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Dow’s Principle and Q-Sets
Jörg Brendle

Abstract. A Q-set is a set of reals every subset of which is a relative Gδ . We investigate the combinatorics of
Q-sets and discuss a question of Miller and Zhou on the size q of the smallest set of reals which is not a Q-set.
We show in particular that various natural lower bounds for q are consistently strictly smaller than q.

1 Introduction and Statement of the Main Results

This work is devoted to combinatorial aspects of Q-sets. Such sets play a prominent role
in general topology. In fact, the existence of an uncountable Q-set is equivalent to the
existence of a separable normal non-metrizable Moore space ([He], see [Ta, Section II] for
an overview).

The Baire space ωω is the set of functions from ω to ω with the product topology (where
ω carries the discrete topology); similarly, the Cantor space 2ω is the set of functions from
ω to 2; elements of ωω and 2ω are called reals. Thus basic open sets of 2ω are of the form
[σ] := { f ∈ 2ω ; σ ⊆ f } where σ ∈ 2<ω is a finite sequence; an analogous remark applies
to ωω . We use for restriction, and ˆ for concatenation of sequences (e.g. σ i, σˆ〈n〉). A
set B ⊆ 2<ω is a branch if it’s of the form B = {σ ; σ ⊆ f } for some f ∈ 2ω . We shall
occasionally identify 2<ω and ω; the former inherits a linear order≤ from the latter.

A set of reals X ⊆ ωω (or X ⊆ 2ω) is called a Q-set iff every subset of X is a relative
Gδ-set (that is, it is the intersection of a Gδ-subset of ωω with X). Let q denote the size of
the smallest set of reals which is not a Q-set. Since every countable set of reals is Q, one has
ω1 ≤ q ≤ c where c denotes the cardinality of the continuum. A better lower bound can be
gotten as follows.

As usual, let [F]λ denote the collection of subsets of F of size λ for λ ≤ |F|; similarly,
[F]<λ stands for the subsets of F of size < λ. For A,B ⊆ ω, say that A is almost contained
in B (A ⊆∗ B in symbols) iff A \ B is finite. A family F ⊆ [ω]ω has the finite intersection
property iff

⋂
G is infinite for each finite G ⊆ F. The pseudointersection number p is the

cardinality of the least F ⊆ [ω]ω with the finite intersection property such that no A ∈ [ω]ω

is almost contained in all members of F. Let (P,≤) be a notion of forcing, i.e., a poset.
P ⊆ P is called centered iff any finitely many members of P have a common lower bound in
P. (P,≤) is σ-centered iff P can be written as a union of countably many centered subsets.
By Bell’s Theorem [Be], p is the least cardinal for which Martin’s axiom for σ-centered
posets fails. Since the natural p.o. for making a subset of a given set of reals a relative Gδ

is σ-centered (see [Mi 3, Section 5]), it is immediate that p ≤ q. Miller and Zhou ([Mi 2,
Problem 11.14], [Mi 3, Question 5.2]) asked whether p = q. This question was answered
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14 Jörg Brendle

recently, and rather implicitly, in the negative by A. Dow [Do, Theorem 2.9]. We shall
briefly outline what he proved and explain the relationship to the present problem.

Given A,B ⊆ [ω]ω , we say A and B are orthogonal (and write A⊥B) iff A ∩ B is finite
for all A ∈ A and B ∈ B. We say the pair 〈A,B〉 can be weakly separated iff there is D ⊆ ω
such that D ∩ A is finite for all A ∈ A, yet D ∩ B is infinite for all B ∈ B. (Note this is
not symmetric.) Dow’s principle holds for a cardinal κ iff any orthogonal pair 〈A,B〉 with
|A∪B| ≤ κ can be weakly separated. Let dp be the least cardinal for which Dow’s principle
fails. Using again Bell’s characterization of p, we see easily p ≤ dp. Call A,B ∈ [ω]ω almost
disjoint iff A ∩ B is finite; A ⊆ [ω]ω is an almost disjoint (a.d.) family iff its members are
pairwise almost disjoint. Say the almost disjointness principle holds for κ iff for any a.d.
family A of size ≤ κ and any B ⊆ A, the pair 〈B,A \ B〉 can be weakly separated. Let
ap denote the smallest cardinal for which the almost disjointness principle fails. Clearly
dp ≤ ap. The following is also folklore.

Lemma 1.1 ap ≤ q.

