation does not depend on α, p so the idea is to apply (10) with the
minimising choice

ᾱ, p̄ := argminα,p satisfying (7) {xα + tp} ,

i.e.

ᾱ =
√

tλ

x
− λ, p̄ =

√
xλ

t
, xᾱ + tp̄ = 2

√
xtλ− xλ. (11)

We have proved

E

[
L<
(
�

(λ)
x,t

)]
≤ 2

√
xtλ− xλ.

(Compare with (1).) We have a similar statement for non-decreasing subsequences:

LEMMA 8 (Domination for L≤). For every β, β
 ∈ (0, 1) such that (8) holds, there is a
stochastic domination of the form:
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L≤
(
�

(λ)
x,t

)
� Poisson(xβ) + G(β
)

1 + · · · + G(β
)
t , (12)

where G(β
)
i ’s are i.i.d. Geometric≥0(1 − β
).

We put

β̄, β̄
 := argminβ,β
 satisfying (8)

{
xβ + t

(
β


1 − β


)}
, (13)

i.e.

β̄ =
√

tλ

x
+ λ, β̄
 = 1

1 + √
t/xλ

, xβ̄ + t

(
β̄


1 − β̄


)
= 2

√
xtλ+ xλ. (14)

(In particular β̄ > λ, as required in Lemma 6.) Equation (12) yields

E

[
L≤
(
�

(λ)
x,t

)]
≤ 2

√
xtλ+ xλ. (15)

(Compare with (2).)

THEOREM 9 (Concentration for L<, L≤). There exist strictly positive functions g, h such
that for all ε > 0 and for every x, t ≥ 1, λ> 0 such that t ≥ xλ:

P(L<(�(λ)
x,t )> (1 + ε)(2

√
xtλ− xλ)) ≤ exp(−g(ε)(

√
xtλ− xλ)), (16)

P(L<(�(λ)
x,t )< (1 − ε)(2

√
xtλ− xλ)) ≤ exp(−h(ε)(

√
xtλ− xλ)). (17)

Similarly:

P(L≤(�(λ)
x,t )> (1 + ε)(2

√
xtλ+ xλ)) ≤ exp(−g(ε)

√
xtλ), (18)

P(L≤(�(λ)
x,t )< (1 − ε)(2

√
xtλ+ xλ)) ≤ exp(−h(ε)

√
xtλ). (19)

For the proof of Theorem 9 we will focus on the case of L<, i.e. Equations (16), (17).
When necessary we will give the slight modification needed to prove Equations (18) and
(19). The beginning of the proof mimics lemmas 4·1 and 4·2 in [BEGG16].

We first prove similar bounds for the stationary processes with minimising sources and
sinks.

LEMMA 10 (Concentration for L< with sources and sinks). Let ᾱ, p̄ be defined by (11).
There exists a strictly positive function g1 such that for all ε > 0 and for every x, t ≥ 1, λ> 0
such that t ≥ xλ:

P(L=<(�(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t )> (1 + ε)(2

√
xtλ− xλ)) ≤ 2 exp(−g1(ε)(

√
xtλ− xλ)) (20)

P(L=<(�(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t )< (1 − ε)(2

√
xtλ− xλ)) ≤ 2 exp(−g1(ε)(

√
xtλ− xλ)). (21)

Proof of Lemma 10. By stationarity (Lemma 5) we have

L=<(�(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t )

(d)= Poisson(xᾱ) + Binomial(t, p̄).
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14 LUCAS GERIN

Fig. 5. A sample of �(λ)
x,t , sources, sinks, and the corresponding trajectories of particles. Here

L=<(�(λ)
x,t ∪ So(α)

x ∪ Si(p)
t ) = 5 and L(α,p)

< (t) = 2 (two remaining particles at the top of the box).

Then

P(L=<(�(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t > (1 + ε)(2

√
xtλ− xλ))

≤ P

(
Poisson(xᾱ)>

(
1 + ε

2

) (√
xtλ− xλ

))
+ P

(
Binomial(t, p̄)> (1 + ε

2
)
√

xtλ
)

.

