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Abstract

Nonlinear filtering is investigated in a system where both the signal system and the
observation system are under non-Gaussian Lévy fluctuations. Firstly, the Zakai equation
is derived, and it is further used to derive the Kushner–Stratonovich equation. Secondly,
by a filtered martingale problem, uniqueness for strong solutions of the Kushner–
Stratonovich equation and the Zakai equation is proved. Thirdly, under some extra
regularity conditions, the Zakai equation for the unnormalized density is also derived in
the case of α-stable Lévy noise.
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1. Introduction

Consider a partially observed system (X, Y ) on a complete filtered probability space (�,F,
{Ft }t∈[0,T ],P) with T > 0 a fixed time. Here Xt stands for the unobservable component
of the process, referred to as the signal process, whereas Yt is the observable part, called the
observation process. Given a Borel measurable functionF , the nonlinear filtering problem leads
to evaluating the ‘filter’E[F(Xt) | FYt ], where FYt is the σ -algebra generated by {Ys, 0 ≤ s ≤ t}
and E|F(Xt)| < ∞ for t ∈ [0, T ].

Filtering problems arise from various contexts in engineering, information science, and
finance. Filtering problems for systems with Gaussian noise have been widely studied; see [3],
[19], and the references therein. When X and Y are continuous diffusion processes, Rozovskii
[19] formulated a nonlinear filtering theory by means of stochastic evolution systems. See [20]
for more recent results under more general conditions.

Nonlinear filtering problems with jump diffusion signal processes or observation processes
are considered by some authors. In [14], Meyer-Brandis and Proske studied a nonlinear filtering
problem with continuous diffusion signals and mixed observations, modeled by a Brownian
motion and a generalized Cox process, whose jump intensity is given in terms of a Lévy
measure (see Section 2.2). Later, Mandrekar et al. [12] added jumps to signal processes
and obtained the corresponding Zakai equation. Popa and Sritharan [15] derived Zakai and
Kushner–Stratonovich equations for nonlinear filtering problems with Itô–Lévy diffusion signal
processes and continuous diffusion observation processes. In [4] and [5], Ceci and Colaneri
dealt with a filtering problem of a jump diffusion process X and a correlated jump diffusion
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process Y in the one-dimensional case. They derived Kushner–Stratonovich equations by the
innovation method in [4] and Zakai equations by the change of measure in [5]. These two
methods are major approaches to investigate nonlinear filtering problems.

In this paper, we combine Itô–Lévy diffusion signal processes in [15] with mixed
observations in [14] and study a type of nonlinear filtering problems for the multidimensional
case. Compared with the results in [4] and [5], our driven processes are more general and the
assumption conditions are weaker. We derive the Zakai and Kushner–Stratonovich equations
and then represent the filter by an integral. It is worthwhile to mention that the integral
characterization of the unnormalized filter was considered in [7] under the same assumption to
Assumption 5.1 (see Section 5). Since signals are continuous diffusion processes in [7], our
Lemma 5.1 is a generalization of [7, Theorem 2.2]. Note that Grigelionis and Mikulevicius
[8] studied a nonlinear filtering problem with jump diffusion signal processes and observation
processes and derived the Zakai and Kushner–Stratonovich equations. However, because their
observation processes are very general, the integral representation for the filter was not obtained
in [8].

This paper is arranged as follows. In Section 2 we introduce Sobolev spaces and α-stable
Lévy processes. Zakai and Kushner–Stratonovich equations are derived in Section 3. In
Section 4, by a filtered martingale problem (FMP), uniqueness for strong solutions of the
Kushner–Stratonovich equation and the Zakai equation is proved. In Section 5, we prove the
existence of the unnormalized and normalized densities under some regularity conditions.

The following convention will be used throughout this paper: C with or without indices will
denote different positive constants (depending on the indices) whose values may change from
one place to another.

2. Preliminary

2.1. Sobolev spaces

Let C0(R
n) be the space of continuous functions f on R

n satisfying lim|x|→∞ f (x) = 0
with norm ‖f ‖C0(Rn) = supx∈Rn |f (x)|. Let C2

0 (R
n) be the set of f ∈ C0(R

n) such that f
is twice differentiable and the partial derivatives of f with order ≤ 2 belong to C0(R

n). Let
Ckc (R

n) stand for the space of all k-times differentiable functions on R
n with compact support.

Let S(Rn) be the Schwartz space of all rapidly decreasing real-valued C∞ functions on R
n and

S′(Rn) the space of all tempered distributions on R
n. Let f̂ and f̆ be the Fourier transform

and Fourier inversion transform of f ∈ S′(Rn), respectively. That is,

f̂ (u) = 1

(2π)n/2

∫
Rn

e−i〈u,x〉f (x) dx, f̆ (u) = 1

(2π)n/2

∫
Rn

ei〈u,x〉f (x) dx

for all u ∈ R
n. We introduce the following Sobolev space:

H
λ,2(Rn) := {f ∈ S′(Rn) : ‖f ‖λ,2 < ∞}

for any λ ∈ R, where

‖f ‖2
λ,2 :=

∫
Rn

(1 + |u|2)λ|f̂ (u)|2 du.

In particular, H
0,2(Rn) = L2(Rn).
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2.2. Symmetric α-stable Lévy processes

Definition 2.1. A process L = (Lt )t≥0 with L0 = 0 almost surely (a.s.) is a n-dimensional
Lévy process if

(i) L has independent increments; i.e.Lt−Ls is independent ofLv−Lu if (u, v)∩(s, t) = ∅;

(ii) L has stationary increments; i.e. Lt −Ls has the same distribution as Lv −Lu if t − s =
v − u > 0;

(iii) Lt is stochastically continuous;

(iv) Lt is right-continuous with left limit.

