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Abstract 
Causal inference requires contrasting counterfactual states of the world under pre-specified interventions. 

Obtaining counterfactual contrasts from data relies on explicit assumptions and careful, multi -step workflows. 
Causal diagrams are powerful tools for clarifying whether and how the counterfactual contrasts we seek can be 
identified from data. Here, I explain how to use causal directed acyclic graphs (causal DAGs) to determine 

whether and how causal effects can be identified from ‘real-world’ non-experimental observational data. I offer 
practical tips for reporting and suggest ways to avoid common pitfalls. 
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Introduction 

Human research begins with two fundamental questions: 

1. What do I want to know? 

2. For which population does this knowledge generalise? 

In the human sciences, our questions are typically causal. We aim to understand the effects of interventions on 

certain variables. However, many researchers report non-causal associations, collecting data, applying complex 

regressions, and reporting coefficients. We often speak of covariates as ‘predicting’ outcomes. Yet, even when 

our models predict well, it remains unclear how these predictions relate to the scientific questions that sparked 

our interest. Our predictions lack meaning and fail to address our core scientific questions. 

Some say that association cannot imply causation. However, our experimental traditions reveal that when 

interventions are controlled and randomised, the coefficients we recover from statistical models can permit 

causal interpretations. 

Despite familiarity with experimental protocols, many researchers struggle to emulate randomisation and 

control with non-experimental or ‘real-world’ data. Though we use terms such as ‘control’ and employ 

sophisticated adjustment strategies, such as multilevel modelling and structural equation models, our practices 

are not systematic. We often overlook that what we take as control can undermine our ability to consistently 
estimate causal effects (Montgomery et al., 2018). Although the term ‘crisis’ is overused, the state of causal 

inference across many human sciences, including experimental sciences, has much headroom for improvement. 

‘Room for headroom’ applies to poor experimental designs that unintentionally weaken causal claims (Bulbulia, 

2024e; Hernán et al., 2017; Montgomery et al., 2018). Fortunately, recent decades have seen considerable 

progress in causal data science, commonly called ‘causal inference’, or ‘CI’. The progress has transformed those 
areas of health science, economics, political science, and computer science that have adopted it. Causal 

inference provides methods for obtaining valid causal inferences from data through careful, systematic 

workflows. 

Within the workflows of causal inference, causal directed acyclic graphs (causal DAGs)—are powerful tools for 

evaluating whether and how causal effects can be identified from data. My purpose here is to explain where 

these tools fit within causal inference workflows and to illustrate several practical applications. I focus on causal 
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directed acyclic graphs (causal DAGs) because they are relatively easy to use and clear for most applications. 

However, causal DAGs can be misused. I will consider common pitfalls and how to avoid them. 

In Part 1, I review the conceptual foundations of causal inference. The basis of all causal inference lies in 
counterfactual contrasts. Although there are slightly different philosophical approaches to counterfactual 

reasoning, it is widely agreed that to infer a causal effect is to contrast counterfactual for a well defined 

population under different levels of intervention. The overview I present here builds on the Neyman -Rubin 

potential outcomes framework of causal inference (Holland, 1986) as it has been extended for longitudinal 

treatments by epidemiologist James Robins (J. Robins, 1986). 

In Part 2, I describe how causal directed acyclic graphs (causal DAGs) allow investigators to evaluate whether and 

how causal effects may be identified from data using assumptions encoded in a causal DAG. I outline five 
elementary graphical structures from which all causal relations may be derived; these structures form the 

building blocks of every causal directed acyclic graphs. I then examine five rules that clarify whether and how 

investigators may identify causal effects from data under the structural (or equivalently causal) assumptions that 

a causal DAG encodes. 

In Part 3, I apply causal directed acyclic graphs to seven common identification problems, showing how 

repeatedmeasures data collection addresses these problems. I then use causal diagrams to explain the 

limitations of repeated-measures data collection for identifying causal effects, tempering enthusiasm for easy 

solutions from repeated-measures designs. 

In Part 4, I offer practical suggestions for creating and reporting causal directed acyclic graphs in scientific 

research. Where there is ambiguity or debate about how a treatment may be related to an outcome 
independently of causality, I suggest that investigators report multiple causal diagrams and conduct distinct 

analyses for each. 

Part 1: Causal Inference as Counterfactual Data Science 

The first step in answering a causal question is to ask it (Hernán et al., 2016a). 

1. What causal quantity do I want to learn from the data? 

2. For which population does this knowledge generalise? 

Causal diagrams come after we have stated a causal question and have clarified the population for whom we 
hope to obtain valid causal inferences – the ‘target population’. We begin by considering what is required to 

state a causal question and to define a target population precisely. 

The Fundamental Problem of Causal Inference: Missing Counterfactual Observations 

To ask a causal question, we must consider the concept of causality itself. Consider an intervention, 𝐴, and its 
effect, 𝑌. We say that 𝐴 causes 𝑌 if altering 𝐴 would lead to a change in 𝑌 (Hume, 1902; Lewis, 1973). If altering 

𝐴 would not change 𝑌, we say that 𝐴 has no causal effect on 𝑌. 

In causal inference, we aim to use data to quantitatively contrast the potential outcomes in response to different 

levels of a well-defined intervention. Commonly, we refer to such interventions as ‘exposures’ or ‘treatments;’ 

we refer to the possible effects of interventions as ‘potential outcomes.’ 

Consider a binary treatment variable 𝐴 ∈ {0, 1}. For each unit 𝑖 in the set {1, 2, … , 𝑛}, when 𝐴𝑖 is set to 0, the 

potential outcome under this condition is denoted 𝑌𝑖(0). Conversely, when 𝐴𝑖 is set to 1, the potential outcome 

is denoted 𝑌𝑖(1). We refer to the terms 𝑌𝑖(1) and 𝑌𝑖(0) as ‘potential outcomes’ because, until realised, the effects 

of interventions describe counterfactual states. 
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Suppose that each unit 𝑖 receives either 𝐴𝑖 = 1 or 𝐴𝑖 = 0. The corresponding outcomes are realised as 𝑌𝑖|𝐴𝑖 = 1 or 
𝑌𝑖|𝐴𝑖 = 0. For now, we assume that each realised outcome under that intervention is equivalent to one of the 

potential outcomes required for a quantitative causal contrast, such that [(𝑌𝑖(𝑎)|𝐴𝑖 = 𝑎)] = (𝑌𝑖|𝐴𝑖 = 𝑎). Thus, when 

𝐴𝑖 = 1, 𝑌𝑖(1)|𝐴𝑖 = 1 is observed. However, when 𝐴𝑖 = 1, it follows that 𝑌𝑖(0)|𝐴𝑖 = 1 is not observed: 

𝑌𝑖|𝐴𝑖 = 1 ⟹ 𝑌𝑖(0)|𝐴𝑖 = 1 is counterfactual 

Conversely: 

𝑌𝑖|𝐴𝑖 = 0 ⟹ 𝑌𝑖(1)|𝐴𝑖 = 0 is counterfactual 

We define 𝛿𝑖 as the individual causal effect for unit 𝑖 and express the individual causal effect as: 

𝛿𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0) 

Notice that at the level of the individual, a causal effect is a contrast between treatments one of which is excluded 

by the other at any given time. That individual causal effects cannot be identified from observations is known as 

‘the fundamental problem of causal inference’ (Holland, 1986; Rubin, 1976). 

Identifying Causal Effects Using Randomised Experiments 

Although it is not typically feasible to compute individual causal effects, under certain assumptions, it may be 

possible to estimate average treatment effects, also called ‘marginal effects’ by contrasting the outcomes of 

observed treatments among individuals who have been randomly assigned, perhaps conditional on measured 

covariates, to the treatment levels that investigators wish to compare. We define an average treatment effect 

(ATE) as the difference between the expected or average outcomes observed under treatment where treatment 
has been randomly assigned, perhaps conditionally, on measured covariates. Consider a binary treatment, 𝐴 ∈ 

{0, 1}. We write the average treatment effect as a contrast in the expected means of a population all of whose 

members are exposed to two levels of treatment: 

Average Treatment Effect = 𝔼[𝑌(1)] − 𝔼[𝑌(0)] 

This is our pre-specified estimand for our target population. Note that a challenge remains in computing these 

treatment-group averages, given that individual causal effects are unobservable: each treatment to be compared 
is not administered to every member of the population from which a sample is drawn. We can frame the problem 

by referring to the full data required to compute this estimand — that is, in terms of the complete counterfactual 

dataset where the missing potential outcomes, inherent in observational data, were somehow available for 

everyone in the target population. The text highlighted in red denotes inherently missing responses over the 

joint distribution of the full counterfactual dataset. Suppose that 50% of the sample is randomly assigned to each 
treatment condition. We find that for each treatment condition, half the observations over the joint distribution 

of the counterfactual data are inherently unobservable: 

⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ 
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Average Treatment Effect = ⎜ 𝔼[𝑌(1)|𝐴 = 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ + 𝔼[𝑌(1)|𝐴 = 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

⎟ − ⎜ 𝔼[𝑌(0)|𝐴 = 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ + 𝔼[𝑌(0)|𝐴 = 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⎟ 

 ⎜⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟observed for 𝐴=1unobserved for 𝐴=0⎟

 ⎜⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟observed for 𝐴=0unobserved for 𝐴=1⎟ 

 ⎝ effect among treated ⎠ ⎝ effect among untreated ⎠ 

Although the fundamental problem of causal inference remains at the individual level, randomisation allows 

investigators to recover the treatment group averages. When investigators randomise units into treatment 
conditions, ensuring full adherence and a sufficiently large sample to rule out chance differences in group 

composition, we can generally attribute differences in treatment group averages to the treatment itself. That is, 

randomisation implies: 

𝔼[𝑌(0)|𝐴 = 1] = 𝔼[𝑌(0)|𝐴 = 0] 

and 

𝔼[𝑌(1)|𝐴 = 1] = 𝔼[𝑌(1)|𝐴 = 0] 

If we assume: 

𝔼[𝑌(1)|𝐴 = 1] = 𝔼[𝑌|𝐴 = 1] 

and 

𝔼[𝑌(0)|𝐴 = 0] = 𝔼[𝑌|𝐴 = 0] 

it follows that the average treatment effect of a randomised experiment can be computed: 

 Average Treatment Effect = 𝔼[𝑌|𝐴 = 1] −̂ 𝔼[𝑌|𝐴 = 0]̂ 

It is evident that we do not require the joint distribution over the full data (i.e., the counterfactual data) to 
obtain these averages. Rather, randomisation allows us to obtain a contrast of averages (or equivalently the 

average of contrasts) from the observed data. 

There are four critical aspects of how ideally randomised experiments enable the estimation of average 

treatment effects worth highlighting. 

First, we must specify a population for whom they seek to generalise their results. We refer to this population as 

the target population. If the study population differs from the target population in the distribution of covariates 

that interact with the treatment, we will have no guarantees our results will generalise (for discussions of 

sample/target population mismatch, refer to Imai et al. (2008); Westreich et al. (2019); Westreich et al. (2017); 

Pearl & Bareinboim (2022); Bareinboim & Pearl (2013); Stuart et al. (2018); Webster-Clark & Breskin (2021)). 

Second, because the units in the study sample at randomisation may differ from the units in the study after 
randomisation, we must be careful to avoid biases that arise from sample/population mismatch over time 

(Bulbulia, 2024d; Hernán et al., 2004). If there is sample attrition or non-response, the treatment effect we obtain 

for the sample may differ from the treatment effect in the target population. 
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Third, a randomised experiment recovers the causal effect of random treatment assignment, not of the 
treatment itself, which may differ if some participants do not adhere to their treatment (even if they remain in 

the study) (Hernán et al., 2017). The effect of randomised assignment is called the ‘intent-to-treat effect’ or 

equivalently the 

‘intention-to-treat effect’. The effect of perfect adherence is called the ‘per-protocol effect’ (Hernán et al., 

2017; Lash et al., 2020). To obtain the per-protocol effect for randomised experiments, methods for causal 

inference in observational settings must be applied (Bulbulia, 2024e; Hernán et al., 2017). 