Proof Let X ⊆ 2ω be a set of reals of size less than ap, and let Y ⊆ X. Given f ∈ 2ω , let
B f = {σ ∈ 2<ω ; σ ⊆ f } be the branch corresponding to f . Apply the almost disjointness
principle to find D ⊆ 2<ω weakly separating the pair 〈{B f ; f ∈ X \Y}, {B f ; f ∈ Y}〉. Let
Dn be D with the first n elements removed. Put Un =

⋃
{[σ] ; σ ∈ Dn}, and G =

⋂
n Un.

It is immediate that G ∩ X = Y .

Since Dow [Do, Theorem 2.9] proved the consistency of p < dp, the consistency of
p < q is now immediate. However, this raises natural questions about the relationship
between dp, ap and q. The main portion of this work is devoted to answering them by
showing

Theorem A It is consistent to assume that dp < ap.

Theorem B It is consistent to assume that ap < q.

Section 2 is devoted to the proofs of these results. In Section 3 we shall make a few
comments about related cardinals and about upper bounds for ap and for q.

Our notation is fairly standard. We refer to [Je] and [Ku] for set theory in general and
forcing in particular, to [Mi 1, Section 4], [Ta, Section II] and [vD, Section 9] for Q-sets
and their relatives, and to [vD, Section 3], [Va] and [BJ] for results on cardinal invariants.
For almost all always means for all but< κmany where κ is a regular cardinal which is clear
from the context. Further notation is introduced when needed.

2 The Main Consistency Proofs

The main technical device for our consistency proofs are rank arguments of the type com-
mon in descriptive set theory. The use of such arguments in forcing constructions can be
traced back at least to [BD] where they were applied to Hechler forcing. Our approach is
quite similar to the one in [BJS, Section 2] where almost disjoint families were combined
with rank arguments like in the present work.
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Dow’s Principle and Q-Sets 15

Let A = {Aα ; α < κ} be an almost disjoint family of subsets of ω. The forcing notion
Q(A) consists of all triples (σ, φ,Γ) such that σ ∈ ω↑<ω , φ : ω↑<ω → ω, Γ ∈ [κ]<ω

and σ(i) = φ(σ i) for all i ∈ |σ|. Here, ω↑<ω denotes the set of strictly increasing finite
sequences of natural numbers. The p.o. is given by: (τ , ψ,∆) ≤ (σ, φ,Γ) iff τ ⊇ σ, ψ ≥ φ
everywhere,∆ ⊇ Γ and τ (i) /∈

⋃
α∈Γ Aα for all i ∈ |τ | \ |σ|. Clearly Q(A) is σ-centered.

It generically adds a dominating real dA ∈ ωω—namely dA =
⋃
{σ ; (σ, φ,Γ) ∈ G for

some φ and Γ} where G is the generic filter—such that range(dA) is almost disjoint from
all members of A. (Recall that a real d ∈ ωω is said to be dominating over a model V of
ZFC iff for all f ∈ ωω ∩V , we have d(n) ≥ f (n) for almost all n.) Furthermore, given any
B ∈ [ω]ω from the ground model which does not belong to the ideal generated by A, we
have, again by an easy genericity argument, that range(dA) ∩ B is infinite.

We now introduce a notion of rank for Q(A). Fix Γ ∈ [κ]<ω and a Q(A)-name Ḋ for a
subset of ω. Given ` ∈ ω, we recursively define the rank ρ` = ρ`,Γ,Ḋ for all τ ∈ ω↑<ω .

ρ`(τ ) = 0⇐⇒ q ‖− “` ∈ Ḋ” for some q = (τ , φ,Γ ′) ∈ Q(A)

for ρ > 0 : ρ`(τ ) ≤ ρ⇐⇒ ρ`(τˆ〈n〉) < ρ holds for infinitely many n ∈ ω
∖ ⋃

α∈Γ

Aα

ρ`(τ ) =∞⇐⇒ there is no ρ < ω1 such that ρ`(τ ) ≤ ρ.

Given τ ∈ ω↑<ω and i ∈ ω, we define the set

Dτ ,i =
{
` ; ρ`(τˆ〈n〉) < ω1 for some n ∈ ω

∖ ⋃
α∈Γ

Aα with n ≥ i
}
.

Sets of the form Dτ ,i can be thought of as approximations to Ḋ. They play a crucial role in
the independence arguments below.

We first deal with the consistency of dp < ap. For this, we carry out a finite support
iteration 〈Pγ, Q̇γ ; γ < λ〉 of ccc p.o.’s over a model for GCH where λ ≥ ω2 is a regular
cardinal and we have

‖−γ “Q̇γ is of the form Q(Ȧ) for some a.d. family Ȧ of size < λ”.