The characteristic function of Lt is given by

E[exp{i〈z, Lt 〉}] = exp{t�(z)}, z ∈ R
n.

The function � : R
n → C is called the characteristic exponent of the Lévy process L. By the

Lévy–Khintchine formula, there exist a nonnegative-definite n× n matrix Q, a measure ν on
R
n satisfying

ν({0}) = 0,
∫

Rn\{0}
(|u|2 ∧ 1)ν(du) < ∞,

and γ ∈ R
n such that

�(z) = i〈z, γ 〉 − 1

2
〈z,Qz〉 +

∫
Rn\{0}

(ei〈z,u〉 − 1 − i〈z, u〉 1{|u|≤1})ν(du).

The measure ν is called the Lévy measure.

Definition 2.2. For α ∈ (0, 2). An n-dimensional symmetric α-stable process Lα is a Lévy
process such that its characteristic exponent � is given by

�(z) = −C1(n, α)|z|α for z ∈ R
n

with C1(n, α) := π−1/2	((1 + α)/2)	(n/2)/	((n+ α)/2).

Thus, for an n-dimensional symmetric α-stable process Lα , the diffusion matrix Q = 0, the
drift vector γ = 0, and the Lévy measure ν is given by

ν(du) = C2(n, α)

|u|n+α du with C2(n, α) := α	((n+ α)/2)

21−απn/2	(1 − α/2)
.

Define

(Lαf )(x) :=
∫

Rn\{0}
(f (x+u)−f (x)−〈∂xf (x), u〉 1{|u|≤1})

C2(n, α)

|u|n+α du for f ∈ C2
0 (R

n).

Then Lα extends uniquely to the infinitesimal generator of Lαt and by [2, Example 3.3.8,
p. 166], for every f ∈ C∞

c (R
n),

(Lαf )(x) = C1(n, α)[−(−�)α/2f ](x).
Moreover, the following result is well known (see [1]).

Theorem 2.1. Let Lα be as above for α ∈ (0, 2) and L2 = �, as defined on C∞
c (R

n) in
L2(Rn). Then Lα , 0 < α ≤ 2, has a unique closed extension to a self-adjoint negative
operator on the domain H

α,2(Rn).

https://doi.org/10.1239/aap/1444308887 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308887


Nonlinear filtering of stochastic dynamical systems 905

3. Nonlinear filtering

In this section we study nonlinear filtering for a non-Gaussian signal-observation system,
and derive Zakai and Kushner–Stratonovich equations.

Consider the following signal-observation (Xt , Yt ) system on R
n × R

m:

dXt = b1(Xt ) dt + σ1(Xt ) dBt +
∫

U1

f1(Xt−, u)Ñp(dt, du)

+
∫

U\U1

g1(Xt−, u)Np(dt, du), (3.1a)

dYt = b2(t, Xt ) dt + σ2(t) dWt +
∫

U2

f2(t, u)Ñλ(dt, du)

+
∫

U\U2

g2(t, u)Nλ(dt, du), 0 ≤ t ≤ T , (3.1b)

where B,W are d-dimensional and m-dimensional Brownian motion, respectively, and p
is a stationary Poisson point process of the class (quasi left-continuous) defined on (�,F,
{Ft }t∈[0,T ],P) with values in U and characteristic measure ν1. Here ν1 is a σ -finite measure
defined on a finite-dimensional, measurable normed space (U,U) with the norm ‖ · ‖U. Fix
U1 ∈ U with ν1(U \ U1) < ∞ and

∫
U1

‖u‖2
U
ν1(du) < ∞. Let Np((0, t], du) be the counting

measure of pt such that ENp((0, t], A) = tν1(A) for A ∈ U. Denote

Ñp((0, t], du) := Np((0, t], du)− tν1(du),

the compensated measure ofpt . LetNλ be an integer-valued random measure and its predictable
compensator is given by λ(t, Xt−, u)tν2(du), where the function λ(t, x, u) ∈ [ι, 1), 0 < ι < 1,
and ν2 is anotherσ -finite measure defined on U with ν2(U\U2) < ∞ and

∫
U2

‖u‖2
U
ν2(du) < ∞

for U2 ∈ U. That is, Ñλ((0, t], du) := Nλ((0, t], du)−λ(t, Xt−, u)tν2(du) is its compensated
measure. Moreover,Bt ,Wt ,Np,Nλ are mutually independent. The initial valueX0 is assumed
to be a random variable independent of Y0, Bt ,Wt ,Np, and Nλ. Under P, the initial value X0
is assumed to have a density function ρ with values in L2(Rn).

The mappings b1 : R
n �→ R

n, b2 : [0, T ] × R
n �→ R

m, σ1 : R
n �→ R

n×d , σ2 : [0, T ] �→
R
m×m, f1 : R

n × U1 �→ R
n, f2 : [0, T ] × U2 �→ R

m, g1 : R
n × (U \ U1) �→ R

n, and
g2 : [0, T ] × (U \ U2) �→ R

m are all Borel measurable. We make the following assumptions,
in order to guarantee existence and uniqueness for the solution of (3.1).

Assumption 3.1. (i) (H 1
b1,σ1,f1

). For x1, x2 ∈ R
n,

|b1(x1)− b1(x2)| ≤ L1|x1 − x2|κ1(|x1 − x2|),
‖σ1(x1)− σ1(x2)‖2 ≤ L1|x1 − x2|2κ2(|x1 − x2|),∫

U1

|f1(x1, u)− f1(x2, u)|p′
ν1(du) ≤ L1|x1 − x2|p′

κ3(|x1 − x2|),

hold for p′ = 2 and 4, where | · | denotes the length of a vector in R
n and ‖ · ‖ the Hilbert–

Schmidt norm from R
d to R

n. Here L1 is a constant and κi is a positive continuous function,
bounded on [1,∞) and it satisfies

lim
x↓0

κi(x)

log x−1 = δi < ∞, i = 1, 2, 3,

where δi ≥ 0, i = 1, 2, 3, are constants.
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(ii) (H 2
b1,σ1,f1

). For x ∈ R
n,

|b1(x)|2 + ‖σ1(x)‖2 +
∫

U1

|f1(x, u)|2ν1(du) ≤ L1(1 + |x|)2.