Fourth, I have presented the average treatment effect on the additive scale, that is, as an additive difference in 

average potential outcomes for the target population under two distinct levels of treatment. However, 

depending on the scientific question at hand, investigators may wish to estimate causal effects on the risk-ratio 

scale, the rate-ratio scale, the hazard-ratio scale, or another scale. Where there are interactions such that 

treatment effects vary across different strata of the population, an estimate of the causal effect on the risk 

difference scale will differ in at least one stratum to be compared from the estimate on the risk ratio scale 
(Greenland, 2003; VanderWeele, 2012). The sensitivity of treatment effects in the presence of interactions to 

the scale of contrast underscores the importance of pre-specifying a scale for the causal contrast investigators 

hope to obtain. 

Fifth, investigators may unintentionally spoil randomisation by adjusting for indicators that might be affected by 

the treatment, outcome, or both, by excluding participants using attention checks, by collecting covariate data 

that might be affected by the experimental conditions, by failing to account for non-response and loss-to-follow-

up, and by committing any number of other self-inflicted injuries (Bulbulia, 2024e). Unfortunately, such practices 
of self-inflicted confounding are widespread (Montgomery et al., 2018). Notably, causal directed acyclic graphs 

are useful for describing risks to valid causal identification in experiments (refer to Hernán et al. (2017)), a topic 

I consider elsewhere (Bulbulia, 2024e). 

In observational studies, investigators might wish to describe the target population of interest as a restriction of 

the study sample population. For example, investigators might wish to estimate the average treatment effect 

only in the population that received the treatment (Greifer et al., 2023; Greifer, 2023). This treatment effect is 

sometimes called the average treatment effect in the treated (ATT) and may be expressed as: 

Average Treatment Effect in the Treated = 𝔼[𝑌(1) − 𝑌(0) ∣ 𝐴 = 1] 

Consider that if investigators are interested in the average treatment effect in the treated, counterfactual 

comparisons are deliberately restricted to the sample population that was treated. That is, the investigators will 

seek to obtain the average of the missing counterfactual outcomes for the treated population if everyone in that 

population were, perhaps contrary to fact, treated, without necessarily obtaining the counterfactual outcomes 

for the untreated population. This difference in focus may imply different assumptions and analytic workflows. 

Supplementary materials S2 describes an example for which the assumptions required to estimate the average 
treatment effect in the treated might be preferred. In what follows, we will use the term ATE as a placeholder to 

mean the average treatment effect, or equivalently the ‘marginal effect’, for a target population on a pre-

specified scale of causal contrast, where we assume that this effect estimate pertains to the source population 

from which the analytic sample was randomly drawn (under the assumption of random sampling, which, as with 

most assumptions, need not hold (Dahabreh et al., 2019; Dahabreh & Hernán, 2019). 

Setting aside the important detail that the ‘average treatment effect’ requires considerable care in its 

specification, it is worth pausing to marvel at how an ideally conducted randomised controlled experiment 
provides a means for identifying inherently unobservable counterfactuals. It does so by using a Sherlock-Holmes 

method of inference by elimination of confounders, which randomisation balances across treatments.  
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When experimenters observe a difference in average treatment effects, and all else goes right, they may infer 
that the distribution of potential outcomes differs by treatment because randomisation exhausts every other 

explanation. If the experiment is valid, experimenters are entitled to this inference because randomisation 

balances the distribution of potential confounders across the treatment groups to be compared.  

However, we lack guarantees for balance in the confounders outside idealised randomised experiments. 

Unfortunately, randomised experiments cannot address many scientifically important questions. This bitter 

constraint is familiar to evolutionary human scientists. We typically confront ‘What if?’ questions that are rooted 

in the unidirectional nature of human history. However, understanding how randomisation obtains the missing 

counterfactual outcomes that we require to consistently estimate average treatment effects clarifies the tasks of 
causal inference in non-experimental settings (Hernán et al., 2008a; Hernán et al., 2022; Hernán & Robins, 

2006a): we want to ensure balance in the variables that might affect outcomes under treatment in the treatment 

groups to be compared. 

Next, we examine basic causal identification assumptions in greater detail. We do so because using causal 

diagrams without understanding these assumptions may lead to unwarranted false confidence. 

Fundamental Assumptions Required for Causal Inference in the Potential Outcomes Framework 

Three fundamental identification assumptions must be satisfied to consistently estimate causal effects from 

data. These assumptions are typically satisfied in properly executed randomised controlled trials but not in 

real-world studies where randomised treatment assignment is absent. 

Assumption 1: Causal Consistency 

We satisfy the causal consistency assumption when, for each unit 𝑖 in the set {1, 2, … , 𝑛}, the observed outcome 

corresponds to one of the specific counterfactual outcomes to be compared such that: 

 𝑌𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝐴𝑖 = {𝑌𝑌𝑖𝑖((𝑎𝑎)∗) ifif 𝐴𝐴𝑖𝑖 == 𝑎𝑎∗ 

The causal consistency assumption implies that the observed outcome at the specific treatment level that an 

individual receives equates to that individual’s counterfactual outcome at the observed treatment level. 
Although this assumption would appear straightforward, outside ideally controlled randomised experiments, 

treatment conditions typically vary, and treatment heterogeneity poses considerable challenges to satisfying this 

assumption. Refer to supplementary materials S3 for further discussion on how investigators may satisfy the 

causal consistency assumption in real-world settings. 

Assumption 2: Positivity 

We satisfy the positivity assumption if there is a non-zero probability of receiving each treatment level within 
each stratum of covariate required to ensure conditional exchangeability of treatments (assumption 3). Where 

𝐴 is the treatment and 𝐿 is a vector of covariates sufficient to ensure no unmeasured confounding, we say 

positivity is achieved if: 

 0 < 𝑃𝑟(𝐴 = 𝑎|𝐿 = 𝑙) < 1 , for all 𝑎, 𝑙 with 𝑃𝑟(𝐿 = 𝑙) > 0 

There are two types of positivity violation: 
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1. Random non-positivity: When a treatment is theoretically possible but specific treatment levels are not 

represented in the data, random non-positivity is the only identifiability assumption verifiable with data. 

2. Deterministic non-positivity: When the treatment is implausible by nature, such as a hysterectomy in 

biological males. 

Satisfying the positivity assumption can present considerable data challenges (Bulbulia et al., 2023; Westreich 
& Cole, 2010). For instance, if we wanted to estimate a one-year causal effect of weekly religious service 

attendance on charitable donations, controlling for baseline attendance, and the natural transition rate to 

weekly service attendance is low, the effective sample size for the treatment condition may be insufficient. 

Where the positivity assumption is violated, causal diagrams will be of limited utility because observations in 

the data do not support valid causal inferences. Supplementary materials S2 presents a worked example 

illustrating this difficulty in a cultural evolutionary context.) 

Assumption 3: Conditional Exchangeability (also ‘No Unmeasured Confounding’, ‘Conditional Ignorability’, ‘d-

separation’) 

We satisfy the conditional exchangeability assumption if the treatment groups are conditionally balanced in the 

variables that could affect the potential outcomes. In experimental designs, random assignment facilitates this 

assumption. In observational studies, more effort is required to control for any covariate that could account for 

observed correlations between 𝐴 and 𝑌 without a causal effect of 𝐴 on 𝑌. 

Let ∐ denote independence, and let 𝐿 denote the set of covariates necessary to ensure this conditional 

independence. Conditional exchangeability is satisfied when: 

 𝑌(𝑎) ∐ 𝐴|𝐿  or equivalently  𝐴 ∐ 𝑌(𝑎)|𝐿 

If we assume that the positivity and consistency assumptions also hold, we may compute the average treatment 

effect (ATE) on the difference scale: 

Average Treatment Effect = 𝔼[𝑌(1)|𝐿] − 𝔼[𝑌(0)|𝐿] 

In randomised controlled experiments, exchangeability is unconditional. We would only adjust our statistical 

model by interacting the treatment with pre-treatment variables to improve efficiency (Lin, 2013) or diminish 

threats to valid randomisation from chance imbalances (Hernan & Robins, 2024). However, it would be 

confusing to think of such an adjustment as ‘control.’ 

In real-world observational studies, where measured covariates are sufficient to ensure conditional 

exchangeability across the treatment groups to be compared – also called, ‘no unmeasured confounding’ or 
‘ignorability’ – we may obtain valid estimates for an average treatment effect by conditioning on the densities of 

measured confounders by treatment group. Where 𝐴 = 𝑎 and 𝐴 = 𝑎∗ are the treatment levels we seek to contrast: 

ATÊ = ∑ (𝔼[𝑌(𝑎∗) ∣ 𝐿] − 𝔼[𝑌(𝑎) ∣ 𝐿]) × 𝑃𝑟(𝐿) 
𝑙 

By causal consistency, we obtain: 

ATÊ = ∑ (𝔼[𝑌 ∣ 𝐴 = 𝑎∗, 𝐿] − 𝔼[𝑌 ∣ 𝐴 = 𝑎, 𝐿]) × 𝑃𝑟(𝐿) 
𝑙 
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For continuous covariates 𝐿, we have: 

ATÊ = ∫ (𝔼[𝑌 ∣ 𝐴 = 𝑎∗, 𝐿] − 𝔼[𝑌 ∣ 𝐴 = 𝑎, 𝐿])𝑑𝑃(𝐿) 

We may now state the primary function of a causal directed acyclic graph (causal DAG), which is to identify 
sources of bias that may lead to an association between an exposure and outcome in the absence of causation. 

Causal DAGs visually encode features of a causal order necessary to evaluate the assumptions of conditional 

exchangeability, or equivalently of ‘no-unmeasured confounding’, or equivalently of ‘ignorability’ – or 

equivalently of ‘d-separation’ (explained next). Although causal directed acyclic graphs may be useful for 

addressing other biases such as measurement error and target-population restriction bias (also called ‘selection 
bias’) (Bulbulia, 2024d; Hernan & Robins, 2024), it is important to understand that causal directed acyclic graphs 

are specifically designed to evaluate the assumptions of conditional exchangeability or ‘d-separation’, any other 

use is strictly ‘off-label’. 

Finally, it is important to emphasise that without randomisation, we typically cannot ensure there is 

nounmeasured confounding(Greifer et al., 2023; Stuart et al., 2015). For this reason, causal data science 

workflows typically include sensitivity analyses to determine how much unmeasured confounding would be 

required to compromise a study’s findings (VanderWeele & Ding, 2017). Moreover, even if investigators do not 

represent unmeasured common causes of treatment and exposure in the causal DAGs they craft for 

observational studies, we should assume there are umeasured common causes and plan sensitivity analyses.  

Summary of Part 1 

Causal data science is distinct from ordinary data science. The initial step involves formulating a precise causal 
question that clearly defines a treatment or sequence of treatments, the outcome or outcomes to be contrasted 

under treatment, and a population of interest called the target population. We must then satisfy the three 

fundamental assumptions required for causal inference, assumptions that are implicit in the ideal of a 

randomised controlled experiment: 

Causal consistency: Outcomes at the treatment levels to be compared must align with their counterfactual 

counterparts. - Positivity: Each treatment must have a non-zero probability across all covariates. - Conditional 

exchangeability: There should be no unmeasured confounding, meaning treatment assignment is ignorable 

conditional on measured confounders, or equivalently, that treatment groups are conditionally exchangeable.   
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Table 1: Variable naming conventions 

Definitions of Symbols 

Symbol Description 

𝑋 A capital letter representing a random variable. 

𝑋 = 𝑥 A small letter indicating the random variable 𝑋 fixed at value 𝑥. 

𝐴 The treatment or, equivalently, the exposure. 

𝐴 = 𝑎 Treatment 𝐴 fixed to level 𝑎. 

𝑌 The outcome variable. 

𝑌(𝑎) The potential or counterfactual outcome when 𝐴 = 𝑎. Represented also as 𝑌 𝑎 or 𝑌𝑎. 