Using a standard book-keeping argument as in the consistency proof of Martin’s axiom (see
[Ku, Chapter VIII, Section 6]), we can guarantee that all small a.d. families are taken care
of along the iteration. By the properties of the forcing Q(A), we then see that ap = c = λ.

To show that dp = ω1 in the resulting model, we use the following concept. Call a pair
〈B,C〉 = 〈{Bα ; α < ω1}, {Cα ; α < ω1}〉 of subfamilies of [ω]ω twisted iff

• Bα ⊂∗ Bβ for α < β,
• C is an almost disjoint family,
• Bα ∩Cβ is finite for all α, β, and
• whenever D ∈ [ω]ω has infinite intersection with uncountably many Cα’s, then D ∩ Bβ

is infinite for some (for almost all) β’s.

If there is a twisted family 〈B,C〉, then dp = ω1 is immediate. Hence it suffices to prove
the existence of a twisted family in the forcing extension. This will be done in three steps:
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16 Jörg Brendle

we show there is such a family in the ground model, we prove any twisted family remains
twisted after forcing with some Q(A)—this is the main technical result—, and we show
that twistedness is preserved in limit steps of finite support iterations. The first and the
last of these steps are standard arguments. However, we include proofs to make our work
self-contained.

Lemma 2.1 Assume CH. Then there is a twisted family 〈B,C〉 = 〈{Bα ; α < ω1}, {Cα :
α < ω1}〉.

Proof Let {Dα ; α < ω1} enumerate [ω]ω . B and C will be constructed recursively to
satisfy all four requirements of “twistedness”. Assume {Bβ ; β < α} and {Cβ ; β < α}
have been produced as required.

If Dα is almost contained in the union of finitely many Cβ ’s, we choose Bα and Cα to
satisfy the first three requirements of “twistedness”. This is easy because α is countable.

If Dα is not almost contained in the union of finitely many Cβ ’s, then we can find first
D ′ ⊆ Dα infinite which is almost disjoint from all Cβ ’s, and then Bα almost containing D ′

and all Bβ and still almost disjoint from all Cβ ’s. Finally choose Cα almost disjoint from all
Cβ ’s and from Bα.

This completes the recursive construction. It is immediate that the fourth requirement
of “twistedness” is satisfied at the end.

Main Lemma 2.2 If A is an almost disjoint family, then Q(A) preserves twisted families—
i.e., whenever 〈B,C〉 is twisted (in the ground model), then

‖−Q(A) “〈B,C〉 is twisted”.

Proof Let Ḋ be a Q(A)-name for an infinite subset of ω, and let p ∈ Q(A) such that

p ‖− “Ḋ ∩ Bβ is finite for all (uncountably many) β’s”.

We have to find q ≤ p such that

(?) q ‖− “Ḋ ∩Cα is finite for almost all α’s”.

For each β < ω1, we can find qβ ≤ p and kβ ∈ ω such that

(??) qβ ‖− “Ḋ ∩ Bβ ⊆ kβ”.

Using standard pruning arguments (∆-system lemma), we can assume without loss that,
for all β, we have k = kβ for some k, qβ = (σ, φβ,Γβ) for some σ, and Γβ = Γ ∪∆β for
some Γ where the ∆β are pairwise disjoint. Since we must have (σ, χ,Γ) ≤ p for some χ
with φβ ≥ χ for all β, we may assume p = (σ, χ,Γ).

Given τ ⊇ σ and φ ′ ≥ χ as well as Γ ′ ⊇ Γ, say that τ is compatible with q ′ = (σ, φ ′,Γ ′)
iff τ (i) ≥ φ ′(τ i) and τ (i) /∈

⋃
α∈Γ ′ Aα for all |σ| ≤ i < |τ | (this holds of course iff

(τ , φ ′′,Γ ′) ≤ (σ, φ ′,Γ ′) for some φ ′ ′). In case Γ ′ = Γ, we also say τ is compatible with φ ′.
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Dow’s Principle and Q-Sets 17

Note that σ is (trivially) compatible with uncountably many (in fact, with all) qβ ’s. As-
sume τ ⊇ σ is compatible with uncountably many qβ ’s. Since the ∆β ’s are pairwise dis-
joint, we can easily find an ` such that τˆ〈n〉 is compatible with uncountably many qβ ’s for
all n ∈ ω \

⋃
α∈Γ Aα with n ≥ `.

