cambridge.org/psm

Correspondence

Cite this article: Pignon B, Geoffroy PA, Thomas P, Roelandt J-L, Amad A (2019). Environment risk factors have different impact on bipolar and psychotic disorders: an analysis of MHGP survey. *Psychological Medicine* **49**, 1229–1232. https://doi.org/10.1017/ S0033291719000229

Received: 10 January 2019 Revised: 16 January 2019 Accepted: 21 January 2019 First published online: 20 February 2019

Key words:

Psychotic disorders; bipolar disorders; migration; trauma; substance use disorders

Author for correspondence:

Baptiste Pignon, E-mail: baptistepignon@yahoo.fr

© Cambridge University Press 2019

Environment risk factors have different impact on bipolar and psychotic disorders: an analysis of MHGP survey

Baptiste Pignon^{1,2,3}, Pierre A. Geoffroy⁴, Pierre Thomas^{5,6}, Jean-Luc Roelandt⁷ and Ali Amad^{5,6,8}

¹AP-HP, DHU PePSY, Hôpitaux universitaires Henri-Mondor, Pôle de Psychiatrie, Créteil 94000, France; ²Inserm, U955, team 15, Créteil 94000, France; Fondation FondaMental, Créteil 94000, France; ³UPEC, Université Paris-Est, Faculté de médecine, Créteil 94000, France; ⁴Paris Diderot Université – Paris VII, 5 Rue Thomas Mann, 75013 Paris, France; ⁵Univ. Lille, CNRS UMR 9193-PsyCHIC-SCALab, & CHU Lille, Pôle de Psychiatrie, Unité CURE, F-59000 Lille, France; ⁶Fédération régionale de recherche en santé mentale (F2RSM) Nord-Pas-de-Calais; F-59000 Lille, France; ⁷EPSM Lille Métropole; Centre Collaborateur de l'Organisation Mondiale de la Santé pour la recherche et la formation en santé mentale; Équipe Eceve Inserm UMR 1123, Lille, France and ⁸King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK

Dear Editor

Dykxhoorn *et al.* (2018) recently analysed the Swedish registers and calculated the incidence of (i) affective and non-affective psychotic disorders and (ii) non-psychotic bipolar disorder, according to migrant status among residents born between 1982 and 1996. They found that all psychotic disorders were significantly elevated among first- and second-generation migrants (1GM and 2GM), including schizophrenia and schizoaffective disorders, affective psychotic disorder and other non-affective psychotic disorders. Moreover, the incidence of non-psychotic bipolar disorder was significantly reduced among 1GM and non-significantly different among 2GM. Authors concluded to a specific effect of the migrant-related exposures on the risk of psychotic disorders as no effects were observed for non-psychotic bipolar disorders.

We read with interest this study that adds to the literature highlighting continuities and discontinuities between psychotic and bipolar disorders. Based on clinical overlaps and multi-scale similarities, some authors have argued for going beyond the Kraepelinian dichotomy and for pooling in a single entity these two diagnoses of psychotic and bipolar disorders (Guloksuz and van Os, 2018). Interestingly, several studies have suggested the involvement of partially shared and partially different environmental exposures between these disorders (Demjaha *et al.*, 2012).

To disentangle these shared and specific environmental risk factors, studies that focus on different risk factors and different disorders are required. Moreover, these studies should also consider separately psychotic bipolar disorders, i.e. a phenotype considered as intermediate between non-psychotic bipolar disorder and psychotic disorder. Mental Health in General Population (MHGP) survey offers such an opportunity. Moreover, it allows for the first time to study the third-generation of migrants (3GM). Thus, the aim of the present study was to compare the influence of different environment risk factors [migrant status, history of trauma, substance use disorders (SUDs) and alcohol use disorders (AUDs)] on the prevalence of psychotic disorders, and of psychotic and non-psychotic bipolar disorder in the MHGP survey.