𝐿 Measured confounder(s): typically comprises a set of variables. 

𝑈 Unmeasured confounder. 

F Effect-modifier (or ‘moderator’) of 𝐴 on 𝑌. 

𝑀 Mediator of 𝐴 on 𝑌. 

𝑋̄ Sequential variables, e.g., 𝐴 = {𝐴̄ 1, 𝐴2, 𝐴3}; 𝐿 = {𝐿 ̄0, 𝐿1, 𝐿2}. 

ℛ Denotes random treatment assignment. 

𝒢 A causal graph, here, a causal directed acyclic graph (DAG). 

Part 2: How Causal Directed Acyclic Graphs Clarify the Conditional Exchangeability 

Assumption 

Next, I will introduce causal directed acyclic graphs (DAGs). I will start by explaining the meaning of the symbols 

used. Refer to supplementary materials S1 for a glossary of common causal inference terms. 

Variable Naming Conventions 

• 𝑋: Denotes a random variable without reference to its role. 

• 𝐴: Denotes the ‘treatment’ or ‘exposure’—a random variable. This is the variable for which we seek to 

understand the effect of intervening on it. It is the ‘cause.’ 

• 𝐴 = 𝑎: Denotes a fixed ‘treatment’ or ‘exposure.’ The random variable 𝐴 is set to level 𝐴 = 𝑎. 

• 𝑌: Denotes the outcome or response of an intervention. It is the ‘effect.’ 

• 𝑌(𝑎): Denotes the counterfactual or potential state of 𝑌 in response to setting the level of the treatment 

to a specific level, 𝐴 = 𝑎. The outcome 𝑌 as it would be observed when, perhaps contrary to fact, treatment 

𝐴 is set to level 𝐴 = 𝑎. Different conventions exist for expressing a potential or counterfactual outcome, 

such as 𝑌 𝑎, 𝑌𝑎. 

• 𝐿: Denotes a measured confounder or set of confounders. This set, if conditioned upon, ensures that any 
differences between the potential outcomes under different levels of the treatment are the result of the 

treatment and not the result of a common cause of the treatment and the outcome. Mathematically, we 

write this independence: 

𝑌(𝑎) ∐ 𝐴 ∣ 𝐿 

• 𝑈: Denotes an unmeasured confounder or confounders. 𝑈 is a variable or set of variables that may affect 

both the treatment and the outcome, leading to an association in the absence of causality, even after 

conditioning on measured covariates: 
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 𝑌(𝑎)∐𝐴 ∣ 𝐿  [because of unmeasured 𝑈 ] 

 

 

• 𝐹: Denotes a modifier of the treatment effect. 𝐹 alters the magnitude or direction of the effect of 

treatment 𝐴 on an outcome 𝑌. 

• 𝑀: Denotes a mediator, a variable that transmits the effect of treatment 𝐴 on an outcome 𝑌. 

• 𝑋:̄ Denotes a sequence of variables, for example, a sequence of treatments. 

• ℛ: Denotes a randomisation to treatment condition. 

• 𝒢: Denotes a graph, here, a causal directed acyclic graph. 

Note that investigators use a variety of different symbols. There is no unique right way to create a causal 

directed acyclic graph, except that meaning must be clear and the graph must be capable of identifying 

relationships of conditional and unconditional independence between the treatment and outcome. Although 

directed acyclic graphs are accessible tools, general graphical models such as ‘Single World Intervention 

Graphs,’ which allow for the explicit representation of counterfactual dependencies, may be preferable for 
investigators to estimate causal effects under multiple interventions (Bulbulia, 2024c; Richardson & Robins, 

2013a). 

Conventions We Use in This Article to Create Causal Directed Acyclic Graphs 

The conventions we use to describe components of our causal graphs are given in Table 2. 

• Node: a node or vertex represents characteristics or features of units within a population on a causal 

diagram – that is a ‘variable.’ In causal directed acyclic graphs, we draw nodes with respect to the target 

population, which is the population for whom investigators seek causal inferences (Suzuki et al., 2020). 

Time-indexed node: 𝑋𝑡 denotes relative chronology; 𝑋𝜙𝑡 is our convention for indicating that timing is 

assumed, perhaps erroneously. 

• Edge without an Arrow ( ): path of association, causality not asserted. 

• Red Edge without an Arrow ( ): confounding path: ignores arrows to clarify statistical 

dependencies. 

• Arrow ( ): denotes causal relationship from the node at the base of the arrow (a parent) to the node at 

the tip of the arrow (a child). We typically refrain from drawing an arrow from treatment to outcome to 

avoid asserting a causal path from 𝐴 to 𝑌 because the function of a causal directed acyclic graph is to 

evaluate whether causality can be identified for this path. 

• Red Arrow ( ): path of non-causal association between the treatment and outcome. Path is associational 

and may run against arrows. 

• Dashed Arrow ( ): denotes a true association between the treatment and outcome that becomes partially 

obscured when conditioning on a mediator, assuming 𝐴 causes 𝑌. 

• Dashed Red Arrow ( ): highlights over-conditioning bias from conditioning on a mediator. 

• Open Blue Arrow ( ): Highlights effect modification, occurring when the treatment effect levels vary within 

covariate levels. We do not assess the causal effect of the effect modifier on the outcome, recognising that 

intervening on the effect modifier may be incoherent. This is an off-label convention we use to clarify our 
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interest in effect modification within strata of a covariate when there is a true treatment effect. However, 
it is possible to replace these open blue arrows with ordinary nodes and explain that the edges are drawn 

not for identification but for evaluating generalisations (see Bulbulia, 2024c). 

• Boxed Variable 𝑋 : conditioning or adjustment for 𝑋. 

• Red-Boxed Variable 𝑋 : highlights the source of confounding bias from adjustment. 

• Dashed Circle 𝑋 : no adjustment is made for a variable (implied for unmeasured confounders.)  

• ℛ randomisation, for example, randomisation into treatment: ℛ → 𝐴. 

 

 

 

Table 2: Nodes, Edges, Conditioning Conventions. 

Symbol Meaning  Example 

  Graphical Notation  

𝑋 Node or Vertex: Variable denoted by a letter. 𝐴 (treatment), 𝑌 

(outcome) 
𝑋𝑡 Time-indexed node: Denotes relative chronology. 𝐴1 𝑌2 

𝑋𝜙𝑡 

Timing assumed but not known: Relative chronology 

asserted. 
𝐴𝜙1 𝑌𝜙2 
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Edge with no arrow: Association. 

Red association path: Confounding path: ignores 

arrows to clarify statistical dependencies. 

Edge with an arrow: Here, denotes causal association. 

Red arrow: Path through which bias flows. 

Dashed arrow: Causal effect not through a mediator 
(direct effect). 

Dashed red arrow: Biased total effect when 

conditioning on a mediator. 

Effect modification path: Assumes 𝐴 𝑌 and focuses on the 
modification within levels of another variable. Blue path is not 

evaluated for causality and need not have a causal 

interpretation. 

 𝑋 Boxed variable: Conditioning/adjustment. 

Red boxed variable: Variable that when conditioned 

𝑋  

upon induces bias. 

Dashed circle: No adjustment for variable. 

Random treatment assignment: Such that 
ℛ𝐴 
𝐴 ∐ 𝑌(𝑎)|ℛ. 

 
Presenting Temporal Order: Causal directed acyclic graphs must be — as truth in advertising implies— 

acyclic. Directed edges or arrows define ancestral relations. No descendant node can cause an ancestor 

node. Therefore causal diagrams are, by default, sequentially ordered. 

Nevertheless, to make our causal graphs more readable, we adopt the following conventions: 

1. The layout of a causal diagram is structured from left to right to reflect the assumed sequence of causality 

as it unfolds. 

2. We often index our nodes using 𝑋𝑡 to indicate their relative timing and chronological order, where 𝑡 

represents the time point or sequence in the timeline of events. 

3. Where temporal order is uncertain or unknown, we use the notation 𝑋𝜙𝑡 to propose a temporal order that 

is uncertain. 

Typically, the timing of unmeasured confounders is unknown, except that they occur before the treatments of 

interest; hence, we place confounders to the left of the treatments and outcomes they are assumed to affect, 

but 

without any time indexing. 

Again, temporal order is implied by the relationship of nodes and edges. However, explicitly representing the 

order in the layout of one’s causal graph often makes it easier to evaluate, and the convention representing 
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uncertainty is useful, particularly when the data do not ensure the relative timing of the occurrence of the 

variable in a causal graph. 

More generally, investigators use various conventions to convey causal structures on graphs. Whichever  

convention we adopt must be clear. 

Finally, note that all nodes and paths on causal graphs—including the absence of nodes and paths—are asserted. 
Constructing causal diagrams requires expert judgment of the scientific system under investigation. It is a great 

power given to those who construct causal graphs, and with great power comes great responsibility to be 

transparent. When investigators are unclear or there is debate about which graphical model fits reality, they 

should present multiple causal graphs. Where identification is possible in several candidate causal graphs, they 

should perform and report multiple analyses. 

How Causal Directed Acyclic Graphs Relate Observations to Counterfactual Interventions Ancestral Relations 

in Directed Acyclic Graphs 

We define the relation of ‘parent’ and ‘child’ on a directed acyclic graph as follows: 

1. Node 𝐴 is a parent of node 𝐵 if there is a directed edge from 𝐴 to 𝐵, denoted 𝐴 → 𝐵. 

2. Node 𝐵 is a child of node 𝐴 if there is a directed edge from 𝐴 to 𝐵, denoted 𝐴 → 𝐵. 

It follows that a parent and child are adjacent nodes connected by a directed edge. 

We denote the set of all parents of a node 𝐵 as pa(𝐵). 

In a directed acyclic graph, the directed edge 𝐴 → 𝐵 indicates a statistical dependency where 𝐴 may provide 

information about 𝐵. In a causal directed acyclic graph, the directed edge 𝐴 → 𝐵 is interpreted as a causal 

relationship, meaning 𝐴 is a direct cause of 𝐵. 

We further define the relations of ancestor and descendant on a directed acyclic graph as follows: 

1. Node 𝐴 is an ancestor of node 𝐶 if there exists a directed path from 𝐴 to 𝐶. Formally, 𝐴 is an ancestor of 𝐶 
if there exists a sequence of adjacent nodes (𝐴, 𝐵1, 𝐵2, … , 𝐵𝑡, 𝐶) such that 𝐴 → 𝐵1 → 𝐵2 → ⋯ → 𝐵𝑡 → 𝐶. 2. 

Node 𝐶 is a descendant of node 𝐴 if there exists a directed path from 𝐴 to 𝐶. Formally, 𝐶 is a descendant of 

𝐴 if there exists a sequence of adjacent nodes (𝐴, 𝐵1, 𝐵2, … , 𝐵𝑡, 𝐶) such that 𝐴 → 𝐵1 → 𝐵2 → ⋯ → 𝐵𝑡 → 𝐶. 

It follows that a node can have multiple ancestors and multiple descendants. 

Markov Factorisation and the Local Markov Assumption 

Pearl (2009) p.52 asks us to imagine the following. Suppose we have a distribution 𝑃 defined on n discrete 
variables, 𝑋1, 𝑋2, … , 𝑋𝑛. By the chain rule, the joint distribution for variables 𝑋1, 𝑋2, … , 𝑋𝑛 on a graph can be 

decomposed into the product of 𝑛 conditional distributions such that we may obtain the following factorisation:  

𝑛 

Pr(𝑥1, … , 𝑥𝑛) = ∏ Pr(𝑥𝑗 ∣ 𝑥1, … , 𝑥𝑗−1) 
𝑗=1 

We translate nodes and edges on a graph into a set of conditional independences that a graph implies over 

statistical distributions. 