(iii) (H 1
b2,σ2,f2

). It holds that σ2(t) is invertible for t ∈ [0, T ], b2, σ2, σ
−1
2 are bounded by a

positive constant L2, and

∫ T

0

∫
U2

|f2(s, u)|2ν2(du) ds < ∞.

By [17, Theorem 1.2], (3.1) has a pathwise unique strong solution denoted by (Xt , Yt ). Set

�−1
t : = exp

{
−

∫ t

0
(σ−1

2 (s)b2(s,Xs))
i dWi

s − 1

2

∫ t

0
|σ−1

2 (s)b2(s,Xs)|2 ds

−
∫ t

0

∫
U2

log λ(s,Xs−, u)Nλ(ds, du)−
∫ t

0

∫
U2

(1 − λ(s,Xs, u))ν2(du) ds

}
.

Throughout, we use the convention that repeated indices imply summation.

Assumption 3.2. Let

E

[
exp

{∫ T

0

∫
U2

(1 − λ(s,Xs, u))
2

λ(s,Xs, u)
ν2(du) ds

}]
< ∞.

Set

Mt := −
∫ t

0
(σ−1

2 (s)b2(s,Xs))
i dWi

s +
∫ t

0

∫
U2

1 − λ(s,Xs−, u)
λ(s,Xs−, u)

Ñλ(ds, du),

and then under Assumption 3.2, M is a locally square integrable martingale. Moreover,
Mt −Mt− > −1 a.s. and

E
[
exp

{ 1
2 < Mc,Mc >T + < Md,Md >T

}]

= E

[
exp

{
1

2

∫ T

0
|σ−1

2 (s)b2(s,Xs)|2 ds +
∫ T

0

∫
U2

(
1 − λ(s,Xs, u)

λ(s,Xs, u)

)2

× λ(s,Xs, u)ν2(du) ds

}]

< ∞,

whereMc andMd are continuous and purely discontinuous martingale parts ofM , respectively.
Thus, from [16, Theorem 6], it follows that �−1

t , the Doléans–Dade exponential of M , is a
martingale. Define a measure P̃ via

dP̃

dP
= 1

�T
.
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By the Girsanov theorem for Brownian motions and random measures, it follows that under the
measure P̃ (3.1) is transformed as

dXt = b1(Xt ) dt + σ1(Xt ) dBt +
∫

U1

f1(Xt−, u)Ñp(dt, du)

+
∫

U\U1

g1(Xt−, u)Np(dt, du),

dYt = σ2(t) dW̃t +
∫

U2

f2(t, u)Ñ(dt, du)+
∫

U\U2

g2(t, u)Nλ(dt, du),

where

W̃t := Wt +
∫ t

0
σ−1

2 (s)b2(s,Xs) ds, Ñ(dt, du) := Nλ(dt, du)− dtν2(du).

We collect some properties of �t, W̃t , and Ñ in the next lemma.

Lemma 3.1. (i) �t satisfies the following equation:

�t = 1 +
∫ t

0
�s(σ

−1
2 (s)b2(s,Xs))

i dW̃ i
s +

∫ t

0

∫
U2

�s−(λ(s,Xs−, u)− 1)Ñ(ds, du).

(ii) Under the measure P̃, W̃t is a Brownian motion and Ñ is a Poisson martingale measure.

Proof. For (i), by the Itô formula, we obtain

�t = 1 +
∫ t

0
�s(σ

−1
2 (s)b2(s,Xs))

i dWi
s + 1

2

∫ t

0
�s |σ−1

2 (s)b2(s,Xs)|2 ds

+
∫ t

0

∫
U2

�s−(λ(s,Xs−, u)− 1)Nλ(ds, du)

+
∫ t

0

∫
U2

�s−(1 − λ(s,Xs−, u))ν2(du) ds + 1

2

∫ t

0
�s |σ−1

2 (s)b2(s,Xs)|2 ds

= 1 +
∫ t

0
�s(σ

−1
2 (s)b2(s,Xs))

i dW̃ i
s +

∫ t

0

∫
U2

�s−(λ(s,Xs−, u)− 1)Ñ(ds, du).

For (ii), we use [10, Theorem 3.17].

Set
P̃t (F ) := Ẽ[F(Xt)�t | FYt ],

where Ẽ denotes expectation under the measure P̃. The equation satisfied by P̃t (F ) is called
the Zakai equation.

In order to derive the Zakai equation, we need the following lemma.

Lemma 3.2. Let FW̃t ,F
Ñ
t be the σ -algebras generated by {W̃s, 0 ≤ s ≤ t}, {Ñ((0, s], A), 0 ≤

s ≤ t, A ∈ U}, respectively. Then

FYt = FW̃t ∨ FÑt ∨ FY0 .

Since its proof is similar to that in [19, Lemma 4, p. 228], we omit it.
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As in [18], introduce the infinitesimal generator L of Xt ,

(Lϕ)(x) = ∂ϕ(x)

∂xi
bi1(x)+ 1

2

∂2ϕ(x)

∂xi∂xj
σ ik1 (x)σ

kj
1 (x)

+
∫

U\U1

[ϕ(x + g1(x, u))− ϕ(x)]ν1(du)

+
∫

U1

[
ϕ(x + f1(x, u))− ϕ(x)− ∂ϕ(x)

∂xi
f i1 (x, u)

]
ν1(du) for ϕ ∈ C∞

c (R
n),

and denote its domain by D(L).
Now, we are ready to obtain the Zakai equation for P̃t (F ).