These remarks allow us to construct recursively φ ≥ χ such that whenever τ is compati-
ble with φ, then it’s also compatible with uncountably many qβ ’s. Put q = (σ, φ,Γ) ≤ p. (†)

For ` ∈ ω, let ρ` denote the rank function ρ`,Γ,Ḋ as defined at the beginning of this
section. The Dτ ,i are defined accordingly. Fix τ and ` such that ρ`(τ ) < ω1. Call β ∈ ω1

(τ , `)-bad iff the set {n ∈ ω \
⋃
α∈Γβ

Aα ; ρ`(τˆ〈n〉) < ρ`(τ )} is finite. At most one β can
be (τ , `)-bad. Hence there are at most countably many β’s which are (τ , `)-bad for some τ
and `, and we may as well assume, without loss, that no β is (τ , `)-bad for any τ , `. (‡)

We now distinguish two cases the first of which yields a contradiction.

Case 1 There is τ compatible with φ such that for uncountably many α’s, the intersection
Dτ ,i ∩Cα is infinite for all i.

Fix such τ . By (†), we can assume, without loss, that τ is compatible with all qβ ’s. Fix i
so large that there are uncountably many pairs β, β ′ such that

⋃
α∈∆β

Aα ∩
⋃
α∈∆β ′

Aα ⊆ i

and φβ(τ ), φβ ′(τ ) ≤ i. Then use the twistedness of 〈B,C〉 to find β0 such that Bβ0 ∩Dτ ,i is
infinite. Next find β, β ′ ≥ β0 with

⋃
α∈∆β

Aα ∩
⋃
α∈∆β ′

Aα ⊆ i and φβ(τ ), φβ ′(τ ) ≤ i. Let

B̄γ = {` ∈ Bβ0 ; ρ`(τˆ〈n〉) < ω1 for some n ∈ ω \
⋃
α∈Γγ

Aα with n ≥ i} for γ ≥ β0. Then

B̄β ∪ B̄β ′ = Bβ0 ∩ Dτ ,i , hence either B̄β or B̄β ′ is infinite. Assume without loss the former.
Fix ` ∈ B̄β ∩ Bβ with ` ≥ k and n ∈ ω \

⋃
α∈Γβ

Aα, n ≥ i, with ρ`(τˆ〈n〉) < ω1.
We now construct recursively natural numbers n j , j ∈ m, with n0 = n < n1 < · · · <

nm−1, ρ`(τˆ〈n0〉) > ρ`(τˆ〈n0n1〉) > · · · > ρ`(τˆ〈n0 · · · nm−1〉) = 0 and τˆ〈n0 · · · nm−1〉
compatible with qβ : by construction, we know that τ and τˆ〈n〉 are compatible with qβ ;
since β is not (τˆ〈n0 · · · n j〉, `)-bad by (‡), we can find n j+1 such that ρ`(τˆ〈n0 · · · n j〉) >
ρ`(τˆ〈n0 · · · n j+1〉) and τˆ〈n0 · · · n j+1〉 is compatible with qβ ; thus the construction can be
carried out. By definition of ρ`, there is q ′ = (τˆ〈n0 · · · nm−1〉, φ ′,Γ ′) such that

q ′ ‖− “` ∈ Ḋ”.

Now, q ′ is compatible with qβ , but, by (??), any common extension forces contradictory
statements. Hence case 1 fails.

Case 2 For all τ compatible with φ and all but countably many α’s, there is i = iτ ,α such
that the set Dτ ,i is almost disjoint from Cα.

For all such τ , let Θτ = {α ; Dτ ,i ∩ Cα is infinite for all i}. Let Θ =
⋃
τ Θτ . Θ is

countable by assumption. We claim that

q ‖− “Ḋ ∩Cα is finite for α ∈ ω1 \Θ”

which shows (?).
To see this, let r ≤ q, r = (τ , ψ,∆). Let α ∈ ω1 \Θ. Put E := Dτ ,iτ,α ∩Cα which is finite.

We shall construct (recursively) ψ ′ ≥ ψ such that ρ`(τ ′) = ∞ for all τ ′ ⊇ τ compatible
with ψ ′ and all ` ∈ Cα \ E. A fortiori, this means that

r ′ ‖− “Ḋ ∩Cα ⊆ E”
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18 Jörg Brendle

where r ′ = (τ , ψ ′,∆) ≤ r, as required.
If ` ∈ Cα \ E, and thus ` /∈ Dτ ,iτ,α , we have ρ`(τ ) =∞ by definition of ρ` and of Dτ ,iτ,α .