The MHGP survey, conducted by the World Health Organization Collaborating Centre, interviewed 38 694 subjects selected by a quota sampling method in France between 1999 and 2003 (47 sites). For each subject, the *Mini International Neuropsychiatric Interview* (MINI) was used to screen for 10th International Classification of Diseases defined psychiatric disorders in the general population. To define bipolar disorders with and without psychotic symptoms, the seven psychotic symptoms of the psychotic disorders section were used. Further details on MHGP survey and diagnoses procedures are available elsewhere (Amad *et al.*, 2013; Pignon *et al.*, 2017, 2018).

To compare specifically subjects with psychotic disorders to those with bipolar disorders, subjects with both diagnoses were excluded. Four groups were defined: psychotic disorders, bipolar disorders with psychotic symptoms (i.e. psychotic bipolar disorders), non-psychotic bipolar disorders and 'control' subjects without psychotic or bipolar disorders. We performed logistic regression analyses to compare the different risk factors between the four groups, defining the control group as reference. We controlled these analyses for age, sex, and educational, income and marital status. All statistical analyses were performed using R software version 3.1.0 (http://www.R-project.org).

Of the 38 694 individuals interviewed, 140 subjects were excluded because of dual diagnoses of bipolar and psychotic disorders (0.36% of the total sample). At the end, 474 subjects with bipolar disorders, including 293 without psychotic symptoms (0.76%) and 181 with psychotic symptoms (0.47%), and 933 subjects with psychotic disorders (2.42%) were analysed.

	Controls 147) (ref	(n = 37 erence)		Non-p	sychotic bi	polar disoro	der (<i>n</i> = 293)			Psyc	chotic bipo	lar disorder	(<i>n</i> = 181)				Psychotic o	disorder (<i>n</i> :	= 933)
	Ν	%	N	%	OR	95% 95% OR Cl – Cl + <i>p</i>				%	OR	95% CI—	95% CI +	p	N	%	95% OR CI–		9 C
Age band																			
18-29 years	9216	24.8	114	38.9	3.76	2.10	6.75	<0.001	46	25.4	1.80	0.95	3.40	0.072	298	31.9	1.44	1.09	1
30-44 years	10 578	28.5	108	36.9	3.93	2.28	6.77	0.002	72	39.8	2.53	1.46	4.38	<0.001	302	32.4	1.82	1.41	2
45-59 years	8121	21.9	48	16.4	2.40	1.37	4.23	0.002	35	19.3	1.52	0.86	2.69	0.153	191	20.5	1.77	1.37	2
60+years (reference)	9232	24.9	23	7.8	-	-	-	-	28	15.5	-	-	-	-	142	15.2	-	-	-
Gender																			
Male (reference)	17 057	45.9	172	58.7	-	-	-	-	106	58.6	-	-	-	-	470	50.4	-	-	-
Female	20 090	54.1	121	41.3	0.80	0.62	1.03	0.372	75	41.4	0.75	0.55	1.03	0.073	463	49.6	1.08	0.94	1
Education level																			
No education – elementary level	8959	24.1	49	16.7	1.21	0.80	1.83	0.372	42	23.2	1.70	1.03	2.80	0.037	192	20.6	1.10	0.88	1.
Secondary level	18 177	48.9	170	58	1.15	0.86	1.53	0.349	97	53.6	1.31	0.89	1.92	0.164	505	54.1	1.10	0.93	1
University level (reference)	10 011	26.9	74	25.3	-	-	-	-	42	23.2	-	-	-	-	236	25.3	-	-	-
Marital status																			
Married (reference)	20 322	55.2	112	38.2	-	-	-	-	79	43.9	-	-	-	-	348	37.5	-	-	-
Never married	10 120	27.5	126	43	1.25	0.92	1.72	0.159	62	34.4	1.55	1.03	2.33	0.036	402	43.3	1.75	1.46	2
Separated	2971	8.1	48	16.4	2.43	1.69	3.50	<0.001	27	15.0	2.22	1.40	3.55	<0.001	118	12.7	1.75	1.40	2
Widowed	3430	9.3	7	2.4	0.76	0.32	1.77	0.520	12	6.7	1.57	0.77	3.20	0.212	61	6.6	1.21	0.87	1
Income level ^a																			
Low	13 685	37.9	145	51.2	1.59	1.10	2.29	0.012	68	38.0	0.79	0.50	1.24	0.298	482	53.4	1.63	1.32	2
Medium	14 589	40.4	93	32.9	1.05	0.73	1.25	0.777	75	41.9	0.94	0.62	1.42	0.760	279	30.9	1.02	0.82	1
High (reference)	7846	21.7	45	15.9	_	-	-	-	36	20.1	-	-	-	-	141	15.6	-	-	-
Migrant status																			
Native (reference) ^b	27 722	74.6	200	68.3	_	-	-	_	135	74.6	-	-	-	-	593	63.6	-	-	-
1GM	1943	5.2	16	5.5	0.93	0.55	1.59	0.793	14	7.7	1.41	0.80	2.46	0.232	75	8.0	1.62	1.26	2