Theorem 3.1. (Zakai equation.) For F ∈ D(L), the Zakai equation of (3.1) is given by

P̃t (F ) = P̃0(F )+
∫ t

0
P̃s(LF) ds +

∫ t

0
P̃s(F (σ

−1
2 (s)b2(s, ·))i) dW̃ i

s

+
∫ t

0

∫
U2

P̃s−(F (λ(s, ·, u)− 1))Ñ(ds, du). (3.2)

Proof. Applying the Itô formula to Xt , we have

F(Xt) = F(X0)+
∫ t

0

∂F (Xs)

∂xi
bi1(Xs) ds +

∫ t

0

∂F (Xs)

∂xi
σ ik1 (Xs) dBks

+
∫ t

0

∫
U1

[F(Xs− + f1(Xs−, u))− F(Xs−)]Ñp(ds, du)

+
∫ t

0

∫
U\U1

[F(Xs− + g1(Xs−, u))− F(Xs−)]Np(ds, du)

+
∫ t

0

∫
U1

[
F(Xs− + f1(Xs−, u))− F(Xs−)− ∂F (Xs)

∂xi
f i1 (Xs−, u)

]
ν1(du) ds

+ 1

2

∫ t

0

∂2F(Xs)

∂xi∂xj
σ ik1 (Xs)σ

kj
1 (Xs) ds.

By the mutual independence of Bt , Ñp(dt, du),Wt , and Ñ(dt, du), it is clear that

F(Xt)�t = F(X0)+
∫ t

0
F(Xs−) d�s +

∫ t

0
�s− dF(Xs).

Taking the conditional expectation on both sides of this equation, we obtain

Ẽ[F(Xt)�t | FYt ] = Ẽ[F(X0) | FYt ] + Ẽ

[∫ t

0
F(Xs−) d�s

∣∣∣∣ FYt

]

+ Ẽ

[∫ t

0
�s− dF(Xs)

∣∣∣∣ FYt

]

=: I1 + I2 + I3. (3.3)

We now evaluate I1, I2, and I3 one by one. First, by the independence of X0 and FYt , we have

I1 = Ẽ[F(X0)] = Ẽ[F(X0) | FY0 ] = P̃0(F ). (3.4)
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By Lemma 3.1, it holds that

I2 = Ẽ

[∫ t

0
�sF(Xs)(σ

−1
2 (s)b2(s,Xs))

i dW̃ i
s

∣∣∣∣ FYt

]

+ Ẽ

[∫ t

0

∫
U2

�s−F(Xs−)(λ(s,Xs−, u)− 1)Ñ(ds, du)

∣∣∣∣ FYt

]

=: I21 + I22.

For I21, by Lemma 3.2 and [19, Theorem 1.4.7], we obtain

I21 =
∫ t

0
Ẽ[�sF(Xs)(σ−1

2 (s)b2(s,Xs))
i | FYs ] dW̃ i

s .

For I22, using the same method to that in the proof of [19, Theorem 1.4.7], we can prove by
the definition of stochastic integrations with respect to random measures (see [9]) and Lemma
3.2 that

I22 =
∫ t

0

∫
U2

Ẽ[�s−F(Xs−)(λ(s,Xs−, u)− 1) | FYs ]Ñ(ds, du).

Note that Ẽ[�s−F(Xs−)(λ(s,Xs−, u)− 1) | FYs ] is not predictable. Using the method of [13,
Theorem 2.3], we show that it admits a predictable modification.

Thus,

I2 =
∫ t

0
P̃s(F (σ

−1
2 (s)b2(s, ·))i) dW̃ i

s +
∫ t

0

∫
U2

P̃s−(F (λ(s, ·, u)− 1))Ñ(ds, du). (3.5)

For I3, from the independence of B, Ñp, and FY , it follows that

I3 = Ẽ

[∫ t

0
�s
∂F(Xs)

∂xi
bi1(Xs) ds

∣∣∣∣ FYt

]
+ Ẽ

[∫ t

0
�s
∂F(Xs)

∂xi
σ ik1 (Xs) dBks

∣∣∣∣ FYt

]

+ Ẽ

[∫ t

0

∫
U1

�s[F(Xs− + f1(Xs−, u))− F(Xs−)]Ñp(ds, du) | FYt

]

+ Ẽ

[∫ t

0

∫
U\U1

�s[F(Xs− + g1(Xs−, u))− F(Xs−)]Np(ds, du) | FYt

]

+ Ẽ

[
1

2

∫ t

0
�s
∂2F(Xs)

∂xi∂xj
σ ik1 (Xs)σ

kj
1 (Xs) ds

∣∣∣∣ FYt

]

+ Ẽ

[∫ t

0

∫
U1

�s

[
F(Xs− + f1(Xs−, u))− F(Xs−)− ∂F (Xs)

∂xi
f i1 (Xs−, u)

]
(3.6)

× ν1(du) ds

∣∣∣∣ FYt

]

=
∫ t

0
Ẽ

[
�s
∂F(Xs)

∂xi
bi1(Xs)

∣∣∣∣ FYs

]
ds + 1

2

∫ t

0
Ẽ

[
�s
∂2F(Xs)

∂xi∂xj
σ ik1 (Xs)σ

kj
1 (Xs)

∣∣∣∣ FYs

]
ds

+ Ẽ

[∫ t

0

∫
U\U1

�s[F(Xs− + g1(Xs−, u))− F(Xs−)]ν1(du) ds | FYt

]

+
∫ t

0

∫
U1

Ẽ

[
�s

[
F(Xs− + f1(Xs−, u))− F(Xs−)− ∂F (Xs)

∂xi
f i1 (Xs−, u)

] ∣∣∣∣ FYs

]

× ν1(du) ds
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=
∫ t

0
Ẽ[�sLF(Xs) | FYs ] ds

=
∫ t

0
P̃s(LF) ds, (3.7)

where we have used the property of random measures (see [9]).
Combining (3.3) with (3.4), (3.5), and (3.7), we obtain the Zakai equation (3.2).