Recall that xᾱ = √
xtλ− xλ, tp̄ = √

xtλ. Using the tail inequality for the Poisson distribu-
tion (Lemma 15):

P

(
Poisson(xᾱ)> (1 + ε

2
)(
√

xtλ− xλ)
)

≤ exp
(
−(

√
xtλ− xλ)ε2/4

)
.

Using the tail inequality for the binomial (Lemma 16) we get

P

(
Binomial(t, p̄)> (1 + ε

2
)
√

xtλ
)

≤ exp(− 1
12ε

2
√

xtλ) ≤ exp(− 1
12ε

2(
√

xtλ− xλ)) (22)

The proof of (21) is identical. This shows Lemma 10 with g1(ε) = ε2/12.

For longest non-decreasing subsequences we have a statement similar to Lemma 10. The
only modification in the proof is that in order to estimate the number of sinks one has to
replace Lemma 16 (tail inequality for the Binomial) by Lemma 17 (tail inequality for a sum
of geometric random variables1). During the proof we need to bound

√
xtλ+ xλ by

√
xtλ,

this explains the form of the right-hand side in Equations (18) and (19).

Proof of Theorem 9. Adding sources/sinks may not decrease L< so

L=<(�(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t ) �L<(�(λ)

x,t ),

thus the upper bound (16) is a direct consequence of Lemma 10.
Let us now prove the lower bound. We consider the length of a maximising path among

those using sources from 0 to εx and then only increasing points of �(λ)
x,t ∩([εx, x] × [0, t])

1 Note that it is only stated for 0< ε < 1 but this is enough for our purpose since the left-hand side of (22)
is non-increasing in ε.
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(see Figure 5). Formally we set

L
=<,ε := card
(
So(ᾱ)

εx

)
+L<

(
(�(λ)

x,t ∩ ([εx, x] × [0, t])
)

(d)= Poisson(εxᾱ) +L<
(

(�(λ)
x,t ∩ ([εx, x] × [0, t])

)
. (23)

The idea is that for any fixed ε the paths contributing to L
=<,ε will typically not contribute

to L=<
(
�

(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t

)
= L(ᾱ,p)

< (t) + card(Si(p̄)
t ). Indeed Equation (23) suggests that

for large x, t

L
=<,ε ≈E[Poisson(εxᾱ)] +E

[
L<
(
�

(λ)
x,t ∩([εx, x] × [0, t])

)]
≈ xεᾱ + 2

√
x(1 − ε)λt − x(1 − ε)λ

= 2
√

xλt − xλ− √
xtλδ(ε),

where δ(ε) = 2 − ε− 2
√

1 − ε is positive and increasing. In order to make the above
approximation rigorous we first write

2
√

xλt − xλ− 1
2

√
xtλδ(ε) = xεᾱ + 1

4

√
xtλδ(ε) + 2

√
x(1 − ε)λt − x(1 − ε)λ+ 1

4

√
xtλδ(ε).

(24)
Combining (23) and (24) gives

P

(
L
=<,ε ≥ 2

√
xλt − xλ− 1

2

√
xtλδ(ε)

)
≤ P1 + P2,

where

P1 = P

(
Poisson(xεᾱ) ≥ xεᾱ + 1

4

√
xtλδ(ε)

)
,

P2 = P

(
L<(�(λ)

x,t ∩([εx, x] × [0, t])≥ 2
√

x(1 − ε)λt − x(1 − ε)λ+ 1
4

√
xtλδ(ε)

)
.

Using the tail inequality for the Poisson distribution (see Lemma 15) we have that

P1 ≤ exp

(
− xtλδ(ε)2

16 × 4ε2(
√

xtλ− xλ)

)
≤ exp

(
−√

xtλδ(ε)2/64ε2
)

.

Besides

P2 ≤ P

(
L<(�(λ)

x,t ∩([εx, x] × [0, t])≥
(

2
√

x(1 − ε)λt − x(1 − ε)λ
)

× (1 + 1
8δ(ε))

)
≤ exp

(
−g(δ(ε)/8)(

√
x(1 − ε)tλ− x(1 − ε)λ)

)
(using the upper bound (16)).