This takes care of the basic step of the recursive construction. To deal with the induction
step, assume ψ ′ has been defined for all τ ′ of length < m (where m ≥ |τ |). Fix τ ′ ⊇ τ of
length m compatible with ψ ′; then by inductive assumption ρ`(τ ′) =∞ for all ` ∈ Cα \ E.
We know ρ`(τ ′ˆ〈n〉) =∞ for all ` /∈ Dτ ′,iτ ′ ,α and all n ≥ iτ ′,α. Also Dτ ′,iτ ′ ,α ∩Cα is finite.
Let ` ∈ (Dτ ′,iτ ′ ,α ∩ Cα) \ E; then ρ`(τ ′) = ∞; thus there are only finitely many n with
ρ`(τ ′ˆ〈n〉) < ω1; hence we can find i ≥ iτ ′,α such that for all n ≥ i and all ` ∈ Cα \ E,
we have ρ`(τ ′ˆ〈n〉) = ∞. Let ψ ′(τ ′) = i; then ψ ′ is as required. This completes the
construction of ψ ′, and the proof of the main lemma.

Iteration Lemma 2.3 Twisted families are preserved in limit steps of finite support iterations
of ccc p.o.’s—i.e., whenever 〈Pγ, Q̇γ ; γ < δ〉, δ a limit ordinal, is such an iteration and 〈B,C〉
satisfies

‖−γ “〈B,C〉 is twisted”

for all γ < δ, then
‖−δ “〈B,C〉 is twisted”.

Proof Since new countable subsets of ω can appear only in limit steps of countable cofi-
nality in such iterations, we may assume without loss that δ = ω.

Let Ḋ be a Pω-name for an infinite subset of ω, and let p ∈ Pω such that

p ‖−ω “Ḋ ∩ Bβ is finite for all β’s”.

For each β < ω1 find pβ ≤ p and kβ ∈ ω such that

pβ ‖−ω “Ḋ ∩ Bβ ⊆ kβ”.

Without loss there is n such that pβ ∈ Pn for all β. Since Pn is ccc, there is a Pn-generic filter
Gn such that {β ; pβ ∈ Gn} is uncountable. Step into V [Gn], and let D =
{` ; q ‖− “` ∈ Ḋ” for some q ∈ Pω with q n ∈ Gn}. For any β with pβ ∈ Gn, we
have D ∩ Bβ ⊆ kβ . Thus |D ∩Cα| < ω for all but countably many α’s. This means that

‖−[n,ω) “Ḋ ∩Cα is infinite for at most countably many α’s”,

as required.

Putting together the three preceding lemmata, we can prove Theorem A.

Theorem 2.4 Let λ > ω1 be regular. It is consistent that dp = ω1 < λ = ap = c.

We now proceed to show the consistency of ap < q. We perform again a finite support
iteration of length λ ≥ ω2 of p.o.’s of the form Q(A) over a model for GCH. However
we only deal with A ⊆ [2<ω]ω of size < λ which consist of branches, and we take care of
all such A’s by a book-keeping argument. By arguments like those at the beginning of our
work (Lemma 1.1), this will guarantee that q = c = λ.

To see that ap = ω1 after the iteration, we need the following device. Call a pair 〈B,C〉 =
〈{Bα ; α < ω1}, {Cα ; α < ω1}〉 of infinite subsets of ω intertwined iff
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Dow’s Principle and Q-Sets 19

• B ∪ C is an almost disjoint family, and
• whenever D ∈ [ω]ω has infinite intersection with uncountably many Cα’s, then D ∩ Bβ

is infinite for almost all β’s.

If there is an intertwined family, then obviously ap = ω1. Therefore we proceed to show
the existence of such a family in the forcing extension. The proof of the following lemma
is tedious, but straightforward, and therefore left to the reader (cf. Lemma 2.1 which is
similar).

Lemma 2.5 Assume CH. Then there is an intertwined family 〈B,C〉.

Main Lemma 2.6 If A ⊆ [2<ω]ω is a family of branches, then Q(A) preserves intertwined
families—i.e., whenever 〈B,C〉 is intertwined (in the ground model), then

‖−Q(A) “〈B,C〉 is intertwined”.

Proof We approach this lemma in a fashion very similar to the proof of Lemma 2.2, and
therefore try to be as brief as possible. The five first paragraphs of the former proof can be
taken over almost verbatim. We refrain from giving them again, and leave the rare differ-
ences to the reader. The treatment of case 2 is also the same, hence we restrict ourselves to
dealing with

Case 1 There is τ compatible with φ such that for uncountably many α’s, Dτ ,i ∩ Cα is
infinite for all i.

Fix such τ compatible with all qβ ’s (without loss). Let Θ = {α ; all Dτ ,i ∩ Cα are
infinite} ∈ [ω1]ω1 . For u ∈ 2<ω and i ∈ ω define

Du
i =
{
` ; ρ`(τˆ〈t〉) < ω1 for some t ∈ ω

∖ ⋃
α∈Γ

Aα with u ⊆ t and t ≥ i
}
.