Thus, by Theorem 3.1, P̃t (1) satisfies the following equation:

P̃t (1) = 1 +
∫ t

0
P̃s((σ

−1
2 (s)b2(s, ·))i) dW̃ i

s +
∫ t

0

∫
U2

P̃s−(λ(s, ·, u)− 1)Ñ(ds, du)

= 1 +
∫ t

0
P̃s(1)Ps((σ

−1
2 (s)b2(s, ·))i) dW̃ i

s

+
∫ t

0

∫
U2

P̃s−(1)Ps−(λ(s, ·, u)− 1)Ñ(ds, du). (3.8)

Set

M̃t :=
∫ t

0
Ps((σ

−1
2 (s)b2(s, ·))i) dW̃ i

s +
∫ t

0

∫
U2

Ps−(λ(s, ·, u)− 1)Ñ(ds, du).

Since ι < λ(t, x, u) < 1, by (H 1
b2,σ2,f2

), the Jensen inequality, and Assumption 3.2, we obtain
P̃t (1) = E(M̃)t , the Doléans–Dade exponential of M̃ . Thus, P̃t (1) > 0.

Besides, set
Pt (F ) := E[F(Xt) | FYt ],

and then, by the Kallianpur–Striebel formula, the following holds:

Pt (F ) = E[F(Xt) | FYt ] = Ẽ[F(Xt)�t | FYt ]
Ẽ[�t | FYt ] = P̃t (F )

P̃t (1)
. (3.9)

By using (3.8), the Zakai equation (3.2), and the Itô formula, together with a similar argument
as in the proof of Theorem 3.1, we obtain the Kushner–Stratonovich equation satisfied by Pt (F ).

Theorem 3.2. (Kushner–Stratonovich equation.) For F ∈ D(L), Pt (F ) solves the following
equation:

Pt (F ) = P0(F )+
∫ t

0
Ps(LF) ds +

∫ t

0
(Ps(F (σ

−1
2 (s)b2(s, ·))i)

− Ps(F )Ps((σ
−1
2 (s)b2(s, ·))i)) dW̄ i

s

+
∫ t

0

∫
U2

Ps−(Fλ(s, ·, u))− Ps−(F )Ps−(λ(s, ·, u))
Ps−(λ(s, ·, u)) N̄(ds, du), (3.10)

where W̄t := W̃t − ∫ t
0 Ps(σ

−1
2 (s)b2(s, ·)) ds is the innovation process and

N̄(dt, du) = Nλ(dt, du)− Pt−(λ(t, ·, u))ν2(du) dt.

The Kushner–Stratonovich equation (3.10) corresponds to [8, Equation (3.2)].
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4. Uniqueness for the Kushner–Stratonovich equation and the Zakai equation

In this section we first show uniqueness for strong solutions to the Kushner–Stratonovich
equation by means of an FMP (see [11]), and then apply the relation between the Kushner–
Stratonovich equation and the Zakai equation to prove uniqueness for the Zakai equation.

In this section we assume that g1(x, u) = 0, g2(t, u) = 0, and λ(t, x, u) = λ(t, u). And
then (3.1) is written as

d

(
Xt
Yt

)
=

(
b1(Xt )

b2(t, Xt )

)
dt +

(
σ1(Xt )0
0σ2(t)

)
d

(
Bt
Wt

)

+
∫

U1

(
f1(Xt−, u)

0

)
Ñp(dt, du)+

∫
U2

(
0

f2(t, u)

)
Ñλ(dt, du). (4.1)

Lemma 4.1. Suppose that (H 1
b1,σ1,f1

), (H 2
b1,σ1,f1

), and (H 1
b2,σ2,f2

) are satisfied. Then the
infinitesimal generator of (4.1) is given by

LX,YH(x, y) = ∂H(x, y)

∂xi
bi1(x)+ 1

2

∂2H(x, y)

∂xi∂xj
σ ik1 (x)σ

kj
1 (x)

+
∫

U1

[
H(x + f1(x, u), y)−H(x, y)− ∂H(x, y)

∂xi
f i1 (x, u)

]
ν1(du)

+ ∂H(x, y)

∂yl
bl2(t, x)+ 1

2

∂2H(x, y)

∂yl∂yq
σ lk2 (t)σ

kq
2 (t)

+
∫

U2

[
H(x, y + f2(t, u))−H(x, y)− ∂H(x, y)

∂yl
f l2(t, u)

]
λ(t, u)ν2(du)

for H ∈ D(LX,Y ).

By the Itô formula and the definition of the infinitesimal generator, it is easy to prove the
above lemma. Therefore, we omit its proof.

Before introducing an FMP, we define several notations. Let P (Rn) denote the set of the
probability measures on R

n and M+(Rn) denote the set of positive bounded Borel measures on
R
n. For a process π -valued in P (Rn) or M+(Rn), πt (F ) ≡ ∫

Rn
F (x)πt (·, dx), F ∈ C2

0 (R
n).