According to the local Markov assumption, given its parents in a directed acyclic graph, a node is said to be 

independent of all its non-descendants. Under this assumption, we obtain what Pearl calls Bayesian network 

factorisation, such that: 
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Pr(𝑥𝑗 ∣ 𝑥1, … , 𝑥𝑗−1) = Pr(𝑥𝑗 ∣ pa𝑗) 

This factorisation greatly simplifies the calculation of the joint distributions encoded in the directed acyclic graph 

(causal or non-causal) by reducing complex factorisations of the conditional distributions in 𝒫 to simpler  

conditional distributions in the set PA 𝑗, represented in the structural elements of a directed acyclic graph 

(Lauritzen et al., 1990; Pearl, 1988, 1995, 2009). 

Minimality Assumption 

The minimality assumption combines (a) the local Markov assumption with (b) the assumption that adjacent 

nodes on the graph are dependent. This is needed for causal directed acyclic graphs because the local Markov 

assumption permits that adjacent nodes may be independent (Neal, 2020). 

Causal Edges Assumption 

The causal edges assumption states that every parent is a direct cause of their children. Given the minimality 
assumption, the causal edges assumption allows us to interpret the conditional dependence between variables 

on a graph based on the causal relationships encoded by the arrangement of nodes and edges (Neal, 2020). 

Compatibility Assumption 

The compatibility assumption ensures that the joint distribution of variables aligns with the conditional 

independencies implied by the causal graph. This assumption requires that the probabilistic model conforms to 

the graph’s structural assumptions. Demonstrating compatibility directly from data is challenging, as it involves 
verifying that all conditional independencies specified by the causal directed acyclic graph (DAG) are present in 

the data. Therefore, we typically assume compatibility rather than empirically proving it (Pearl, 2009). 

Faithfulness 

A causal diagram is considered faithful to a given set of data if all the conditional independencies present in the 

data are accurately depicted in the graph. Conversely, the graph is faithful if every dependency implied by the 

graph’s structure can be observed in the data (Hernan & Robins, 2024). Faithfulness ensures that the graphical 

representation of relationships between variables accords with empirical evidence (Pearl, 2009). 

We may distinguish between weak faithfulness and strong faithfulness: 

Weak faithfulness allows for the possibility that some observed independencies might occur by chance, 

such as chance cancellation of effects among multiple causal paths. 

• Strong faithfulness assumes that all observed statistical relationships directly reflect the underlying causal 

structure, with no difference left to chance. 

The faithfulness assumption, whether weak or strong, is not directly testable from observed data (Pearl, 2009). 

d-separation 

In a causal diagram, a path is ‘blocked’ or ‘d-separated’ if a node along it interrupts causation. Two variables are 

d-separated if all paths connecting them are blocked, making them conditionally independent. Conversely, 

unblocked paths result in ‘d-connected’ variables, implying potential dependence (Pearl, 1995, 2009). (Note that 

‘d’ stands for ‘directional’.) 

The rules of d-separation are as follows: 

1. Fork rule (𝐵 ← 𝐴 → 𝐶): 𝐵 and 𝐶 are independent when conditioning on 𝐴 (𝐵 ∐ 𝐶 ∣ 𝐴). 
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2. Chain rule (𝐴 → 𝐵 → 𝐶): Conditioning on 𝐵 blocks the path between 𝐴 and 𝐶 (𝐴 ∐ 𝐶 ∣ 𝐵). 

3. Collider rule (𝐴 → 𝐶 ← 𝐵): 𝐴 and 𝐵 are independent unless conditioning on 𝐶, which introduces 

dependence (𝐴∐𝐵 ∣ 𝐶). 

Judea Pearl proved d-separation in the 1990s (Pearl, 1995, 2009). 

It follows from d-separation that: 

1. An open path (no variables conditioned on) is blocked only if two arrows point to the same node: 𝐴 → 𝐶 

← 𝐵. The node of common effect (here 𝐶) is called a collider. 

2. Conditioning on a collider does not block a path; thus, 𝐴 → 𝐶 ← 𝐵 can lead to an association 

between 𝐴 and 𝐵 in the absence of causation. 

3. Conditioning on a descendant of a collider does not block a path; thus, if 𝐶 → 𝐶′ , then 𝐴 → 𝐶′ ← 𝐵 is open. 

4. If a path does not contain a collider, any variable conditioned along the path blocks it; thus, 𝐴 → 𝐵

 → 𝐶 blocks the path from 𝐴 to 𝐶 (Hernan & Robins, 2024, p. 78; Pearl, 2009). 

Backdoor Adjustment 

From d-separation, Pearl was able to define a general identification algorithm for causal identification, called the 

‘backdoor adjustment theorem’ (Pearl, 2009). 

Let us shift to the general notation that we will use in the following examples. Where 𝐴 denotes the treatment, 

𝑌 denotes the outcome, and 𝐿 denotes a set (or subset) of measured covariates. In a causal directed acyclic graph  

(causal DAG), we say that a set of variables 𝐿 satisfies the backdoor adjustment theorem relative to the 
treatment 𝐴 and the outcome 𝑌 if 𝐿 blocks every path between 𝐴 and 𝑌 that contains an arrow pointing into 𝐴 

(a backdoor path). Formally, 𝐿 must satisfy two conditions: 

1. No element of 𝐿 is a descendant of 𝐴. 

2. 𝐿 blocks all backdoor paths from 𝐴 to 𝑌. 

If 𝐿 satisfies these conditions, the causal effect of 𝐴 on 𝑌 can be estimated by conditioning on 𝐿 (Pearl, 2009). 

Front Door Path Criterion 

Pearl also proves a ‘front-door adjustment’ criterion, which is rarely used in practice but is worth understanding 

for its conceptual value. The front-door criterion is useful when we cannot estimate the causal effect of 𝐴 on 𝑌 

and there is unmeasured confounding by 𝑈. Suppose further, that there is a mediator, 𝑀, that fully mediates the 
effect of 𝐴 on 𝑌. If 𝐴 → 𝑀 is unconfounded and 𝑀 → 𝑌 is unconfounded, 𝐴 → 𝑌 may be identified by estimating 

the separate identifiable paths through 𝑀. The front-door criterion is not widely used because requires 

measuring an appropriate mediator that fully captures the causal effect. However, understanding the front-door 

adjustment helps develop intuition for how estimating causal effects may be possible when there is unmeasured 

confounding (Pearl, 2009). 

Pearl’s Structural Causal Models 

In the potential outcomes framework, we represent interventions by setting variables to specific levels, e.g., 

setting the treatment to a specific value 𝐴 = 𝑎̃. We have noted that counterfactual outcomes are conceived as 

the outcomes that would occur if, perhaps contrary to fact, an individual’s treatment was set to a specific level. 

We use the convention 𝑌𝑖(𝑎) or equivalently 𝑌𝑖𝑎 to denote the counterfactual or ‘potential’ outcome for 

individual 𝑖 when that individual’s treatment is set to 𝐴𝑖 = 𝑎. Because we assume individual treatments to be 

independent and identically distributed (i.i.d.), we drop the subscripts when describing the potential outcomes 

for multiple individuals under specific levels of treatment. Thus, we write 𝑌(𝑎) or 𝑌 𝑎 as shorthand for: 

https://doi.org/10.1017/ehs.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.35


• 

16 

𝑛 

𝑌𝑖(𝑎) 

As noted above, we say that conditional exchangeability is satisfied if the potential outcomes are independent 

of the treatment assignment conditional on the measured covariates: 

𝐴 ∐ 𝑌(𝑎̃) ∣ 𝐿 

It is worth considering that causal directed acyclic graphs do not directly represent counterfactual outcomes. 

Instead, they evaluate whether causality can be identified from hypothetical interventions on the variables 

represented in a graph. Formally, causal directed acyclic graphs rely on Judea Pearl’s do-calculus (Pearl, 2009), 

which relies on the concept of an ‘interventional distribution’. Under Pearl’s do-calculus, any node in a graph can 
be intervened upon. Nodes and edges in a causal diagram correspond to non-parametric structural equations or 

what Pearl calls ‘structural causal models’ (Pearl, 2009). Note that non-parametric structural equations are 

causal-structural models. They are fundamentally different from statistical structural equation models that are 

employed in many human sciences. Please do not confuse non-parametric structural equation models with 

statistical structural equation models (VanderWeele, 2015). In a causal directed acyclic graph, nonparametr ic 
structural equations represent the underlying causal mechanisms without making specific parametr ic 

assumptions about the functional forms of relationships. It is important to note that non-parametric structural 

equations, also known as structural causal models, are mathematical representations of the causal relationships 

between variables in a system. These equations describe the functional relationships between variables without 

specifying the particular functional form or the probability distributions of the variables. In contrast, statistical 

structural equation models, commonly used in the social sciences and psychology, make specific assumptions 
about the functional form of the relationships (e.g., linear, polynomial, or exponential) and the probability 

distributions of the variables (e.g., normal, Poisson, or binomial). Statistical structural equation models model 

observed data. Non-parametric structural equations state the assumed causal structure of the system – we do 

not use non-parametric structural equation models to do statistics. When we employ statistical structural 

equation models or any other statistical model, we must first state the assumed functional relationships that we 
maintain (under expert advice) hold for the data. We must do so without making assumptions about the 

functional form of the statistical model we will eventually employ – statistics come later, only after we have 

evaluated whether the causal effect we seek may be identified with data. Pearl’s do-calculus and the rules of d-

separation are based on non-parametric structural equations, which provide a flexible and generalisable 

framework for causal inference (Pearl, 2009). 

Pearl’s structural causal models work as follows. 
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Let 𝐿 denote the common causes of treatment 𝐴 and outcome 𝑌: 

• The node 𝐿 in the corresponding directed acyclic graph (DAG) 𝒢 corresponds to the non-parametr ic 

structural equation: 𝐿 = 𝑓𝐿(𝑈𝐿), where 𝑓𝐿 is an unspecified function and 𝑈𝐿 represents the exogenous error 

term or unmeasured factors affecting 𝐿. 

• The treatment node 𝐴 in 𝒢 is associated with the non-parametric structural equation: 𝐴 = 𝑓𝐴(𝐿, 𝑈𝐴), where 

𝑓𝐴 is an unspecified function, 𝐿 represents the common causes, and 𝑈𝐴 represents the exogenous error 

term or unmeasured factors affecting 𝐴. 

• The outcome node 𝑌 in 𝒢 is associated with the non-parametric structural equation: 𝑌 = 𝑓𝑌(𝐴, 𝐿, 𝑈𝑌), 
where 𝑓𝑌 is an unspecified function, 𝐴 represents the treatment, 𝐿 represents the common causes, and 𝑈𝑌 

represents the exogenous error term or unmeasured factors affecting 𝑌. 

In Pearl’s formalism, we assume that 𝑈𝐿, 𝑈𝐴, and 𝑈𝑌 are independent exogenous random variables. That is, we 

assume there are no direct arrows linking 𝐴 to 𝑌 except through the common cause node 𝐿. Causal diagrams 

allow us to factorise the joint distribution of 𝐿, 𝐴, and 𝑌 as a product of conditional probability distributions. 

Define 𝑂 as a distribution of independent and identically distributed observations such that 𝑂 = (𝐿, 𝐴, 𝑌). The 

true distribution 𝑃𝑂 is factorized as: 

𝑃𝑂 = 𝑃𝑂(𝑌 ∣ 𝐴, 𝐿)𝑃𝑂(𝐴 ∣ 𝐿)𝑃𝑂(𝐿) 

Where: - 𝑃𝑂(𝐿) is the marginal distribution of the covariates 𝐿. - 𝑃𝑂(𝐴 ∣ 𝐿) is the conditional distribution of the 
treatment given the covariates. - 𝑃𝑂(𝑌 ∣ 𝐴, 𝐿) is the conditional distribution of the outcome given the treatment 

and covariates. 

Pearl’s do-calculus allows us to evaluate the consequences of intervening on variables represented in a causal 

DAG to interpret probabilistic dependencies and independencies in the conditional and marginal associations 

presented on a graph. 