Finally we can find some positive h such that

P

(
L
=<,ε ≥ 2

√
xλt − xλ− 1

2

√
xtλδ(ε)

)
≤ exp

(
−h(ε)(

√
xtλ− xλ)

)
. (25)

One proves exactly in the same way a similar bound for the length of a maximizing
path among those using sinks in {0} × [0, εt] and then only increasing points of �(λ)

x,t ∩
([0, x] × [εt, t]).

Choose now one of the maximizing paths P for L=<
(
�

(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t

)
(if there are

many of them, choose one arbitrarily in a deterministic way: the lowest, say). Denote by

https://doi.org/10.1017/S0305004124000124 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000124


16 LUCAS GERIN

sources(P) and sinks(P) the number of sources and sinks in the path P :

sources(P) = card {0 ≤ y ≤ x such that (y, 0) ∈P} .

In Figure 5 the path P is sketched, in that example sources(P) = 2, sinks(P) = 0.

LEMMA 11. There exists a positive function ψ such that for all real η > 0

P

(
sources(P) + sinks(P) ≥ η√xλt

)
≤ 2 exp(−ψ(η)(

√
xλt − xλ)).

Proof of Lemma 11. (As the left-hand side is non-increasing in η it is enough to prove the
lemma for η < 1.)

If the event
{
sources(P) ≥ η√xλt

}
holds then there exists a (random) ε such that the

two following events occur:

Soεx ≥ η√xλt;

L
=<,ε =L=<
(
�

(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t

)
= L(ᾱ,p̄)

< (t) + card(Si(p̄)
t ).

This implies that this random ε is larger than η/2> 0 unless the number of sources in
[0, xη/2] is improbably high:

P(sources(P) ≥ η√xλt) ≤ P(Soηx/2 ≥ η√xλt)
+P(sources(P) ≥ η√xλt; Soηx/2 <η

√
xλt).

Therefore

P(sources(P) ≥ η√xλt) ≤ P(Soηx/2 ≥ η√xλt)

+ P(L(ᾱ,p̄)
< (t) ≤ √

xλt − xλ− 1
4δ(η/3)

√
xλt)

+ P(card(Si(p̄)
t ) ≤ √

xλt − 1
4δ(η/3)

√
xλt)

+ P(L
=<,ε ≥ 2
√

xλt − xλ− 1
2δ(η/3)

√
xλt for some η/2 ≤ ε≤ 1).

Let us call the four terms in the right-hand of the above display P3, P4, P5, P6 respectively.
From previous calculations, the three first terms in the above display are less than exp(−

φ(η)(
√

xλt − xλ)) for some positive function φ. To see why:

(i) we bound P3 with Lemma 15 again (recall Soηx/2 is a Poisson random variable);

(ii) the term P4 is bounded thanks to Lemma 10 (recall also (9));

(iii) we bound P5 with Lemma 16 (recall that Si(p̄)
t is a Binomial).

To conclude the proof it remains to bound P6. Let K be an integer larger than 144/η3, by
definition of L
=<,ε we have for every 1 ≤ k ≤ �xK� and every ε ∈ [k/K, (k + 1)/K)

L
=<,ε ≤ L
=<,k/K + card(So(ᾱ)
x ∩ [ k

K , k+1
K ]).
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Thus

P

( ⋃
η/2≤ε≤1

{
L
=<,ε > 2

√
xλt − xλ− 1

2δ(η/3)
√

xλt
} )

≤
∑

k≥�ηK/2�
P

(
L
=<,k/K > 2

√
xλt − xλ− δ(η/3)

√
xλt
)

+
∑

k≥�ηK/2�
P

(
card(So(ᾱ)

x ∩ [ k
K , k+1

K ])> 1
2δ(η/3)

√
xλt
)

≤
∑

k≥�ηK/2�
P

(
L
=<,k/K > 2

√
xλt − xλ− δ(k/K)

√
xλt
)

+
∑

k≥�ηK/2�
P

(
card(So(ᾱ)

x ∩ [ k
K , k+1

K ])> 1
2δ(η/3)

√
xλt
)

.