(Recall here that we identify 2<ω and ω. Thus “u ⊆ t” refers to the p.o. on 2<ω , and “t ≥ i”
refers to the l.o. on ω.) Build a tree T ⊆ 2<ω as follows: u ∈ T iff for uncountably many
α ∈ Θ we have that Du

i ∩ Cα is infinite for all i. Note that, by assumption, 〈 〉 ∈ T, and if
t ∈ T then either tˆ〈0〉 ∈ T or tˆ〈1〉 ∈ T. Hence T has an infinite branch, call it f ∈ 2ω.
Now let, for n ∈ ω,

Dn,0 =
{
` ; ρ`(τˆ〈t〉) < ω1 for some t ∈ ω

∖ ⋃
α∈Γ

Aα with f n ⊆ t ⊆ f
}

and

Dn,1 =
{
` ; ρ`(τˆ〈t〉) < ω1 for some t ∈ ω

∖ ⋃
α∈Γ

Aα with f n ⊆ t * f
}
.

Again, for all n, we either have |Dn,0∩Cα| = ω for uncountably many α or |Dn,1∩Cα| = ω
for uncountably many α. Note that if { f n ; n ∈ ω} = Aα for some α ∈ Γ, then the

second case must hold, for then Dn,1 = D f n
0 . We distinguish the two cases.

Subcase a For all n, we have |Dn,0 ∩Cα| = ω for uncountably many α.
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20 Jörg Brendle

By the preceding remark, there is at most one β0 such that { f n ; n ∈ ω} = Aα for some
α ∈ Γβ0 . Hence we can fix n such that for uncountably many β, we have φβ(τ ) ≤ f m and
f m /∈

⋃
α∈Γβ

Aα for all m ≥ n; without loss this is true for all β. By intertwinedness of

〈B,C〉 we find β such that |Dn,0 ∩ Bβ | = ω. Fix ` ∈ Dn,0 ∩ Bβ with ` > k and m ≥ n with
ρ`(τˆ〈 f m〉) < ω1. Then τˆ〈 f m〉 is compatible with qβ , and we can recursively construct
a condition q ′ compatible with qβ such that

q ′ ‖− “` ∈ Ḋ”,

a contradiction (see the corresponding argument in the proof of Lemma 2.2 for details).

Subcase b For all n, we have |Dn,1 ∩Cα| = ω for uncountably many α.
Fix n such that for uncountably many β, we have φβ(τ ) ≤ u and u /∈

⋃
α∈Γβ

Aα for all

u ⊇ f n with u * f . This is possible since each Aα is a branch. Without loss this is true for
all β, and we can again use the intertwinedness of 〈B,C〉 to proceed as before in Subcase a.

This completes the proof of the Main Lemma.

As before a standard argument shows:

Iteration Lemma 2.7 Intertwined families are preserved in limit steps of finite support itera-
tions of ccc p.o.’s—i.e., whenever 〈Pγ, Q̇γ ; γ < δ〉, δ a limit ordinal, is such an iteration and
〈B,C〉 satisfies

‖−γ “〈B,C〉 is intertwined”

for all γ < δ, then
‖−δ “〈B,C〉 is intertwined”.

We conclude with Theorem B which is the consequence of the three preceding lemmata.

Theorem 2.8 Let λ > ω1 be regular. It is consistent that ap = ω1 < λ = q = c.

Remark 2.9 Note that, by generalizing the notions of “twistedness” and “intertwinedness”
appropriately, we can get the consistency of κ = dp < ap = λ and of κ = ap < q = λ
for arbitrary regular κ < λ. (In fact, it suffices to use B of size κ (instead of ω1). Apart
from forcings of type Q(A), the iteration also involves forcings of size < κ to guarantee
dp ≥ κ (ap ≥ κ, respectively). A standard argument shows such forcings do not destroy
twistedness (intertwinedness, resp.).) In the same vein, we can even show the consistency
of κ = dp < λ = ap < µ = q for arbitrary regular κ < λ < µ.