Table 1. Logistic regression analyses* to compare subjects with psychotic and non-psychotic bipolar disorder, and psychotic disorders, to subjects without bipolar or psychotic disorder

2GM

3GM

3944

3538

10.6

9.5

39

38

13.3

13

0.88

1.02

0.61

0.71

1.27

1.46

0.491

0.908

16

16

8.8

8.8

0.70

0.78

0.41

0.46

1.18

1.32

0.181

0.350

131

134

14.0

14.4

1.24

1.43

1.02

1.17

95% CI +

1.92

2.35

2.29

-

1.25

1.39

1.30

2.09

2.19

1.67

2.01

1.25

2.08

1.52

1.74

р

0.011

<0.001

<0.001

_

_

0.255

0.406

0.43

_

_

<0.001

<0.001

0.258

< 0.001

0.908

-

-

<0.001

0.032

<0.001

TISTOLY OF LIAUTIA																				
Yes	10 637	28.7	147	50.2	2.15	1.69	2.74	<0.001	68	37.8	1.41	1.03	1.92	0:030	474	49.2	2.33	2.04	2.67	<0.001
No (reference)	26 742	71.3	146	48.8	I	I	I	I	112	62.2	I	I	I	I	459	50.8	ı	T	I	I
Alcohol use disorders																				
Yes	1452	3.8	50	17.1	2.17	1.53	3.08	<0.001	30	16.6	3.47	2.24	5.36	<0.001	121	13.0	2.03	1.62	2.55	<0.001
No (reference)	35 695	96.1	243	82.9	I	I	I	I	151	83.4	I	I	I	I	812	87.0	ı	T	I	I
Substance use disorders																				
Yes	866	2.3	51	17.4	3.90	2.70	5.62	<0.001	10	5.5	1.25	0.63	2.50	0.520	104	11.1	2.58	2.01	3.33	<0.001
No (reference)	36 281	7.79	242	82.6	I	I	I	I	171	94.5	I	I	I	I	829	88.9	ı	T	I	I
1GM, 2GM and 3GM: first-,	second- and	third-gene	eration of	migrants;	95% CI- ai	nd 95% Cl+	: 95% confi	idence interva	al lower a	nd upper	limits; OR:	odds ratio;	p: p-value.							

Monthly income levels: low <61.650/household; medium: €1.650-€3.200/household; high: >63.200/household

^oSubject who was born in and whose parents and grandparents were born in metropolitan France.

status. marital and income and educational, sex. age, Analyses adjusted for

Table 1 shows sociodemographic and clinical characteristics of the four groups. The rates of migrants (1GM, 2GM and 3GM) were higher among subjects with psychotic disorders (ORs between 1.52 and 2.08), in contrast to the rates of migrants in psychotic and non-psychotic bipolar disorders groups. Rates of subjects with a history of trauma were higher in the three groups (ORs between 1.41 and 2.33). Likewise, for AUDs (ORs between 2.03 and 3.47). The rates of subjects with SUDs were higher among the subjects with non-psychotic bipolar disorders (OR = 3.90) and among subjects with psychotic disorders (OR = 2.58).