Here, we have developed counterfactual contrasts using the potential outcomes framework. The potential 

outcomes framework considers potential outcomes to be fixed and real (even if assigned non-deterministically). 
Pearl develops counterfactual contrasts using operations on structural functionals, referred to as ‘do-calculus’. In 

Pearl’s framework, we obtain counterfactual inference by assuming that the nodes in a causal directed acyclic 

graph correspond to a system of structural equation models, such as those we just described. Mathematically, 

potential outcomes and counterfactual interventions are equivalent, such that: 

 Potential Outcomes Framework Do-Calculus 

 ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞Pr(𝑌(𝑎) = 𝑦)≡ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞Pr(𝑌 = 𝑦 

∣ 𝑑𝑜(𝐴 = 𝑎)) 

where the left-hand side of the equivalence is the potential outcomes framework formalisation of a potential 

outcome recovered by causal consistency, and the right-hand side is given by Pearl’s do-calculus, which, as just 
mentioned, formalises interventional distributions on nodes of a graph that correspond to structural causal 

models. 

In practice, whether one uses Pearl’s do-calculus or the potential outcomes framework to interpret causal 

inferences is often irrelevant to identification results. However, there are theoretically interesting debates about 

edge cases. For example, Pearl’s structural causal models permit the identification of contrasts that cannot be 

falsified under any experiment (Richardson & Robins, 2013a). Because advocates of non-parametric structural 

equation models treat causality as primitive, they are less concerned with the requirement for falsification (Dıaź 

et al., 2021, 2023; Pearl, 2009; Rudolph et al., 2024). Additionally, the potential outcomes framework allows for 
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identification in settings where the error terms in a structural causal model are not independent (Bulbulia, 

2024c). 

I have presented the potential outcomes framework because it is easier to interpret, more general, and—to my 

mind—clearer and more intellectually compelling (moreover, one does not need to be a verificationist to adopt 

it). 

However, for nearly every practical purpose, the do-calculus and ‘po-calculus’ (potential outcomes framework, 

refer to Shpitser & Tchetgen (2016)) are both mathematically and practically equivalent. And remember, the 

nodes and edges in a causal directed acyclic graph correspond to non-parametric structural equations: these 
equations represent causal mechanisms without making specific assumptions about the functional form of the 

assumed causal relationships encoded in the causal DAG. As currently employed, the statistical structural 

equation models (SEMs) used in human sciences often make implausible (or even incoherent) causal 

assumptions (Bulbulia, 2024c; VanderWeele, 2015). It is generally useful to draw a causal directed acyclic graph 

(causal DAG) before considering a statistical structural equation model (SEM). 

The Five Elementary Structures of Causality 

Table 3 presents five elementary structures of causality from which all causal directed acyclic graphs are built. 
These elementary structures can be assembled in different combinations to clarify the causal relationships 

presented in a causal directed acyclic graph.  
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Table 3: The five elementary structures of causality from which all causal directed acyclic graphs can be built.  

 
Five Elementary Causal Structures 

 

Structure Causal DAG Explanation Implication 

Two variables 

  

1. Causality 

Absent 

A B 𝐴 and 𝐵 have no causal effect 

on each other. 

𝐴 ∐ 𝐵 

2. 

Causality 

Present 
A  B 𝐴 causally affects 𝐵, and they 

are associated. 𝐴∐𝐵 

Three variables 

 

4. Chain A  B 

 

C 𝐶 is affected by 𝐵 which is, in 

turn, affected by 𝐴; 𝐴 and 𝐶  

are conditionally 

independent given 𝐵. 

𝐴 ∐ 

𝐶|𝐵 

5. Collider 

A 

B 

 C 

 
𝐶 is affected by both 𝐴 and 

𝐵, which are independent; 

conditioning on 𝐶 induces 

association between 𝐴 and 

𝐵. 𝐴∐𝐵|𝐶 

Key: , a directed edge, denotes causal association. The absence of an arrow denotes no causal association. Rules of d-

separation: In a causal diagram, a path is ‘blocked’ or ‘d-separated’ if a node along it interrupts causation. Two variables are d-

separated if all paths connecting them are blocked or if there are no paths linking them, making them conditionally independent. 

Conversely, unblocked paths result in ‘d-connected’ variables, implying statistical association. Refer to Pearl (1995).  
Note that ‘d’ stands for ‘directional’. 
Implication: 𝒢 denotes a causal directed acyclic graph (causal DAG). 𝑃 denotes a probability distribution function. Pearl proved that 
independence in a causal DAG (𝐵 ∐ 𝐶 ∣ 𝐴)𝒢 implies probabilistic independence (𝐵 ∐ 𝐶 ∣ 𝐴)𝑃; likewise if (𝐵 ∐ 𝐶 ∣ 𝐴)𝑃 holds in all 
distributions compatible with 𝒢, it follows that (𝐵 ∐ 𝐶 ∣ 𝐴)𝐺 (refer to Pearl 2009, p.61.) We read causal graphs to understand the 
implications of causality for relationships in observable data. However, reading causal structures from data is more challenging 
because the relationships in observable data are typically compatible with more than one (and typically many) causal graphs.  

The Five Elementary Rules for Causal Identification 

Table 4 describes five elementary rules for identifying conditional independence using directed acyclic causal 

diagrams. 

There are no shortcuts to reasoning about causality. Each causal question must be asked in the context of a 

specific scientific question, and each causal graph must be built under the best lights of domain expertise. 
However, the following five elementary rules for confounding control are implied by the theorems that underpin 

causal directed acyclic graphs. They may be a useful start for evaluating the prospects for causal identification 

across a broad range of settings. 

     
    

      
independent given   
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1. Ensure That Treatments Precede Outcomes: This rule is a logical consequence of our assumption that 

causality follows the arrow of time and that a causal directed acyclic graph is faithful to this ordering. 

However, the assumption that treatments precede outcomes may be easily violated where investigators 

cannot ensure the relative timing of events from their data. 

Note that this assumption does not raise concerns in settings where past outcomes may affect future treatments. 

Indeed, an effective strategy for confounding control in such settings is to condition on past outcomes, and where 
relevant, on past treatments as well. For example, if we wish to identify the causal effect of 𝐴1 on 𝑌2, and 

repeated-measures time series data are available, it may be useful to condition such that 𝐴−1 → 𝑌0 → 𝐴1 → 𝑌2. 

Critically, the relations of variables must be arranged sequentially without cycles. 

Causal directed acyclic graphs must be acyclic. Yet most processes in nature include feedback loops. However, 

there is no contradiction as long as we represent these loops as sequential events. To estimate a causal effect 

of 𝑌 on 𝐴, we would focus on: 𝑌−1 → 𝐴0 → 𝑌1 → 𝐴2. Departing from conventions we have 

previously used to label treatments and outcomes, here 𝑌 denotes the treatment and 𝐴 denotes the outcome. 

2. Condition on Common Causes or Their Proxies: This rule applies to settings in which the treatment 𝐴 and 

the outcome 𝑌 share common causes. By conditioning on these common causes, we block the open 

backdoor paths that could introduce bias into our causal estimates. Controlling for these common causes 

(or their proxies) helps to isolate the specific effect of 𝐴 on 𝑌. Note that we do not draw a path from 𝐴 → 

𝑌 in this context because it represents an interventional distribution. In a causal directed acyclic graph, 

conditioning does not occur on interventional distributions. We do not box 𝐴 and 𝑌. 

3. Do Not Condition on a Mediator when Estimating Total Effects: This rule applies to settings in which the 
variable 𝐿 is a mediator of 𝐴 → 𝑌. Recall Pearl’s backdoor path criterion requires that we do not condition 

on a descendant of the treatment. Here, conditioning on 𝐿 violates the backdoor path criterion, risking 

bias for a total causal effect estimate. We must not condition on a mediator if we are interested in total 

effect estimates. Note we draw the path from 𝐴 → 𝑌 to underscore that this specific overconditioning 

threat occurs in the presence of a true treatment effect. Over-conditioning bias can operate in the absence 

of a true treatment effect. This is important because conditioning on a mediator might create associations 
without causation. In many settings, ensuring accuracy in the relative timing of events in our data will 

prevent the self-inflicted injury of conditioning on a common effect of the treatment. 

4. Do Not Condition on a Collider: This rule applies to settings in which 𝐿 is a common effect of 𝐴 and 𝑌. 

Conditioning on a collider may invoke a spurious association. Again, the backdoor path criterion requires 

that we do not condition on a descendant of the treatment. We would not be tempted to condition on 𝐿 

if we knew that it was an effect of 𝐴. In many settings, ensuring accuracy in the relative timing of events 

in our data will prevent the self-inflicted injury of conditioning on a common effect of the treatment and 

outcome. 

5. Proxy Rule: Conditioning on a Descendant Is Akin to Conditioning on Its Parent : This rule applies to 

settings where 𝐿′ is an effect from another variable 𝐿. The graph considers when 𝐿′ is downstream of a 

collider. Here again, in many settings, ensuring accuracy in the relative timing of events in our data will 

Table 4: Five elementary rules for causal identification. 

 Five Elementary Applications of Pearl’s Back-Door Adjustment Theorem 

Rule  Problem  Solution 

Ensure Causal Order: Timing of 𝐴𝜙1 and 
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1 𝑌𝜙2 are incorrectly asserted; in truth, 𝑌1 

induces an association with 𝐴2. 

Block back-door path by conditioning 

𝑌1

 

𝐴2 𝐴1 𝑌2 

on a common cause or its proxy: 𝐴 and 

2 𝑌 share both measured and unmeasured
 𝑈 0 1 𝑌2 𝑈𝑌2 

common causes; conditioning to block the open backdoor path. 

Do not condition on a mediator: 𝐿

 attenuated total effect blocks the total causal effect of 

𝐴 → 𝑌. If 𝐿 
3 may be affected by 𝐴, ensure 𝐿 occurs before 

𝐴. 

Do not condition on a collider: 𝐿 

induces a non-causal 

association between 
4 

𝐴 and 𝑌. Ensure 𝐿 

occurs before 𝐴 and 
that 

5 
𝑈occurs before, may also be affected by𝐴. If 𝐿′ is not affected by𝐴. Ensure 𝐿′ 𝐴 𝑌2

  𝐿 ′4 𝑈𝐿 𝑌2 or 𝑌, 𝐿′’s timing relative to 𝐴 and 𝑌 is 

unimportant. We must only ensure that 𝑈 occurs before 𝐴 and that 𝐴 occurs before 𝑌. 

Key: 
𝐴 denotes the treatment; 𝑌 denotes the outcome; 𝑈 denotes an unmeasured confounder; 𝐿 denotes a confounder; asserts causality; 

𝑡 subscript denotes the true relative timing of the variable; 𝜙𝑡 relative timing is asserted, here erroneously; indicates a path for bias 

linking 𝐴 to 𝑌 absent causation; indicates a path for bias separating 𝐴 and 𝑌; 𝐿 indicates that conditioning on 𝐿 introduces bias 

(over-conditioning bias). We include 𝐴 𝑈 𝑌 to clarify that we cannot typically be confident that all common causes of the treatment 

and outcome have been measured. Examples 1, 3-5 illustrate how bias arises from erroneous variable timing: 𝜙𝑡 ≠ 𝑡 

prevent the self-inflicted injury of conditioning on a common effect of the treatment and outcome. 

Summary Part 2 

We use causal directed acyclic graphs to represent and evaluate structural sources of bias. We do not use these 
causal graphs to represent the entirety of the causal system in which we are interested, but rather only those 

features necessary to evaluate conditional exchangeability, or equivalently to evaluate d-separation. Moreover, 

causal directed acyclic graphs should not be confused with the structural equation models employed in the 

statistical structural equation modelling traditions (refer also to Rohrer et al. (2022)). Although Pearl’s formalism 

is built upon ‘Non-Parametric Structural Equation Models,’ the term ‘Structural Equation Model’ can be 

misleading. Causal directed acyclic graphs are structural models that represent assumptions about reality, they 
are not statistical models. We use structural causal models to evaluate identifiability. We create causal graphs 

𝐴 occurs before 𝑌. 