Definition 4.1. A process (π,U) defined on a probability space (�,F, {Ft }t∈[0,T ],P), with
càdlàg trajectories and values in P (Rn)× R

m, is a solution of the FMP (LX,Y ,X0, Y0) if π is
FUt -adapted and, for all H ∈ D(LX,Y ),

πt (H(·, Ut ))−
∫ t

0
πs(L

X,YH(·, Us)) ds

is a (P,FUt )-martingale and E[π0(H(·, U0))] = E[H(X0, Y0)].
Definition 4.2. Uniqueness for the FMP (LX,Y ,X0, Y0) means that if (π,U) is a solution of
the FMP (LX,Y ,X0, Y0), for each t ∈ [0, T ] there exists a Borel measurable P (Rn)-valued
function H̃t satisfying

πt = H̃t (U), Pt = H̃t (Y ), P-a.s.,

and (π,U) has the same distribution as (P, Y ).
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Definition 4.3. A strong solution for (3.10) is a FYt -adapted, càdlàg, P (Rn)-valued process
{πt }t∈[0,T ] such that {πt }t∈[0,T ] solves (3.10), i.e. for F ∈ D(L),

πt (F ) = P0(F )+
∫ t

0
πs(LF) ds +

∫ t

0
(πs(F (σ

−1
2 (s)b2(s, ·))i)

− πs(F )πs((σ
−1
2 (s)b2(s, ·))i)) dŴ i

s ,

where Ŵt := W̃t − ∫ t
0 πs(σ

−1
2 (s)b2(s, ·)) ds.

Definition 4.4. A strong solution for (3.2) is a FYt -adapted, càdlàg, M+(Rn)-valued process
{μt }t∈[0,T ] such that {μt }t∈[0,T ] solves (3.2), i.e. for F ∈ D(L),

μt (F ) = P̃0(F )+
∫ t

0
μs(LF) ds +

∫ t

0
μs(F (σ

−1
2 (s)b2(s, ·))i) dW̃ i

s

+
∫ t

0

∫
U2

μs−(F )(λ(s, u)− 1)Ñ(ds, du).

Now we prove uniqueness for solutions of the Kushner–Stratonovich equation.

Theorem 4.1. Suppose that uniqueness holds for the FMP (LX,Y ,X0, Y0). Let {πt }t∈[0,T ] be
a strong solution of (3.10). Then πt = Pt ,P-a.s. for all t ∈ [0, T ].

Proof. For G ∈ C∞
c (R

m), applying the Itô formula to (3.1), we obtain

G(Yt ) = G(Y0)+
∫ t

0

∂G(Ys)

∂y
b2(s,Xs) ds + 1

2

∫ t

0

∂2G(Ys)

∂yi∂yj
σ ik2 (s)σ

kj
2 (s) ds

+
∫ t

0

∫
U2

[
G(Ys− + f2(s, u))−G(Ys−)− ∂G(Ys−)

∂yj
f
j
2 (s, u)

]
λ(s, u)ν2(du) ds

+
∫ t

0

∂G(Ys)

∂y
σ2(s) dWs +

∫ t

0

∫
U2

[G(Ys− + f2(s, u))−G(Ys−)]Ñλ(ds, du).

Thus, from the above formula, Definition 4.3, and the Itô formula, it follows that, forF ∈ D(L),

πt (F )G(Yt ) = P0(F )G(Y0)+
∫ t

0
πs[LX,Y (F (·)G(Ys))] ds +

∫ t

0
πs(F )

∂G(Ys)

∂y
σ2(s) dŴs

+
∫ t

0
G(Ys)[πs(F (σ−1

2 (s)b2(s, ·))i)− πs(F )πs((σ
−1
2 (s)b2(s, ·))i)] dŴ i

s

+
∫ t

0

∫
U2

πs(F )[G(Ys− + f2(s, u))−G(Ys−)]Ñλ(ds, du). (4.2)

Note that W̄t is a F Y
t -Brownian motion (see [11]) and

Ŵs = W̄t −
∫ t

0
(πs(σ

−1
2 (s)b2(s, ·))− Ps(σ

−1
2 (s)b2(s, ·))) ds.

Set
h(s) := πs(σ

−1
2 (s)b2(s, ·))− Ps(σ

−1
2 (s)b2(s, ·)),

τN := T ∧ inf

{
t > 0 :

∫ t

0
|h(s)|2 ds > N

}
,
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and then τN is a F Y
t -stopping time and τN → T as N → ∞ by (H 1

b2,σ2,f2
). Define the

probability measure

dPN

dP
= exp

{∫ τN

0
h(s) dW̄s − 1

2

∫ τN

0
|h(s)|2 ds

}
.

Thus, from the Girsanov theorem, we have that Ŵt is a F Y
t -Brownian motion under PN .

Observe (4.2). Under PN ,

πτN∧t (F )G(YτN∧t )−
∫ τN∧t

0
πsL

X,Y (F (·)G(Ys)) ds

is a F Y
t -martingale. Moreover, for H ∈ D(LX,Y ),

πτN∧t (H(·, YτN∧t ))−
∫ τN∧t

0
πs(L

X,YH(·, Ys)) ds

is a (PN,FYt )-martingale. By uniqueness for the FMP (LX,Y ,X0, Y0) and [11, Corollary 3.4],
we know that there exists a P (Rn)-valued function H̃t such that

πt 1{t<τN } = H̃t (Y ) 1{t<τN } = Pt 1{t<τN }, PN -a.s.

Since PN and P are equivalent, we could have

πt 1{t<τN } = Pt 1{t<τN }, P-a.s.

Taking the limits on two sides as N → ∞, we have

πt = Pt , P-a.s.

The proof is completed.

Next, we state and prove uniqueness for solutions of the Zakai equation.

Theorem 4.2. Suppose that uniqueness holds for the FMP (LX,Y ,X0, Y0). Let {μt }t∈[0,T ] be
a strong solution of (3.2). Then μt = P̃t , P̃-a.s. for all t ∈ [0, T ].