These results confirm the Demjaha et al. (2012) observation suggesting that, between bipolar and psychotic disorders, environment exposures involved are partially shared and partially different. Our results are also consistent with Dykxhoorn et al.'s study on the different effects of migrant-related exposures on the two types of disorders: 1GM and 2GM status were associated with increased incidence of psychotic disorders and not with nonpsychotic bipolar disorders. However, unlike Dykxhoorn et al., we did not find any association between migrant status and the frequency of psychotic bipolar disorders. Interestingly, a recent meta-analysis of six studies considering the risk of mood disorder among migrants did not find any association between 1GM status and bipolar disorder (Mindlis and Boffetta, 2017). Our study also presents data concerning 3GM, also showing increased rates of psychotic disorders but not bipolar disorders, including those with psychotic symptoms, among migrants.

The history of trauma has been widely studied in the scientific literature that shows an increased risk associated with both psychotic and bipolar disorders (Carr et al., 2013), as found in our study. Finally, we did not find different impact of either AUDs or SUDs on psychotic or bipolar disorders prevalences. This is in line with actual knowledge of an increased risk for both disorders regarding SUDs that could represent an unspecific risk factor of both bipolar and psychotic disorders (Demjaha et al., 2012).

Of note, several other environment factors are known to have a different impact on bipolar and psychotic disorders. Urbanicity, one of the oldest and best acknowledged risk factor of psychotic disorders (March et al., 2008), has a slight or null effect on the risk of bipolar disorder (Mortensen et al., 2003). Studies of urban neighbourhood variations of incidence and prevalence also showed different patterns for affective and non-affective psychotic disorders (March et al., 2008). Obstetric complications, advanced paternal age or birth in winter are more or less in the same situation (Demjaha et al., 2012).

Overall, the MHGP survey allowed to compare risk factors across a continuum ranging from bipolar disorder without psychotic features to psychotic disorders and observed the involvement of shared and specific environmental risk factors in these disorders with or without psychotic symptoms.

Author ORCIDs. (D) Baptiste Pignon, 0000-0003-0526-3136.

Financial support. No funding was secured for this study.

Conflict of interest. None.

References

- Amad A, Guardia D, Salleron J, Thomas P, Roelandt J-L and Vaiva G (2013) Increased prevalence of psychotic disorders among third-generation migrants: results from the French mental health in general population survey. Schizophrenia Research 147, 193-195.
- Carr CP, Martins CMS, Stingel AM, Lemgruber VB and Juruena MF (2013) The role of early life stress in adult psychiatric disorders: a systematic review

according to childhood trauma subtypes. The Journal of Nervous and Mental Disease 201, 1007.

- Demjaha A, MacCabe JH and Murray RM (2012) How genes and environmental factors determine the different neurodevelopmental trajectories of schizophrenia and bipolar disorder. *Schizophrenia Bulletin* 38, 209–214.
- Dykxhoorn J, Hollander A-C, Lewis G, Magnusson C, Dalman C and Kirkbride JB (2018) Risk of schizophrenia, schizoaffective, and bipolar disorders by migrant status, region of origin, and age-at-migration: a national cohort study of 1.8 million people. *Psychological Medicine* (in press) 1–10. doi: 10.1017/S0033291718003227.
- Guloksuz S and van Os J (2018) The slow death of the concept of schizophrenia and the painful birth of the psychosis spectrum. *Psychological Medicine* 48, 229–244.
- March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P and Susser E (2008) Psychosis and place. *Epidemiologic Reviews* 30, 84–100.

- Mindlis I and Boffetta P (2017) Mood disorders in first- and secondgeneration immigrants: systematic review and meta-analysis. *The British Journal of Psychiatry* 210, 182–189.
- Mortensen PB, Pedersen CB, Melbye M, Mors O and Ewald H (2003) Individual and familial risk factors for bipolar affective disorders in Denmark. *Archives of General Psychiatry* **60**, 1209–1215.
- Pignon B, Geoffroy PA, Thomas P, Roelandt J-L, Rolland B, Morgan C, Vaiva G and Amad A (2017) Prevalence and clinical severity of mood disorders among first-, second- and third-generation migrants. *Journal of Affective Disorders* 210, 174–180.
- Pignon B, Peyre H, Szöke A, Geoffroy PA, Rolland B, Jardri R, Thomas P, Vaiva G, Roelandt J-L, Benradia I, Behal H, Schürhoff F and Amad A (2018) A latent class analysis of psychotic symptoms in the general population. *Australian and New Zealand Journal of Psychiatry* 52, 573–584.