Conditioning on a descendant is akin to 

conditioning on its parent: 𝐿′ , a 

 

descendant of an unmeasured confounder 𝐴1 
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before we embark on statistical modelling. They aim to clarify how to write statistical models by elucidating 

which variables we must include in our statistical models and, equally important, which variables we must 

exclude to avoid invalidating our causal inferences. All causal graphs are grounded in our assumptions about the 

structures of causation. Although it is sometimes possible – under assumptions – to automate causal discovery 
(Peters et al., 2016) we cannot fully dispense with assumption because the causal structures of the world are 

underdetermined by the data (Quine, 1981; J. M. Robins, 1999). 

THe distinction between structural and statistical models is fundamental because absent clearly defined causal 

contrasts on well-defined treatments, well-defined outcomes, and well-defined populations, and absent 

carefully evaluated assumptions about structural sources of bias in the relationship between treatments and 

outcomes, the statistical structural equation modelling tradition offers no guarantees that the coefficients 

investigators recover are interpretable. Misunderstanding this difference between structural and statistical 

models has led to considerable confusion across the human sciences (Bulbulia, 2022, 2024c; VanderWeele, 

2015; VanderWeele, 2022; VanderWeele & Vansteelandt, 2022). 

Part 3. How Causal Directed Acyclic Graphs Clarify the Importance of Timing of Events 

Recorded in Data 

As noted in the previous section, the five elementary rules of confounding control reveal the importance of 
ensuring accurate timing in the occurrence of the variables whose structural features a causal directed acyclic 

graph encodes. We begin by considering seven examples of confounding problems resolved when accuracy in 

the timing of the occurrence of variables is ensured. These examples refer to causal graphs in Table 5. We use 

the symbol 𝒢 to denote a graph. We use the convention: 𝒢{row}{.}{1=problem;2=solution} to indicate a causal directed 

acyclic graph in the table. 

Example 1: Reverse Causation 

Table 5 𝒢3.1 illustrates bias from reverse causation. Suppose we are interested in the causal effect of marriage 

on well-being. If we observe that married people are happier than unmarried people, we might erroneously 

infer that marriage causes happiness, or happiness causes marriage (refer to McElreath (2020)). 

Table 5 𝒢3.2 clarifies a response. Ensure that the treatment is observed before the outcome is observed. Note 

further that the treatment, in this case, is not clearly specified because ‘marriage’ is unclear. There are at least 

four causal contrasts we might consider when thinking of ‘marriage’, namely: 

1. 𝑌(0, 0): The potential outcome when there is no marriage. 

2. 𝑌(0, 1): The potential outcome when there is a shift to marriage from no marriage. 

3. 𝑌(1, 0): The potential outcome under divorce. 

4. 𝑌(1, 1): The potential outcome from marriage prevalence. 

Table 5: Causal DAGs illustrate how ensuring the relative timing of the occurrence of variables of interest 

addresses common forms of bias when estimating causal effects. 

 Examples of confounding bias avoided with accurate temporal order  

Bias  Problem  Accuracy in Timing 

Reverse causation: Incorrectly asserted 

1 𝐴𝜙1 and 𝑌𝜙2; in truth 𝑌1 causes association 𝑌1 𝐴2 𝐴1 𝑌2 with 
𝐴2. 

Confounding by common cause: An 
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2 unmeasured variable is assumed to cause 𝐿0 𝐴1 𝑌2 𝑈 𝐿0 𝐴1 

𝑌2 both 𝐴 and 𝑌. 

 Mediator bias: Incorrect timing asserted attenuated total effect 

3 by 𝐿𝜙, leading to controlling for a mediator, 𝐴0

 𝐿1 𝑌2 𝑈 𝐿0 𝐴1 𝑌2 

which distorts the true causal effect. 

 Collider bias: Incorrect timing asserted 𝐴1 

4 by 𝐿𝜙1, leading to controlling for a collider, 𝐿 3

 𝑈 𝐿0 𝐴1 𝑌2 
creating a non-causal association between 

𝑌 
 𝐴 and 𝑌. 2 

𝐴1 

 Collider proxy bias: Conditioning on a  𝐿3 𝐿 ′4 𝑈𝐿  𝐿′0 𝐴1 𝑌2 

5 descendant of a collider introduces bias. 
𝑌2 

Post-treatment collider stratification 

 bias: Conditioning on a variable affected 𝐴0 𝐿1 𝑌2 𝑈𝐿  𝐿′0 𝐴1 𝑌2 
6 𝑈 

by treatment, even if this is not a mediator, 

may induce bias. 

Unmeasured common cause: 

 Conditioning on baseline exposure and 𝐿0 

7 outcome provides powerful confounding 𝑈 𝐴1 𝑌2 𝑈 𝐴0 𝐴1 

𝑌2 control and recovers incident exposure 𝑌0 

effect. 

Key: 𝐴 denotes the treatment; 𝑌 denotes the outcome; 𝑈 denotes an unmeasured confounder; 𝐿 denotes a confounder; 

denotes causal edge; 𝑘 subscript denotes the true relative timing of the variable; 𝜙𝑘 relative timing is asserted, here 

erroneously; indicates a path for bias linking 𝐴 to 𝑌 absent causation; indicates a path for bias separating 𝐴 and 𝑌 from 

conditioning on a mediator; 𝐿 indicates that conditioning on 𝐿 that introduces bias (over-conditioning bias); We include 𝐴 

𝑈 𝑌 to clarify that we cannot typically be confident that all common causes of the treatment and outcome have been 

measured. 
Example 1 reverse-causation: 𝜙 timing in the exposure and outcome is incorrect. 

Examples 3-6 Asserted timing 𝜙 of confounder is incorrect: 𝐿𝜙0 ≠ 𝐿0 

Example 7 shows how we can reduce unmeasured confounding by conditioning on baseline values of the exposure and outcome. 

Each of these four outcomes may be contrasted with the others, yielding six unique contrasts. Which do we wish 

to consider? ‘What is the causal effect of marriage on happiness?’ is ill-defined. This question does not uniquely 

state which of the six causal contrasts to consider. The first step in causal inference is to state a well-defined 

causal question in terms of interventions and outcomes to be compared. For a worked example refer to Bulbulia  

(2024c). 

Example 2: Confounding by Common Cause  

Table 5 𝒢3.2 illustrates confounding by common cause. Suppose there is a common cause, 𝐿, of the treatment, 

𝐴, and outcome, 𝑌. In this setting, 𝐿 may create a statistical association between 𝐴 and 𝑌, implying causation in 
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its absence. Most human scientists will be familiar with the threat to inference in this setting: a ‘third variable’ 

leads to a statistical association between treatment and outcome absent causation. 

Suppose that smoking, 𝐿, is a common cause of both yellow fingers, 𝐴, and cancer, 𝑌. Here, 𝐴 and 𝑌 may show 

an association without causation. If investigators were to scrub the hands of smokers, this would not affect 

cancer rates. 

Table 5 𝒢3.2 clarifies a response. Condition on the common cause, smoking. Within strata of smokers and non-

smokers, there will be no association between yellow fingers and cancer. 

Example 3: Mediator Bias 

Table 5 𝒢3.1 illustrates mediator bias. Conditioning on the effect of treatment blocks the flow of information from 

treatment to outcome, biasing the total effect estimate. 

Suppose investigators are interested in whether cultural ‘beliefs in big Gods’ 𝐴 affect social complexity 𝑌. 
Suppose that ‘economic trade’, 𝐿, is both a common cause of the treatment and outcome. To address 

confounding by a common cause, we must condition on economic trade. However, timing matters. If we 

condition on measurements that reflect economic trade after the emergence of beliefs in big Gods, we may bias 

our total effect estimate. 

Table 5 𝒢3.2 clarifies a response. Ensure that measurements of economic trade are obtained for cultural histories 

before big Gods arise. Do not condition on post-treatment instances of economic trade. 

Example 4: Collider Bias 

Table 5 𝒢4.1 illustrates collider bias. Imagine a randomised experiment investigating the effects of different 

settings on individuals’ self-rated health. In this study, participants are assigned to either civic settings (e.g., 

community centres) or religious settings (e.g., places of worship). The treatment of interest, 𝐴, is the type of 

setting, and the outcome, 𝑌, is self-rated health. Suppose there is no effect of setting on self-rated health. 

However, suppose both setting and rated health independently influence a third variable: cooperativeness. 
Specifically, imagine religious settings encourage cooperative behaviour, and at the same time, individuals with 

better self-rated health are more likely to engage cooperatively. Now suppose the investigators decide to 

condition on cooperativeness, which in reality is the common effect of 𝐴 and the outcome 𝑌. Their rationale 

might be to study the effects of setting on health among those who are more cooperative or perhaps to ‘control 

for’ cooperation in the health effects of religious settings. By introducing such ‘control’, the investigators would 
inadvertently introduce collider bias, because the control variable is a common effect of the treatment and the 

outcome. If both 𝐴 and 𝑌 are positively associated with 𝐿, 𝐴 and 𝑌 will be negatively associated with each other. 

However, such an association is a statistical artefact. Were we to intervene on 𝐴, 𝑌 would not change. 

Table 5 𝒢4.2 clarifies a response. If the worry is that cooperativeness is a confounder, ensure that cooperativeness 

is measured before the initiation of exposure to religious settings. 

Example 5: Collider Proxy Bias 

Table 5 𝒢5.1 illustrates bias from conditioning on the proxy of a collider. Consider again the scenario described in 

sec 3.4, but instead of controlling for cooperativeness, investigators control for charitable donations, a proxy for 

cooperativeness. Here, because the control variable is a descendant of a collider, conditioning on the proxy of 

the collider is akin to conditioning on the collider itself. 

Table 5 𝒢5.2 clarifies a response. Do not condition on charitable donations, an effect of treatment. 
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Example 6: Post-Treatment Collider Stratification Bias 

Table 5 𝒢6.1 illustrates post-treatment collider stratification bias. Consider again an experiment investigating the 

effect of religious service on self-rated health. Suppose we measure ‘religiosity’ after the experiment, along 

with other demographic data. Suppose further that religious setting affects religiosity, as does an unmeasured 

confounder, such as childhood deprivation. Suppose that childhood deprivation affects self -reported health. 

Although our experiment ensured randomisation of the treatment and thus ensured no unmeasured common 
causes of the treatment and outcome, conditioning on the post-treatment variable ‘religiosity’ opens a back-

door path from the treatment to the outcome. This path is 𝐴0 𝐿1 𝑈 𝑌2. We introduced confounding 

into our randomised experiment. 

Table 5 𝒢6.2 clarifies a response. Do not condition on a variable that the treatment may affect (refer to Cole et al. 

(2010) for a discussion of theoretical examples; refer to Montgomery et al. (2018) for evidence of the widespread 

prevalence of post-treatment adjustment in published political science experiments; refer also to Bulbulia 

(2024e)). 

Example 7: Conditioning on Past Treatments and Past Outcomes to Control for Unmeasured Confounders  

Table 5 𝒢7.1 illustrates the threat of unmeasured confounding. In ‘real world’ studies, this threat is ubiquitous. 

Table 5 𝒢7.2 clarifies a response. With at least three repeated measurements, investigators may greatly reduce 

unmeasured confounding by controlling for past measurements of the treatment as well as past measurements 
of the outcome. With such control, any unmeasured confounder must be orthogonal to its effects at baseline 

(refer to VanderWeele et al. (2020)). Moreover, controlling for past treatments allows investigators to estimate 

an incident exposure effect over a prevalence exposure effect. The prevalence exposure effect describes the 

effect of current or ongoing exposures (treatments) on outcomes. This effect risks leading to erroneous 

conclusions. The incident exposure effect targets initiation into treatment, which is typically the effect we obtain 
from experiments. To obtain the incident exposure effect, we generally require that events in the data can be 

accurately classified into at least three relative time intervals (refer to Hernán et al. (2016a); Danaei et al. (2012); 

VanderWeele et al. 

(2020); Bulbulia (2022)). 