In the last inequality we use the facts that K > 144/η3 > 6/η and that δ is increasing. Using
now (25) it holds that

P

( ⋃
η/2≤ε≤1

{
L
=<,ε > 2

√
xλt − xλ− 1

2δ(η/3)
√

xλt
} )

≤
∑

k≥�ηK/2�
exp(−h(k/K)(

√
xtλ− xλ))

+K × P

(
Poisson(ᾱ/K)> 1

2δ(η/3)
√

xλt
)

≤ K exp(−h(η/3)(
√

xtλ− xλ)) (26)

+K × P

(
Poisson(ᾱ/K)> 1

2δ(η/3)
√

xλt
)

.

We finally bound the last display. First recall from our notation that

ᾱ <
√

tλ/x, x ≥ 1, δ(ε) = 2 − ε− 2
√

1 − ε≥ ε2/4.

Then:

P

(
Poisson(ᾱ/K)> 1

2δ(η/3)
√

xλt
)

= P

(
Poisson(ᾱ/K)> ᾱ/K − ᾱ/K + 1

2δ(η/3)
√

xλt
)

≤ P

(
Poisson(ᾱ/K)> ᾱ/K + √

xλt

(
− 1

xK
+ 1

2
δ(η/3)

))

≤ P

(
Poisson(ᾱ/K)> ᾱ/K + √

xλt

(
− η3

144
+ η2

72

))
.

(27)

We can find a positive function ϕ such that (26) and (27) are both less than
(144/η)e−ϕ(η)(

√
xtλ−xλ). We then choose a positive function ψ such that

min

{
1,

288

η
e−ϕ(η)(

√
xtλ−xλ) + 3e−φ(η)(

√
xλt−xλ)

}
≤ 2e−ψ(η)(

√
xtλ−xλ)
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and thus P(sources(P) ≥ η√xλt) ≤ exp(−ψ(η)(
√

xtλ− xλ)). With minor modifications
one proves the same bound for sinks (possibly by changing ψ): P(sinks(P) ≥ η√xλt) ≤
exp(−ψ(η)(

√
xtλ− xλ)) and Lemma 11 is proved.

We can conclude the proof of the lower bound in Theorem 9. Let us write

L<(t) ≥L=<(�(λ)
x,t ∪ So(ᾱ)

x ∪ Si(p̄)
t ) − sources(P) − sinks(P),

we bound the right-hand side using Lemmas 10 and 11.

4. Proof of Theorem 1 when kn → +∞: de-Poissonisation

In order to conclude the proof of Theorem 1 it remains to de-Poissonise Theorem 9. We
need a few notation. For any integers i1, . . . , in let Si1,...,in be the random set of points given
by i� uniform points on each horizontal line:

Si1,...,in = ∪n
�=1 ∪i�

r=1

{
U�,r
}× {�} ,

where (U�,r)�,r is an array of i.i.d. uniform random variables in [0,1]. Set also ei1,...,in =
E[L<(Si1,...,in)]. By uniformity of U’s we have the identity E[L<(Sk;n)] = ek,...,k and there-
fore our problem reduces to estimating ek,...,k. On the other hand if X1, . . . , Xn are i.i.d.
Poisson random variables with mean k then

E[eX1,...,Xn] =E

[
L<(�(1/n)

nkn,n)
]
= 2
√

nkn − kn + o(
√

nkn). (28)

The last equality is obtained by combining Theorem 9 for

x = nkn, t = n, λn = 1

n

with the trivial bound L<(�(1/n)
nkn,n) ≤ n. In order to exploit (28) we need the following

smoothness estimate.

LEMMA 12. For every i1, . . . , in and j1, . . . , jn

∣∣ei1,...,in − ej1,...,jn

∣∣≤ 6

√√√√ n∑
�=1

|i� − j�|.

