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A b s t r a c t . A t e c h n i q u e fo r r e c o n s t r u c t i n g d i f f rac t ion- l imi ted i m a g e o f a n o b j e c t f r o m s p e c k l e 

i m a g e s w i t h o u t r e fe rence s ta r is a p p l i e d t o b o t h s i m u l a t e d a n d rea l d a t a . T h e o b j e c t s p e c t r u m is 

e s t i m a t e d b y b l i n d d e c o n v o l u t i o n u s i n g the p o w e r s p e c t r u m o f t he s p e c k l e i m a g e s a n d t he p h a s e 

is r e s t o r e d f r o m the b i s p e c t r u m . 

K e y w o r d s : B i s p e c t r u m - I m a g e R e c o n s t r u c t i o n - B l i n d D e c o n v o l u t i o n 

1. Presentation Of T h e M e t h o d 

1.1. IMAGE FORMATION 

The observed image i(x) is the convolution (noted * ) of the object intensity dis-

tribution o(x) by the point spread function s(x) of the combined telescope and 

atmosphere (Roddier, 1981): 

i ( x ) = s(x) * o(x). (1) 

Fourier transformation leads to: 

/ ( « ) = S (u )0 (u) . (2) 

When recorded with an exposure time much shorter than the evolution time of 

atmospheric phase perturbations, the highly magnified observed image shows a 

pattern of speckles. It has been established for a long time (Labeyrie, 1970) that 

such speckled images contain diffraction-limited information on the spatial structure 

of the observed object. 

1.2. T H E P O W E R S P E C T R U M 

The mean power spectrum of speckle images can be written as (Dainty et al., 1978): 

( | / ( U ) | 2 ) = ( | S ( « ) | 2 ) | 0 ( u ) | 2 ~ | < / ( W ) ) | 2 + NsT(u) \0(u)\2, (3) 

where Ns — 2 .30D/ro is the mean number of speckles per image and T(u) the 

normalized transfer function of the telescope. 

1.3. T H E B I S P E C T R U M 

The bispectrum of the speckle images is: 

( J ( 3 ) ( u , v)} = (I(u)I(v)I* (u + v)) = ( S ( 3 ) ( u , v ) ) 0 ( 3 ) ( u , v). (4) 
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The phase ß(u,v) of (l(3\u,v)) tends to be unaffected by atmospheric pertur-

bations and may be uncorrupted by telescope aberrations (Roddier, 1988). Hence 

ß(u, ν) can be approximated by the object bispectrum phase, thus: 

where 6(u) is the phase of the object spectrum. 

1.4. P H A S E RECONSTRUCTION 

The bispectrum subplanes ( / ( 3 ) ( u , ^o))> with ||ι>ο|| < ro /λ , are used to reconstruct a 

weighted-least-squares estimation of the object spectrum phasor eje(u\ This is done 

by an iterative method based on the one described by Matson (1991). Basically, the 

new estimation e j 6 k + 1 ^ for e J $ ^ is given by: 

e , * k + 1 ( U ) « V β ^ " · " ° > β - ^ ( * ο ) £ ^ ( » - Ν ο ) 

where the previously estimated phasor e j d k ^ is set to zero if not already known so 

as to cancel its contribution to the weighted sum. The expression of the bispectrum 

phase variance <xj|(u, v) is given in Ayers (1988). 

1 .5 . IMAGE RECONSTRUCTION 

The power spectrum ^ | / ( w ) | 2 ^ combined with the phasor e j e ^ given by the bis-

pectrum can be written as the convolution of the estimated object O(u) by some 

transfer function H(u): 

yj(\l(u)\2)e^ ~ H(u)Ö(u). (7) 

Following Lane (1992), this complex spectrum is blindly deconvoluted with posi-

tivity (and possibly support) constraints for o{x) and h(x). A further constraint of 

symmetry is used for h(x) (i.e. H(u) real). Moreover, Eq. 3 leads to a (possible) 

first estimation of the smoothed object power spectrum: 

| Ô O ( « ) | 2 = ( | / ( U ) | 2 ) - | ( / ( U ) ) | 2 . (8) 

Simulation of 100 speckle images (free from Poisson noise) of a complex triple object 

were used to test the reconstruction process. Effects of turbulence were simulated 

with D/ro ^ 10, and 19 subplanes were used to reconstruct the phase of the object. 

Using conjugate gradient minimization, the final estimation of the object is obtained 

after ~ 100 iterations. This final estimation nicely fits the smoothed original object. 

2. Results: Capella 

A set of 200 speckle images of Capella (aAurigae) were used to reconstruct an 

image of this object (data courtesy of ON ERA - F R A N C E ) . These observations 
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a b e d 

e f g h 

Fig. 1. Improvement of the image of Capella by applying the constraint of positivity 

with an increasing number of iterations: (a) starting estimation, (b) 1st iteration, (c) 5th 

iteration, (d) 10th iteration, (e) 20th iteration, (f) 30th iteration, (g) 40th iteration, (h) 

50th iteration. 

were performed at the 4.2 m William Herschel Telescope on La Palma during the 

night November 8, 1990 for the purpose of wave front sensor a posteriori decon-

volution (Michau et al., 1991). Capella is a bright binary star ( m y — 0.08, sep-

aration ~ 55 marcsec at the acquisition date). The results shown in Fig. 1 are 

obtained from 19 bispectrum subplanes, they are at least as good as deconvolution 

with wavefront sensor (Michau et al., 1991). 
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