Summary Part 3 

The examples in Part 3 reveal that the ability to order treatments, outcomes, and their common causes on a 

timeline is necessary for obtaining valid inferences. When timing is ensured, we can use Pearl’s backdoor path 

adjustment algorithm to evaluate identification, subject to the assumptions encoded in a causal directed acyclic 

graph. 

Part 4 How Causal Directed Acyclic Graphs Clarify The Insufficiency of Ensuring The Timing 

of Events Recorded in Data For Causal Identification  

We next present a series of illustrations that clarify ordering variables in time is insufficient insurance against 

confounding biases. All graphs in Part 4 refer to Table 6. 

Example 1: M-bias 

Table 6 𝒢1.1 illustrates the threat of over-conditioning on pre-treatment variables – ‘M-bias’. Suppose we want to 

estimate the effect of religious service attendance on charitable donations. We obtain time-series data and 

include a rich set of covariates, including baseline measures of religious service and charity. Suppose there is no 

treatment effect. Suppose further that we condition on loyalty measures, yet loyalty neither affects religious 
service attendance nor charitable giving. However, imagine that loyalty is affected by two unmeasured 
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confounders. Furthermore, imagine that one’s childhood upbringing (an unmeasured variable) affects both 

loyalty and inclinations to religious service but not charitable giving. 𝑈𝐴 denotes this unmeasured confounder. 

Furthermore, suppose wealth affects loyalty and charitable giving but not religious service. 𝑈𝑌 denotes this 

unmeasured confounder. In this setting, because loyalty is a collider of the unmeasured confounders, 

conditioning on loyalty opens a path between treatment and outcome. This path is 𝐴 𝑈𝐴 𝑈𝑌 𝑌. 

Table 6 𝒢1.2 clarifies a response. If we are confident that 𝒢1.1 describes the structural features of confounding, we 

should not condition on loyalty. 

Example 2: M-bias Where the Pre-treatment Collider is a Confounder 

Table 6 𝒢2.1 illustrates the threat of incorrigible confounding. Imagine the scenario in 𝒢1.1 and 𝒢1.2 but with one 

change. Loyalty is indeed a common cause of religious service attendance (the treatment) and charitable giving 
(the outcome). If we do not condition on loyalty, we have unmeasured confounding. This is bad. If we condition 

on loyalty, as we have just considered, we also have unmeasured confounding. This is also bad. 

Table 6 𝒢2.2 clarifies a response. Suppose that although we have not measured wealth, we have measured a 

surrogate of wealth, say neighbourhood deprivation. Conditioning on this surrogate is akin to conditioning on 

the unmeasured confounder; we should adjust for neighbourhood deprivation. 

Example 3: Opportunities for Post-treatment Conditioning for Confounder Control 

Table 6 𝒢3.1 illustrates the threat of unmeasured confounding. Suppose we are interested in whether curiosity 

affects educational attainment. The effect might be unclear. Curiosity might increase attention but it might also 

increase distraction. Consider an unmeasured genetic factor 𝑈 that influences both curiosity and educational 

attainment, say anxiety. Suppose we do not have early childhood measures of anxiety in our dataset. We have 

unmeasured confounding. This is bad. 

Table 6 𝒢3.2 clarifies a response. Suppose 𝑈 also affects melanin production in hair follicles. If grey hair is an 
effect of a cause of curiosity, and if grey hair cannot be an effect of educational attainment, we could diminish 

unmeasured confounding by adjusting for grey hair in adulthood. This example illustrates how conditioning on 

a variable that occurs after the treatment has occurred, or even after the outcome has been observed, may 

prove useful for confounding control. When considering adjustment strategies, it is sometimes useful to 

consider adjustment on post-treatment confounders, however, it must be clear that the confounder is not 

affected by the treatment. 

Example 4: Residual Confounding After Conditioning on Past Treatments and Past Outcomes  

Table 6 𝒢4 illustrates the threat of confounding even after adjusting for baseline measures of the treatment and 

the outcome. Imagine that childhood deprivation, an unmeasured variable, affects both religious service 

attendance and charitable giving. Despite adjusting for religious status and charitable giving at baseline, 

childhood Table 6: Common confounding scenarios in which ordering of variable timing is insufficient for causal 

identification. 

 Examples of bias not resolved by sequential data collection 

Bias  Problem Response 
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M-bias: Over-conditioning bias. 
1 

Response: do not condition on 𝐿. 

M-bias, L is a confounder: 
Pre-treatment collider 𝐿 is also a 

2 confounder. Response: Adjust for 

proxies of unmeasured confounders 

that do not induce M-bias. 

Unmeasured confounding 
Response: Unless a proxy of an 

 unmeasured confounder is a mediator  𝑈

 𝑌2 1

 𝑈𝐿𝐿′3  
3 or collider, conditioning on this proxy will reduce bias even if the proxy 

occurs after the outcome. 

 Residual confounding Response:𝑌2  Sensitivity analysis 
4 

Sensitivity analysis. 

Treatment affects 

confounder ofthe mediated effects of 𝑉 and 𝑀 

path Response: ℛ
𝑌4 combined, or an analogue of the 5 mediator/outcome 

Estimate controlled direct effect.desired estimand using random 

Collider stratification bias without 

draws from distributions that are 

not observed (”recanting twins”). 

confounder feedback: No effect of 𝑈𝐿𝑌 

treatment on future confounder yet 

6 time-varying confounding from collider 𝐴1 𝐿2 𝐴2 𝑌 Special estimators; strong 
sequential ignorability. 

stratification bias.Response: Special 𝑈𝐴𝑌 estimators; requires strong sequential ignorability 

Key: 𝐴 ̄ denotes the treatment, or sequential treatments: for 𝑘 ∈ 𝐾 measurement intervals {𝐴𝑠<𝑝, 𝐴𝑝; 𝑠, 𝑝 ∈ 𝐾}; 𝑌: the outcome; 𝑈: 

unmeasured confounder; 𝐿: measured confounder; 𝐿′: proxy for an unmeasured confounder; 𝑀′: mediator of 𝐴 𝑌; 𝑉: 

intermediary mediator; ℛ Denotes randomised to treatment assignment;indicates conditioning on variable 𝑋 eliminates or 

: mediated direct effect;  bias for total effect of 𝐴 on 𝑌 reduces; 𝐿 indicates that conditioning on 𝐿 introduces bias. 

from conditioning on a mediator;  indicates a path for bias linking 𝐴 to 𝑌 absent causation. 

deprivation might influence changes in one or both variables over time. This can create a longitudinal association 

between religious service attendance and charitable giving without a causal relationship. Strictly speaking, the 

causal effect cannot be identified. We may estimate an effect and perform sensitivity analyses to check how 

much unmeasured confounding would be required to explain way an effect (refer to Linden et al. (2020)); we 

may also seek negative controls (refer to Hernan & Robins (2024)). 

attenuated 
Natural direct/indirect effects are 

not identified; consider estimating 

𝐿 

  

  
      

  

  
      

  

  
      

  

  
  

 

     

     

 
  
  

  
  

  𝑉    
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Example 5: Intermediary Confounding in Causal Mediation 

Table 6 𝒢5 illustrates the threat of treatment confounding in causal mediation. Imagine that the treatment is 

randomised; there is no treatment-outcome confounding. Nor is there treatment-mediator confounding. ℛ → 

𝐴 ensures that backdoor paths from the treatment to the outcome are closed. We may obtain biased results 

despite randomisation because the mediator is not randomised. Suppose we are interested in whether the 

effects of COVID-19 lockdowns on psychological distress were mediated by levels of satisfaction with the 
government. Suppose that assignment to COVID-19 lockdowns was random, and that time series data taken 

before COVID-19 provides comparable population-level contrasts. Despite random assignment to treatment, 

assume that there are variables that may affect both satisfaction with the government and psychological 

distress. For example, job security or relationship satisfaction might plausibly function as common causes of 

the mediator (government satisfaction) and the outcome (psychological distress). To obtain valid inference for 

the mediator-outcome path, we must control for these common causes. 

Table 6 𝒢5 reveals the difficulty in decomposing the total effect of COVID-19 on psychological distress into the 
direct effect of COVID-19 that is not mediated by satisfaction with the government and the indirect effect that is 

mediated. Let us assume that confounders of the mediator-outcome path are themselves potentially affected by 

the treatment. In this example, imagine that COVID-19 lockdowns affect relationship satisfaction because 

couples are trapped in “captivity.” Imagine further that COVID-19 lockdowns affect job security, which is 

reasonable if one owns a street-facing business. If we adjust for these intermediary variables along the path 
between the treatment and outcome, we will partially block the treatment-mediator path. This means that we 

will not be able to obtain a natural indirect effect estimate that decomposes the effect of the treatment into that 

part that goes through the intermediary path 𝐴 𝑉 𝑀 𝑌 and that part that goes through the mediated path 

independently of 𝑉, namely 𝐴 𝑉 𝑀 𝑌. However, it may be possible to estimate controlled direct effects—that is, 

direct effects when the mediator is fixed to different levels (Greenland et al., 1999; Shpitser et al., 2022; 

VanderWeele, 2015), or to obtain approximations of the natural direct effect (Bulbulia, 2024c; refer to Dıaź et 

al., 2023; Stensrud et al., 2023). 

Example 6: Treatment Confounder Feedback in Sequential Treatments 

Table 6 𝒢6 illustrates the threat of treatment confounder feedback in sequential treatment regimes. Suppose we 

are interested in whether beliefs in big Gods affect social complexity. Suppose that beliefs in big Gods affect 

economic trade and that economic trade may affect beliefs in big Gods and social complexity. Suppose the 

historical record is fragmented such that there are unmeasured variables that affect both trade and social 
complexity. Even if these unmeasured variables do not affect the treatment, conditioning on the 𝐿 (a confounder) 

and sequential treatment opens a backdoor path 𝐴 𝐿 𝑈 𝑌. We have confounding. 

Table 6 𝒢6 reveals the difficulty of sequentially estimating causal effects. To estimate an effect requires special 

estimators under the assumption of sequential randomisation for fixed treatments and the assumption of strong 

sequential randomisation for time-varying treatments—that is, for treatments whose present levels depend on 

the levels of past treatments and and measured confounders affected by those treatments (Dıaz et al., 2021́ ; 
Haneuse & Rotnitzky, 2013; Hernán et al., 2004; Hoffman et al., 2023; Richardson & Robins, 2013a; J. Robins, 

1986; Rotnitzky et al., 2017; Van Der Laan & Rose, 2011, 2018; Williams & Díaz, 2021; Young et al., 2014). 

Importantly, we have six potential contrasts for the two sequential treatments: beliefs in big Gods at both time 

points vs. beliefs in big Gods at neither time point; beliefs in big Gods first, then lost vs. never believing in big 

Gods at both: 
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Table 7: Table outlines four fixed treatment regimens and six causal contrasts in time-series data where 

treatments vary over time. 

Type Description Counterfactual Outcome 

Regime Always believe in big Gods 𝑌(1, 1) 

Regime Never believe in big Gods 𝑌(0, 0) 

Regime Believe once first, then scepticism 𝑌(1, 0) 

Regime Start with scepticism, then believe 𝑌(0, 1) 

Contrast Always believe vs. Never believe 𝐸[𝑌(1, 1) − 𝑌(0, 0)] 

Contrast Always believe vs. Treat once first 𝐸[𝑌(1, 1) − 𝑌(1, 0)] 

Contrast Always believe vs. Treat once second 𝐸[𝑌(1, 1) − 𝑌(0, 1)] 

Contrast Never believe vs. Treat once first 𝐸[𝑌(0, 0) − 𝑌(1, 0)] 

Contrast Never believe vs. Treat once second 𝐸[𝑌(0, 0) − 𝑌(0, 1)] 

Contrast Believe once first vs. Believe once second 𝐸[𝑌(1, 0) − 𝑌(0, 1)] 

We can compute six causal contrasts for these four fixed regimens, as shown in Table 7. 