Proof. Let S = Si1,...,in be as above. If we replace in S the y-coordinate of each point of
the form (x, �) by a new y-coordinate uniform in the interval (�, �+ 1) (independent from
anything else) then this defines a uniform permutation σi1+···+in of size i1 + · · · + in. The
longest increasing subsequence in S is mapped onto an increasing subsequence in σi1+···+in
and thus this construction shows the stochastic domination L<(Si1,...,in) �L<(σi1+···+in).
Thus for every i1, . . . , in,

ei1,...,in ≤E[L<(σi1+···+in)] ≤ 6
√

i1 + · · · + in. (29)

(The second inequality follows for example from [Ste97, lemma 1·4·1].) Besides, consider
for two n-tuples i1, . . . , in and j1, . . . , jn two independent sets of points Si1,...,in , S̃j1,...,jn
then

L<(Si1,...,in) ≤L<(Si1,...,in ∪ S̃j1,...,jn) ≤L<(Si1,...,in) +L<(S̃j1,...,jn).
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This proves that

ei1,...,in ≤ ei1+j1,...,in+jn ≤ ei1,...,in + ej1,...,jn .

(In particular (i1, . . . , in) �→ ei1,...,in is non-decreasing with respect to any of its coordinates.)
Therefore

ei1,...,in ≤ e(i1−j1)+,...,(in−jn)+ + ej1−(i1−j1)−,...,jn−(in−jn)−

≤ e|i1−j1|,...,|in−jn| + ej1,...,jn .

By switching the role of i’s and j’s:

|ei1,...,in − ej1,...,jn | ≤ e|i1−j1|,...,|in−jn| ≤ 6

√√√√ n∑
�=1

|i� − j�|,

using (29).

Proof of Theorem 1 for any sequence (kn) → +∞. Using smoothness we write

|ek,...,k −E[eX1,...,Xn]| ≤E
[|ek,...,k − eX1,...,Xn |

]≤ 6 ×E

⎡⎣( n∑
�=1

|X� − k|
)1/2
⎤⎦ . (30)

Using twice the Cauchy–Schwarz inequality:

E

⎡⎣( n∑
�=1

|X� − k|
)1/2
⎤⎦≤
√√√√E

[
n∑
�=1

|X� − k|
]

≤√nE [|X1 − k|]

≤
√

nE
[|X1 − k|2]1/2 =

√
n
√

Var(X1) =
√

n
√

k.

If k = kn → ∞ then the last display is a o(
√

nkn) and Equations (30) and (28) show that

ek,...,k =E[L<(Sk;n)] = 2
√

nkn − kn + o(
√

nkn).

5. Proof of Theorem 2
5·1. Proof for large (kn)

We now prove Theorem 2 for a large sequence (kn). We say that (kn) is large if

n2kn exp(−(kn)α) = o(
√

nkn) (31)

for some α ∈ (0, 1). Recall that kn = log n is not large while kn = (log n)1+ε is large.
We first observe that de-Poissonisation cannot be applied as in the previous section. We

lack smoothness as, for instance, E[L≤(Si1,0,0,...,0)] = i1 �=O(
√∑

i�). The strategy is to
apply Theorem 9 with

x = nkn, t = n, λn ≈ 1

n
.

(The exact value of λn will be different for the proofs of the lower and upper bounds.)
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Proof of the upper bound of (2) for large (kn).
Choose α such that n2kn exp(−kαn ) = o(

√
nkn). Put

λn = 1

n
+ δn

n
, with δn = k−(1−α)/2

n .

Let Eλn
n be the event

Eλn
n =

{
there are at least kn points in each row of �(λn)

nkn,n

}
.

The event En occurs with large probability. Indeed,

1 − P(Eλn
n ) ≤ nP(Poisson(nknλn) ≤ kn)

≤ nP(Poisson(nknλn) ≤ nknλn + kn − nknλn)

≤ nP(Poisson(nknλn) ≤ nknλn − knδn)

≤ n exp

(
− k2

nδ
2
n

4nknλn

)
≤ n exp

(
−1

8 knδ
2
n

)
= n exp

(
−1

8 kαn
)

. (32)

At the last line we used Lemma 15. The latter probability tends to 0 as (kn) is large.