3 Comments and Questions

We shall briefly discuss a few variants of the main cardinal coefficients considered in this
work, and then touch upon their relationship to some of the classical cardinal invariants of
the continuum. Consider the following restricted (“countable”) versions of the cardinals.
Let dp1 be the size of the minimal A ⊆ [ω]ω such that there is some countable B ⊆ [ω]ω

such that A⊥B and 〈A,B〉 cannot be weakly separated. Similarly, ap1 is the cardinality of
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the least A ⊆ [ω]ω such that there is some countable B ⊆ [ω]ω such that A ∪ B is a.d.
and 〈A,B〉 is not weakly separated. Recall that a set of reals X ⊆ ωω is said to be a σ-set iff
every Fσ-subset of X is a Gδ-set; X is called a λ-set iff every countable subset of X is a relative
Gδ . Given a family of sets of reals F ⊆ P(ωω), let non(F), the uniformity of F, denote the
size of the smallest set of reals which does not belong to F. Notice that non(λ-set) can be
considered as a “countable” version of q.

Given f , g ∈ ωω , we say f ≤∗ g (g eventually dominates f ) iff f (n) ≤ g(n) for all but
finitely many n. Let b, the unbounding number, be the size of the smallest subfamily F of
ωω such that no g ∈ ωω eventually dominates all members of F. The dominating number d

is the size of the smallest subfamily F of ωω such that every g ∈ ωω is eventually dominated
by some member of F. Clearly b ≤ d.

With these conventions one has the following well-known result.

Theorem 3.1 b = dp1 = ap1 = non(σ-set)= non(λ-set).

Proof See [vD, Sections 3 and 9].

This shows that the behaviour of the countable versions substantially differs from the
behaviour of the unrestricted versions. The former simply coincide, while the latter are
consistently different. This sheds new light on the interest of the results of Section 2.

Corollary 3.2 q ≤ b.

Next consider the following restricted versions of the cardinals. dp2 is the cardinality of
the least B ⊆ [ω]ω such that there is some countable A ⊆ [ω]ω such that A⊥B and 〈A,B〉
cannot be weakly separated. Similarly, ap2 is the size of the smallest B ⊆ [ω]ω such that
for some countable A ⊆ [ω]ω , A ∪ B is a.d. and 〈A,B〉 is not weakly separated. There is
no corresponding version of q because every countable subset of a set of reals is a (relative)
Fσ . We prove again that these cardinals give us nothing new.

Theorem 3.3 d = dp2 = ap2.

Proof dp2 ≤ ap2 is trivial.
To see d ≤ dp2, take κ < d, B = {Bα ; α < κ} and A = {An ; n ∈ ω} orthog-

onal. Given α < κ, define fα ∈ ωω by fα(n) = the least ` > n such that (
⋃

n≤ j<` A j \⋃
i<n Ai) ∩ Bα contains an element < `. (This always exists because we may increase the

An, if necessary, by finitely many points so that they exhaust all of ω.)
Now find g ∈ ωω strictly increasing which is not eventually dominated by any member

of the family of functions gotten from the fα by taking finite maxima. Let I0 =
[
0, g(0)

)
,

and, in general, In =
[
gn(0), gn+1(0)

)
, where we put gn+1(0) = g

(
gn(0)

)
. Let E be the even

and O the odd numbers. Then either for allα < κ there are infinitely many n ∈ E such that
there is k ∈ In with fα(k) < g(k), or there are infinitely many n ∈ O with this property.
(Otherwise we could find α0 such that only finitely many n ∈ E have this property and
α1 such that only finitely many n ∈ O have this property. Then the maximum of fα0 and
fα1 would eventually dominate g which contradicts the choice of the latter.) Without loss
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assume the former. Put

X =
⋃
n∈ω

[( ⋃
g2n(0)≤ j<g2n+2(0)

A j

∖ ⋃
i<g2n(0)

Ai

)
∩ g2n+2(0)

]
.

It’s obvious that X ∩ An is finite for all n ∈ ω.
To see X ∩ Bα is infinite for all α < κ, find 2n ∈ E and k ∈ I2n =

[
g2n(0), g2n+1(0)

)
such that fα(k) < g(k). Then g2n(0) ≤ k < fα(k) < g(k) < g2n+2(0). Hence(⋃

g2n(0)≤ j<g2n+2(0) A j \
⋃

i<g2n(0) Ai

)
∩ Bα contains an element less than g2n+2(0). This must

belong to X.
Finally, we show ap2 ≤ d. Let κ < ap2, and choose {gα ; α < κ} ⊆ ωω . We have to

find g ∈ ωω such that for all α < κ, we have g(n) ≥ gα(n) for infinitely many n. For this let
An = {n} × ω, choose Cα ⊆ ω a.d. and let Bα = {〈i, j〉 ; i ∈ Cα and j = gα(i)}. Clearly
the An and the Bα are pairwise almost disjoint. Since κ < ap2, there is D ∈ [ω × ω]ω such
that D∩Bα is infinite for all α and D∩An is finite for all n. Let g(n) = max{ j ; 〈n, j〉 ∈ D}.
Clearly for all α there are infinitely many n ∈ Cα with gα(n) ≤ g(n).