Proof. For ε > 0, define the stopping time

τε := inf{t > 0 : μt−(1) < ε} ∧ T .
Set

πt∧τε := μt∧τε
μt∧τε (1)

,

and then πt∧τε is a FYt -adapted, càdlàg, P (Rn)-valued process. For F ∈ D(L), applying the
Itô formula to μt∧τε (F )/μt∧τε (1), we obtain

πt∧τε (F ) = P0(F )+
∫ t∧τε

0
πs(LF) ds +

∫ t∧τε

0
(πs(F (σ

−1
2 (s)b2(s, ·))i)

− πs(F )πs((σ
−1
2 (s)b2(s, ·))i)) dŴ i

s .
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Thus, {πt∧τε }t∈[0,T ] is a strong solution of (3.10). By Theorem 4.1,

πt 1{t<τε} = Pt 1{t<τε}, P-a.s. (4.3)

Next, observe μt∧τε (1) and P̃t∧τε (1). Note that P̃t∧τε (1) > 0. By the Itô formula, it holds
that

μt∧τε (1)
P̃t∧τε (1)

= 1 +
∫ t∧τε

0

[
μs((σ

−1
2 (s)b2(s, ·))i)

P̃s(1)
− μs(1)

P̃s(1)
Ps((σ

−1
2 (s)b2(s, ·))i)

]
dW̄ i

s .

For s < τε, from (4.3), it follows that

μs(1)

P̃s(1)
Ps((σ

−1
2 (s)b2(s, ·))i) = μs(1)

P̃s(1)
πs((σ

−1
2 (s)b2(s, ·))i) = μs((σ

−1
2 (s)b2(s, ·))i)

P̃s(1)
.

Thus,
μt∧τε (1) = P̃t∧τε (1), P-a.s. (4.4)

Substituting (4.3) into (4.4), we have

P̃t 1{t<τε} = Pt P̃t (1) 1{t<τε} = πtμt (1) 1{t<τε} = μt 1{t<τε}, P-a.s.

Since P̃ and P are equivalent,

P̃t 1{t<τε} = μt 1{t<τε}, P̃-a.s.

Thus, τε ≥ inf{t > 0 : P̃t (1) < ε} ∧ T . Note that inf{t > 0 : P̃t (1) < ε} ∧ T = T when ε is
small enough. So τε = T and P̃t = μt , P̃-a.s. The proof is completed.

Remark 4.1. Uniqueness of the FMP (LX,Y ,X0, Y0) is required in Theorems 4.1 and 4.2. In
fact, by [11, Theorem 3.3], this could be assured by adding regular conditions to b1, b2, σ1, σ2,

f1, and f2 such that D(LX,Y ) is a dense algebra in C0(R
n × R

m). Here we do not impose
concrete conditions.

5. The Zakai equation for the unnormalized density in the case of α-stable Lévy noises

In this section we solve (3.2) and obtain the unnormalized and normalized densities under
extra regularity conditions in the case of α-stable Lévy noises.

Assume that f1(x, u) = g1(x, u) = u, U = R
n \ {0},U1 = {u ∈ U : |u| ≤ 1}, ν1(du) =

(C2(n, α)/|u|n+α) du, and λ(t, x, u) = λ(t, u). Thus, (3.1) becomes

dXt = b1(Xt ) dt + σ1(Xt ) dBt +
∫

|u|≤1
uÑp(dt, du)+

∫
|u|>1

uNp(dt, du),

dYt = b2(t, Xt ) dt + σ2(t) dWt +
∫

U2

f2(t, u)Ñλ(dt, du)+
∫

U\U2

g2(t, u)Nλ(dt, du).

Under the measure P̃, by the Itô–Lévy decomposition theorem, the above system is converted
to

dXt = b1(Xt ) dt + σ1(Xt ) dBt + dLαt ,

dYt = σ2(t) dW̃t +
∫

U2

f2(t, u)Ñ(dt, du)+
∫

U\U2

g2(t, u)Nλ(dt, du),
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where

Lαt :=
∫ t

0

∫
|u|≤1

uÑp(ds, du)+
∫ t

0

∫
|u|>1

uNp(ds, du)

is a symmetric α-stable process independent ofBt . The infinitesimal generator L ofXt is given
by

(Lϕ)(x) = ∂ϕ(x)

∂xi
bi1(x)+ 1

2

∂2ϕ(x)

∂xi∂xj
σ ik1 (x)σ

kj
1 (x)

+
∫

Rn\{0}

[
ϕ(x + u)− ϕ(x)− ∂ϕ(x)

∂xi
ui 1{|u|≤1}

]
C2(n, α)

|u|n+α du

= ∂ϕ(x)

∂xi
bi1(x)+ 1

2

∂2ϕ(x)

∂xi∂xj
σ ik1 (x)σ

kj
1 (x)+ (Lαϕ)(x) for ϕ ∈ C2

0 (R
n).

To solve the Zakai equation for the unnormalized density, we need some stronger assump-
tions.

Assumption 5.1. For i = 1, 2, . . . , n and k = 1, 2, . . . , d, bi1 is one time differentiable in x
and σ ik1 is twice differentiable in x. Moreover, b1, σ1 and all their derivatives are bounded by
L3.

Define the adjoint operator L∗ of L for ψ ∈ C∞
c (R

n) as

(L∗ψ)(x) = − ∂

∂xi
(bi1(x)ψ(x))+ 1

2

∂2

∂xi∂xj
(σ ik1 (x)σ

kj
1 (x)ψ(x))+ (Lαψ)(x)

= (Aψ)(x)+ (Bψ)(x),

where

(Aψ)(x) := ∂ψ(x)

∂xi

[
−bi1(x)+ 1

2

∂(σ ik1 (x)σ
kj
1 (x))

∂xj
+ 1

2

∂(σ
jk
1 (x)σ ki1 (x))

∂xj

]

+ 1

2

∂2ψ(x)

∂xi∂xj
σ ik1 (x)σ

kj
1 (x)+ (Lαψ)(x),

(Bψ)(x) :=
[
−∂b

i
1(x)

∂xi
+ 1

2

∂2(σ ik1 (x)σ
kj
1 (x))

∂xi∂xj

]
ψ(x).