LEMMA 13. Random sets Skn;n and �(λn)
nkn,n can be defined on the same probability space

in such a way that

L≤(Skn;n) ≤L≤(�(λn)
nkn,n) + nkn(1 − 1Eλn

n
). (33)

Proof of Lemma 13. Draw a sample of �(λn)
nkn,n and let �̃(λn)

nkn,n be the subset of �(λn)
nkn,n

obtained by keeping only the kn leftmost points in each row. If Eλn
n occurs then the rela-

tive orders of points in �̃(λn)
nkn,n corresponds to a uniform kn-multiset permutation. If Eλn

n does
not hold we bound L≤(Skn;n) by the worst case nkn.

Taking expectations in (33) and using the upper bound (15) yields

E[L≤(Skn;n)] ≤ 2
√

nkn(1 + δn) + kn(1 + δn) + n2kn exp
(
−1

8 kαn
)

,

hence the upper bound in (2).

Proof of the lower bound of (2) for large (kn). Choose now λn = (1/n)(1 − δn) with δn =
k−(1−α)/2

n . Let Fn be the event

Fλn
n =

{
at most kn points in each row of �(λn)

nkn,n

}
.

The event Fλn
n occurs with large probability. Indeed

1 − P(Fλn
n ) ≤ nP(Poisson(nknλn) ≥ kn)≤ n exp

(
−1

8 kαn
)

,

which tends to zero. Random sets Skn;n and �(λn)
nkn,n can be defined on the same probability

space in such a way that

L≤(Skn;n) ≥L≤(�(λn)
nkn,n)1Fλn

n
.
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Fig. 6. Illustration of the notation of Lemma 14. Top: the multiset permutation Sk;n. Bottom:
the corresponding S̃. The longest non-decreasing subsequence in Sk;n (circled points) is mapped
onto a non-decreasing subsequence in S̃, except one point with height > A�n/A�.

Therefore

P

(
L≤(Skn;n)< (2

√
nkn(1 − δn) + kn(1 − δn))(1 − ε)

)
≤

P

(
L≤(�(λn)

nkn,n)< (2
√

nkn(1 − δn) + kn(1 − δn))(1 − ε)
)

+ P
(
not Fλn

n

)
.

and we conclude with (19).

5·2. The gap between small and large (kn): conclusion of the proof of Theorem 2

After I circulated a preliminary version of this paper, Valentin Féray came up with a
simple argument for bridging the gap between small and large (kn). This allows to prove
Theorem 2 for an arbitrary sequence (kn), I reproduce his argument here with his permission.

LEMMA 14. Let n, k, A be positive integers. Two random uniform multiset permutations
S̃kA;�n/A� and Sk;n can be built on the same probability space in such a way that

L≤
(
Sk;n
)≤L≤

(̃
SkA;�n/A�

)+ kA.

Proof of Lemma 14. Draw Sk;n uniformly at random, the idea is to group all points of Sk;n

whose height is between 1 and A, to group all points whose height is between A + 1 and 2A,
and so on.

Formally, denote by 1 ≤ i1 < i2 < . . . < ikA�n/A� the indices such that 1 ≤ i� ≤ �n/A� for
every � (see Fig. 6). For 1 ≤ �≤ kA�n/A� put

S̃(�) = �S(i�)/k�.

The word S̃ is a uniform kA-multiset permutation of size �n/A�. A longest non-decreasing
subsequence in S is mapped onto a non-decreasing subsequence in S̃, except maybe some
points with height > A�n/A� (there are no more than kA such points). This shows the
Lemma.
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We conclude the proof of Theorem 2 by an estimation of E[L≤
(
Skn;n
)

] in the case where
there are infinitely many kn’s such that, say, (log n)3/4 ≤ kn ≤ (log n)5/4. For the lower bound
the job is already done by Theorem 1 since

E[L≤
(
Skn;n
)

] ≥E[L<
(
Skn;n
)

] = 2
√

nkn − kn + o(
√

nkn),

which is of course also 2
√

nkn + o(nkn) for this range of (kn). For the upper bound take
A = �log n� in Lemma 14:

E[L≤
(
Skn;n
)

] ≤E[L≤
(
Skn log n;�n/�log n��

)
] + kn log n (34)

and we can apply the large case since

(n/ log n)2kn log n exp(−(kn log n)α) = o(kn log n × �n/�log n��).