Note that the different characterizations of dp1 and dp2 (ap1 and ap2, resp.) shed new
light on the asymmetry in the definition of Dow’s principle (of the almost disjointness
principle, resp.).

We saw already in Section 1 that Q-sets are closely related to families of branches in 2<ω .
This makes the following characterization of q plausible.

Proposition 3.4 q = min{|A| ; A ⊆ [2<ω]ω is a family of branches and there is B ⊆ A

such that 〈B,A \B〉 is not weakly separated}.

Proof Let ap′ denote the cardinal on the right-hand side. ap′ ≤ q was proved in
Lemma 1.1. To see q ≤ ap′, fix κ < q and A = {Aα ; α < κ} a family of branches
in 2<ω ; i.e., Aα = { fα n ; n ∈ ω} for some fα ∈ 2ω. Given any Γ ⊆ κ, find open sets
Un ⊆ 2ω, n ∈ ω, with Un+1 ⊆ Un such that { fα ; α < κ} ∩

⋂
n Un = { fα ; α ∈ Γ}.

Suppose Un =
⋃

i[σn,i], σn,i ∈ 2<ω ; we can assume that σn,i and σn, j are incomparable for
i 6= j (otherwise throw out the superfluous σn,i); we can also assume that |σn,i| ≥ n for all
i and all n (otherwise split shorter σn,i into longer ones). Now let B = {σn,i ; n, i ∈ ω}. It
is easily checked that |B ∩ Aα| = ω for α ∈ Γ and |B ∩ Aα| < ω for α ∈ κ \ Γ.

To get a better upper bound for ap we need the following two cardinals. Let M denote
the ideal of meager subsets of either 2ω or ωω . cov(M), the covering number of M, stands
for the cardinality of the smallest covering of the real line by meager sets, and add(M), the
additivity of M, denotes the size of the smallest collection of meager sets whose union is
not meager. It’s well-known that add(M) = min{b, cov(M)}; that cov(M) ≤ d; and that
p ≤ add(M) (see [BJ, Chapter 2] for details).

Proposition 3.5 ap ≤ cov(M).

Proof We use Bartoszyński’s characterization of the cardinal cov(M); that is, cov(M) is
the size of the smallest F ⊆ ωω such that for each g ∈ ωω there is f ∈ F such that the set
{n ∈ ω ; f (n) = g(n)} is finite. See [BJ, Theorem 2.4.1].
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c

d

b
cov(M)

q
add(M)

ap

dp s

p

ω1

Diagram 1

Let us take κ < ap and { fα ; α < κ} ⊆ ωω . Choose {Cα ; α < κ} an almost disjoint
family of subsets of ω of size κ. Work in ω × ω. For α < κ, let Bα = {〈n,m〉 ; n ∈ Cα and
m = fα(n)}. Also define Aα = {〈n,m〉 ; n ∈ Cα and m < fα(n)} for α < κ. Since κ < ap,
there is D ∈ [ω × ω]ω which meets all Aα only finitely often but intersects all Bα infinitely
often. Define g ∈ ωω by g(n) = min{m ; 〈n,m〉 ∈ D} if the latter set is non-empty, and
arbitrary otherwise. We leave it to the reader to verify that {n ∈ Cα ; fα(n) = g(n)} is
infinite for all α < κ, as required.

Corollary 3.6 ap ≤ add(M).

Whether similar results can be proved about q is open. This problem was first investi-
gated by A. Miller.

Question 3.7 (Miller) Is q ≤ cov(M)?
Given A,B ∈ [ω]ω , we say A splits B iff both A ∩ B and B \ A are infinite. S ⊆ [ω]ω

is a splitting family iff for all B ∈ [ω]ω there is A ∈ S which splits B. Let s be the size of
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the smallest splitting family (the splitting number). It is well-known that p ≤ s ≤ d [vD,
Section 3]. The relationship between the cardinals discussed in this work is illustrated in
Diagram 1. There, cardinals grow larger as one moves upwards along the lines. Let us notice
that Dow [Do] proved (implicitly) the consistency of dp > s (simply apply the techniques
of [BD] to Dow’s forcing). On the other hand, the consistency of q < min{s, add(M)}
is well-known (note that if X is an infinite Q-set, then 2|X| = c; hence one can first blow
up 2ω1 with countable conditions, and then iterate ccc forcing to increase s and add(M); if
c < 2ω1 , we will have q = ω1).
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