Thus, by [18, Lemma 4.2], A generates a strongly continuous contraction semigroup on C0(R
n).

Consider the following stochastic partial differential equation with jumps on the filtered
probability space (�,F, {FYt }t∈[0,T ], P̃):

dρ̃t = [Aρ̃t + Bρ̃t ] dt + ρ̃t (σ
−1
2 (t)b2(t, ·))i dW̃ i

t +
∫

U2

ρ̃t−(λ(t, u)− 1)Ñ(dt, du),

ρ̃0 = �−1
T ρ.

(5.1)

By [13, Theorem 2.4], (5.1) admits a unique mild solution ρ̃t , satisfying the following equation:

ρ̃t = etA�−1
T ρ +

∫ t

0
e(t−s)ABρ̃s ds +

∫ t

0
e(t−s)Aρ̃s(σ−1

2 (s)b2(s, ·))i dW̃ i
s

+
∫ t

0

∫
U2

e(t−s)Aρ̃s−(λ(s, u)− 1)Ñ(ds, du). (5.2)

Moreover, ρ̃t is predictable and Ẽ[supt∈[0,T ] ‖ρ̃t‖2
0,2] < ∞.
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Note that if more conditions are required, we could obtain some better properties of ρ̃t (see
[13, Theorem 2.7, 2.8]). Here we concentrate on providing a more general result.

Lemma 5.1. We have ρ̃t is density-valued and for F ∈ C∞
c (R

n), the following representation
holds:

P̃t (F ) =
∫

Rn

F (x)ρ̃t (x) dx. (5.3)

Proof. For F ∈ C∞
c (R

n), by the Sobolev imbedding theorem (see [19, Theorem 3.4.4]), the
following holds:

|P̃t (F )| ≤ sup
x∈Rn

|F(x)|P̃t (1) ≤ C‖F‖q,2P̃t (1),

where q > n/2. Besides, P̃t (1) satisfies (3.8). By the Burkholder–Davis–Gunder inequality
and case 3 of Assumption 3.1 (H 1

b2,σ2,f2
), we obtain

Ẽ

[
sup
t∈[0,T ]

P̃t (1)
2
]

≤ 3 + 3CẼ

[∫ T

0
P̃s(1)

2
n∑
i=1

|Ps((σ−1
2 (s)b2(s, ·))i)|2 ds

]

+ 3CẼ

[∫ T

0

∫
U2

P̃s(1)
2|λ(s, u)− 1|2ν2(du) ds

]

≤ 3 + 3C
∫ T

0
Ẽ

[
sup
s∈[0,t]

P̃s(1)
2
](
nL4

2 +
∫

U2

|λ(t, u)− 1|2ν2(du)

)
dt.

From the Grönwall inequality, it follows that

(
Ẽ

[
sup
t∈[0,T ]

P̃t (1)
])2 ≤ Ẽ

[
sup
t∈[0,T ]

P̃t (1)
2
]
< ∞.

Thus, there exists a�′ with�′ ⊂ � and P̃(�′) = 1, such that forω ∈ �′, supt∈[0,T ] P̃t (1) < ∞.

So the Riesz representation theorem implies that there exists a ut taking values in H
−q,2(Rn)

and satisfying

P̃t (F ) =
∫

Rn

F (x)ut (x) dx. (5.4)

Next, observe ut . Firstly, using the method of [13, Theorem 2.3], we could show that the
solution P̃t (F ) of (3.2) is predictable. And it follows from (5.4) that ut is predictable. Secondly,
replacing P̃t (F ) by

∫
Rn
F (x)ut (x) dx in (3.2), we obtain

∫
Rn

F (x)ut (x) dx =
∫

Rn

F (x)u0(x) dx +
∫

Rn

LF(x)

(∫ t

0
us(x) ds

)
dx

+
∫

Rn

F (x)

(∫ t

0
us(x)(σ

−1
2 (s)b2(s, x))

i dW̃ i
s

)
dx

+
∫

Rn

F (x)

(∫ t

0

∫
U2

us(x)(λ(s, u)− 1)Ñ(ds, du)

)
dx.

From this we know that ut (x) is a weak solution to (5.1). By [6, Theorem 5.4, p. 121], ut (x)
is also a mild solution to (5.1). So ut = ρ̃t . The proof is completed.

By Lemma 5.1, we know that ρ̃t is the unnormalized density and (5.2) is the Zakai equation
for the unnormalized density.

Now we are in the position to state the main result of this section.
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Theorem 5.1. (Integral representation of the filter.) There exists a FYt -adapted density function
ρt (x) given by

ρt (x) = ρ̃t (x)∫
Rn
ρ̃t (x) dx

, (5.5)

such that for F ∈ C∞
c (R

n), Pt (F ) = ∫
Rn
F (x)ρt (x) dx.

Proof. For F ∈ C∞
c (R

n), by (3.9) and (5.3), we conclude that

E[F(Xt) | FYt ] = Pt (F ) = P̃t (F )

P̃t (1)
=

∫
Rn
F (x)ρ̃t (x) dx∫
Rn
ρ̃t (x) dx

=
∫

Rn

F (x)

(
ρ̃t (x)∫

Rn
ρ̃t (x) dx

)
dx.

Thus, the conditional distribution P[Xt ∈ dx | FYt ] is absolutely continuous with respect to the
Lebesgue measure with the filtering density function

ρt (x) = ρ̃t (x)∫
Rn
ρ̃t (x) dx

.

The proof is completed.

This theorem says that the solution to the nonlinear filtering under Lévy noises (i.e. the
‘filter’) or the conditional expectation Pt (F ) = E[F(Xt) | FYt ], may be represented as an
integral via a normalized density ρt . This normalized density is obtained by solving (5.2)
together with the normalization (5.5).
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