Thus the right-hand side of (34) is also 2
√

nkn + o(
√

nkn).

6. Conclusion: Proof of Proposition 3

In this short section we give the arguments needed to enhance estimates in expectation
into convergences in probability. We have to prove that for every ε > 0:

P

(
L<
(
Skn;n
)
> (2
√

nkn − kn)(1 + ε)
)

→ 0,

P

(
L<
(
Skn;n
)
< (2
√

nkn − kn)(1 − ε)
)

→ 0,

P

(
L≤
(
Skn;n
)
> (2
√

nkn + kn)(1 + ε)
)

→ 0,

P

(
L≤
(
Skn;n
)
< (2
√

nkn + kn)(1 − ε)
)

→ 0

We only write the details for the first case, as the three other ones are almost identical.
The case where (kn) is small has been proved in Section 2 so it remains to prove the case

where (kn) is large. We reuse the event Eλn
n introduced in Section 5·1.

P
(
L<
(
Skn;n
)
> (2
√

nkn − kn)(1 + ε)
)

≤ P
(
Eλn

n does not occur
)

+ P

(
L<
(
�

(λn)
nkn,n

)
> (1 + δn)(2

√
nkn − kn)

1 + ε

1 + δn

)
≤ n exp

(
−1

8 kαn
)

(recall (32))

+ P

(
L<
(
�

(λn)
nkn,n

)
> (2
√

nkn(1 + δn) − kn(1 + δn))
1 + ε

1 + δn

)
≤ n exp

(
−1

8 kαn
)

+ exp(−g̃(ε/2)(
√

nkn − kn)),

for large enough n and for some positive g̃, using (16). This tends to zero as desired.
The lower bound for L<(Skn;n) is proved in the same way. For the convergence of L≤(Skn;n)

we reuse the event Fλn
n with λn = (1/n)(1 + log (n)).
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A. Useful tail inequalities

We collect here for convenience some (non-optimal) tail inequalities.

LEMMA 15 (See [JŁR00, chapter 2]). Let Poisson(λ) be a Poisson random variable with
mean λ. For every A> 0

P(Poisson(λ) ≤ λ− A)≤ exp(−A2/4λ),

P(Poisson(λ) ≥ λ+ A)≤ exp(−A2/4λ).

LEMMA 16 ([JŁR00, theorem 2·1]). Let Binomial(n, p) be a Binomial random variable
with parameters (n,p). For 0< ε < 1,

P(Binomial(n, p) ≤ np − εnp) ≤ exp
(
−ε2np/2

)
,

P(Binomial(n, p) ≥ np + εnp) ≤ exp
(
−ε2np/3

)
.

LEMMA 17. Fix α ∈ (0, 1) and let G(α)
1 , . . . , G(α)

k be i.i.d. random variables with distri-

bution Geometric≥0(1 − α). Then E[G(α)
1 ] = α/(1 − α) and for every 0< ε < 1,

P

(
G(α)

1 + · · · + G(α)
k ≥ (1 + ε)k

α

1 − α

)
≤ exp

(
−ε2kα/20

)
,

P

(
G(α)

1 + · · · + G(α)
k ≤ (1 − ε)k

α

1 − α

)
≤ exp

(
−ε2kα/20

)
.

Proof of Lemma 17. We will use the two inequalities:

exp(z) ≤ 1 + z + z2 for |z|< 1,
1

1 − u
≤ exp(u + u2) for |u|< 1/2.

Fix λ such that |λ|<min {1, (1 − α)/4α} so that (α/(1 − α))|λ+ λ2|< 1/2:

E[eλ(G(α)
1 − α

1−α )] = (1 − α)

1 − αeλ
e−λ α

1−α = 1

1 − α
1−α (eλ − 1)

e−λ α
1−α

≤ 1

1 − α
1−α (λ+ λ2)

e−λ α
1−α

≤ exp

(
α

1 − α
(λ+ λ2) +

(
α

1 − α

)2

(λ+ λ2)2 − λ
α

1 − α

)

≤ exp

(
α

(1 − α)2
λ2
(

2 + λ2 + 2λ
))

≤ exp

(
5λ2 α

(1 − α)2

)
.

Thus, for every |λ|< 1/β := min {1, (1 − α)/4α} it holds that E[eλ(
∑k

i=1 G(α)
i −k α

1−α )] ≤
exp
(
ν2λ2/2

)
where ν2 := 10kα/(1 − α)2.
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This says that for every k ≥ 1 the random variable G(α)
1 + · · · + G(α)

k is subexponential and
the Chernov method applies (use e.g. [Wai19, proposition 2·9] with t = εkα/(1 − α)):

P

(
G(α)

1 + · · · + G(α)
k ≥ (1 + ε)k

α

1 − α

)

≤ exp

(
− t2

2ν2

)
= exp

(
−ε2k2 α2

(1 − α)2
× (1 − α)2

2 × 10kα

)
= exp

(
−ε2kα/20

)
,

as long as

εk
α

1 − α
≤ ν2

β
= 10k

α

(1 − α)2
min {1, (1 − α)/4α}

which is always the case if ε < 1. The similar inequality holds for the left-tail bound (see
[Wai19, proposition 2·9] again).

B. An invariance property for the M/M/1 queue

To conclude we state and prove the very simple property of the recurrent M/M/1 queue
which allows to prove stationarity in Lemma 6. It is very close to Burke’s property of the
discrete HAD process [FM06].

Let β > λ> 0 be fixed parameters. Consider two independent homogeneous Poisson
Point Process (PPP) �↗,�↘ over (0, +∞) with respective intensities λ, β. Let (Hy)y≥0

be the queue whose ’+1’ steps (customer arrivals) are given by �↗ and ’-1’ steps (service
times) are given by �↘ and whose initial distribution H0 is drawn (independently from
�↗,�↘) according to a Geometric≥0(1 − β
) with β
 = λ/β.

Let �0 be the point process given by unused service times:

�0 = {y ∈�↘ such that Hy = 0
}

.

LEMMA 18. The process � := �↗ ∪�0 is a homogeneous PPP with intensity β.

Proof. (The reader is invited to look at Fig. B1 for notation.)
The point process �↗ ∪�↘ is a homogeneous PPP with intensity λ+ β, independent

from H0. We claim that � is a subset of �↗ ∪�↘ where each point in �↗ ∪�↘ is
taken independently with probability β/(λ+ β), it is therefore a homogeneous PPP with
intensity β.

We need a few notation in order to prove the claim. Set P0 = 0 and for i ≥ 1 let Pi be the
ith point of �↗ ∪�↘ and let (H̃i)i≥0 be the discrete-time embedded chain associated to H,
i.e. H̃i = HPi for every i.

We will prove by induction that for every i ≥ 1:

the points Pi belongs to � with probability β/(λ+ β) independently from the events
{P1 ∈�}, . . . , {Pi−1 ∈�};
H̃i is independent from {P1 ∈�}, . . . , {Pi ∈�} and is a Geometric≥0(1 − β
).
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Fig. B1. Notation of Lemma 18. Points of � are depicted with 
’s.

This implies the claim and proves the Lemma. For the base case:

P(P1 ∈�, H̃1 = k) = P(P1 ∈�↗, H̃0 = k − 1)1k≥1 + P(P1 ∈�↘, H̃0 = 0)1k=0,

= λ

λ+ β
× (1 − β
)(β
)k−11k≥1 + β

λ+ β
× (1 − β
)1k=0,

= β

λ+ β
× (1 − β
)(β
)k (recall ββ
 = λ).

More generally let Ej be one of the two events Pj ∈�/Pj /∈�:

P(Pi ∈�, H̃i = k | E1, . . . , Ei−1) = P(Pi ∈�↗, H̃i−1 = k − 1 | E1, . . . , Ei−1)1k≥1

+ P(Pi ∈�↘, H̃i−1 = 0 | E1, . . . , Ei−1)1k=0,

= P(Pi ∈�↗, H̃i−1 = k − 1)1k≥1

+ P(Pi ∈�↘, H̃i−1 = 0)1k=0, (by induction hypothesis).

= β

λ+ β
× (1 − β
)(β
)k.
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