A limitation of directed acyclic causal diagrams is that we do not project factorisations of the counterfactual 

contrasts onto the graphs themselves. To evaluate counterfactual identification, using Single World Intervention 

Graphs can be helpful(Richardson & Robins, 2013b, 2023; J. M. Robins & Richardson, 2010). I consider  

intermediate confounding in more detail in Bulbulia (2024c). 

Example 7: Collider Stratification Bias in Sequential Treatments 

Table 6 𝒢7 illustrates the threat of confounding bias in sequential treatments even without treatment-

confounder feedback. Assume the setting is 𝒢6 with two differences. First, assume that the treatment, beliefs in 

big Gods, does not affect trade networks. However, assume that an unmeasured confounder affects both the 

beliefs in big Gods and the confounder, trade networks. Such a confounder might be openness to outsiders, a 

feature of ancient cultures for which no clear measures are available. We need not imagine that treatment 

affects future states of confounders for time-varying confounding. It would be sufficient to induce bias for an 
unmeasured confounder to affect the treatment and the confounder, in the presence of another confounder 

that affects both the confounder and the outcome. 

Table 6 𝒢7 reveals the challenges of sequentially estimating causal effects. Yet again, to estimate causal effects 

here requires special estimators, under the assumption of sequential randomisation for fixed treatments, and 

the assumption of strong sequential randomisation for time-varying treatments (Dıaz et al., 2021́ ; Haneuse & 

Rotnitzky, 2013; Hernán et al., 2004; Hoffman et al., 2023; Richardson & Robins, 2013a; J. Robins, 1986; 
Rotnitzky et al., 2017; Van Der Laan & Rose, 2011, 2018; Williams & Díaz, 2021; Young et al., 2014). We note 

again that a specific causal contrast must be stated, and we must ask, for which cultures do our causal effect 

estimates generalise. 

Readers should be aware that merely applying currently popular tools of time-series data analysis—multi-level 

models and structural equation models—will not overcome the threats of confounding in sequential 

treatments. Applying models to data will not recover consistent causal effect estimates. Again, space 

constraints prevent us from discussing statistical estimands and estimation here (refer to Bulbulia (2024a)). 

Summary Part 4 

Directed acyclic graphs reveal that ensuring the timing of events in one’s data does not ensure identification. In 

some cases, certain mediated effects cannot be identified by any data, as we discussed in the context of 

mediation analysis with intermediate confounding. However, across the human sciences, we often apply 
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statistical models to data and interpret the outputs as meaningful. Causal diagrams demonstrate that standard 

approaches, no matter how sophisticated, are often hazardous and can lead to misleading conclusions.  

Part 5. Creating Causal Diagrams: Pitfalls and Tips 

The primary interest of causal diagrams is to address identification problems. Pearl’s backdoor adjustment 

theorem proves that if we adopt an adjustment set such that 𝐴 and 𝑌 are d-separated, and furthermore do not 

condition on a variable along the path from 𝐴 to 𝑌, then association is causation. 

Here is how investigators may construct safe and effective directed acyclic graphs. 

1. Clarify the causal question and target population 

An identification strategy is relative to the question at hand. The adjustment criteria for estimating an effect of 

𝐴 on 𝑌 will generally differ from those for estimating an effect of 𝑌 on 𝐴. Before attempting to draw any causal 
diagram, state the problem your diagram addresses and the population to whom it applies. Additionally, when 

adopting a specific identification strategy for a treatment or set of treatments, the coefficients we obtain for 

the other variables in the model will often be biased causal effect estimates for those variables. 

Moreover, the coefficients obtained from statistical models developed to estimate causal effects will typically 

not have a marginal interpretation (Chatton et al., 2020; Cole & Hernán, 2008; VanderWeele, 2009). This 

implication has wide-ranging consequences for scientific reporting. For example, if regression coefficients are 
reported at all, they should come with clear warnings against interpreting them as having any causal meaning 

or interpretation (Bulbulia, 2024b; McElreath, 2020; Westreich & Greenland, 2013). Powerful machine learning 

algorithms treat these parameters as a nuisance, and in many cases, coefficients cannot be obtained. Referees 

of human science journals need to be alerted to this fact and retrained accordingly. 

2. Consider whether the three fundamental assumptions for causal inference may be satisfied  

Merely possessing data, even if the data are richly detailed time-series data, does not mean our causal 

questions will find answers. Along with identification, we must also consider the causal consistency and 

positivity assumptions, refer to Part 1. 

3. Clarify the meanings of symbols and conventions 

It is fair to say that the state of terminology in causal inference is a dog’s breakfast (for a glossary, refer to 

supplement S1). Meanings and conventions vary not only for terminology but also for causal graphical 

conventions. For example, whereas we have denoted unmeasured confounders using the variable 𝑈, those 

who follow Pearl will often draw a bi-directional arrow. Although investigators will have their preferences, 
there is generally little substantive interest in one’s conventions, only that they are made clear, frequently 

repeated (as I have done repeatedly in the key for each graph table), and applied correctly. 

4. Include all common causes of the treatment and outcome  

Once we have stated our causal question, we are ready to create a draft of our causal graph. This graph 

should incorporate the most recent common causes (parents) of both the treatment and the outcome, or,  

where measures are not available, measures for available proxies. 

Where possible, aggregate functionally similar common causes and label them with a single node. For 

example, all baseline confounders that are a common cause of the treatment and outcome might be 

labelled 𝐿0. Time-varying confounders might be labelled 𝐿1, 𝐿2, … 𝐿𝜏−1, where 𝑌𝜏 is the outcome at the end 

of study. 

How do we determine whether a variable is a common cause of the treatment and the outcome? We 

might not always be in a position to know. Remember that a causal directed acyclic graph (DAG) asserts 
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structural assumptions. Expertise in crafting causal diagrams does not guarantee expertise in encoding 

plausible structural assumptions! Therefore, creating and revising causal DAGs should involve topic 

specialists. 

Additionally, the decision-making processes should be thoroughly documented in published research, 

even if this documentation is placed in supplementary materials. 

5. Consider potential unmeasured confounders 

We leverage domain expertise not only to identify measured sources of confounding but also—and 

perhaps most importantly—to identify potential unmeasured confounders. These should be included in 

our causal diagrams. Because we cannot guard against all unmeasured confounding, it is essential to 

perform sensitivity analyses and to consider developing multiple analytic strategies to provide multiple 
channels of evidence for the question at hand, such as instrumental variables, negative control treatments, 

negative control outcomes, and mendelian randomisation (Angrist & Pischke, 2009; Smith et al., 2022). 

6. Ensure the causal directed acyclic graph is acyclic and practice good chronological hygiene  

Although not strictly necessary, it may be useful to annotate the temporal sequence of events using 
subscripts (e.g., 𝐿0, 𝐴1, 𝑌2), as we have done here. Moreover, it is a great help to your audience (and to 

yourself) to spatially order your directed acyclic graph to reflect the progression of causality in time—

either left-to-right or top-to-bottom. What might be called ‘chronological hygiene’ will considerably 

enhance comprehensibility, and allow you to spot errors you might otherwise miss – such as worrying 

about whether a post-treatment variable is a confounder – it is not – and we should not condition on an 
effect of the treatment if our interest is in a total treatment effect. Note there are other post-treatment 

biases to worry about, such as directed measurement error bias (Bulbulia, 2024d), however, it is perilous 

to fix such 

biases through adjustment. 

7. Represent paths structurally, not parametrically 

Whether a path is linear is unimportant for causal identification—and remember causal diagrams are tools 

for causal identification. Focus on whether paths exist, not their functional form (linear, non-linear, etc.). 

Consider a subway map of Paris. We do not include all the streets on this map, all noteworthy sites, or a 

detailed overview of the holdings by room in the Louvre. We use other maps for these purposes. 

Remember, the primary function of a causal diagram is to ensure d-separation. If a causal diagram is to be 

useful, it must remove almost every detail about the reality it assumes. 

8. Minimise paths to those necessary for addressing an identification problem  

Reduce clutter; only include paths critical for a specific question (e.g., backdoor paths, mediators). For 

example, in Table 6 𝒢 6 and Table 6 𝒢 7, I did not draw arrows from the first treatment to the second 

treatment. Although I assume that such arrows exist, drawing them was not, in these examples, relevant 

to evaluating the identification problem at hand. 

9. When Temporal Order is Unknown, Explicitly Represent This Uncertainty on Your Causal Diagram  

In many settings, the relevant timing of events cannot be ascertained with confidence. To address this, we 

adopt the convention of indexing nodes with uncertain timing using 𝑋𝜙𝑡 notation. Although there is no 

widely adopted convention for representing uncertainty in timing, our primary obligation is to be clear.  
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10. Create, Report, and Deploy Multiple Graphs 

Causal inference hinges on assumptions, and experts might disagree. When the structure of reality encoded in 

a causal graph is uncertain or debated, investigators should produce multiple causal diagrams that reflect these 

uncertainties and debates. 

By stating different assumptions and adopting multiple modelling strategies that align with these assumptions, 

we might find that our causal conclusions are robust despite differences in structural assumptions. Even when 

different structural assumptions lead to opposing causal inferences, this knowledge can guide future data 
collection to resolve these differences. The primary goal of causal inference, as with all science, is to truthfully 

advance empirical understanding. Assertions are poor substitutes for  honesty. Rather than asserting a single 

causal directed graph, investigators should follow the implications of several. 

11. Use Automated Identification Algorithms such as daggity with Care 

Automated software can assist with identification tasks, such as factorising complex conditional 

independencies. However, automated software may not converge on identifying the optimal set of 

confounders in the presence of intractable confounding. 

Consider Tyler VanderWeele’s modified disjunctive cause criterion. VanderWeele (2019) recommends 

obtaining a maximally efficient adjustment, termed a ‘confounder set.’ A member of this set is any variable that 

can reduce or remove structural sources of bias. The strategy is as follows: 

a. Control for any variable that causes the treatment, the outcome, or both. 

b. Control for any proxy of an unmeasured variable that is a shared cause of both the treatment and outcome.  

c. Define an instrumental variable as a variable associated with the treatment but not influencing the 
outcome independently, except through the treatment. Exclude any instrumental variable that is not a 

proxy for an unmeasured confounder from the confounder set (VanderWeele, 2019). 

VanderWeele’s modified disjunctive cause criterion is an excellent strategy for selecting an optimal confounder 

set. However, this set might not remove all structural sources of confounding bias in most observational settings. 

As such, an automated algorithm might reject it. This rejection could be unwise because, in non-randomised 

treatment assignments, we should often include relations of unmeasured confounding in our causal graphs. 

Rejecting causal inferences in observational settings entirely would be imprudent, as many examples closely 

approximate randomised control trials (Hernán et al., 2008b; Hernán et al., 2016b; Hernán & Robins, 2006b). 

For example, consider Table 6 𝒢2.1, where we encountered intractable confounding. What if there were no 

proxy for an unmeasured confounder? Should we condition on the measured confounder and induce M-bias, 

leave the backdoor path from the measured confounder open, or not attempt causal inferences at all? The 
answer depends on assumptions about the relative strength of confounding in the causal diagram. Rather than 

relying on a generic strategy, we require subject-specialist expertise, sensitivity analyses, and multiple causal 

identification strategies (Smith et al., 2022). 

12. Clarify Assumptions about Structural Bias from Measurement Error and Target Population Restriction 

(also known as ‘Selection Bias’) 

Space constraints prevented us from examining how causal directed acyclic graphs can clarify structural biases 

from measurement error and restrictions of the target population in the sample population at the start and 

end of the study. We can (and should) examine structural features of bias in these settings. For an overview, 

refer to Bulbulia (2024d). 
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Conclusions 

Limitations First, I have focused on the application of causal diagrams to confounding bias; however, there are  

other biases that threaten causal inference besides confounding biases. Causal directed acyclic graphs can also 

be extended to evaluate measurement-error biases and some features of target population restriction bias 
(also called ‘selection restriction bias’). Valid causal inferences require addressing all structural sources of bias. 

This work does not aim for complete coverage of how causal diagrams may be useful for off-label applications 

other than assessing d-separation, but it hopes to stimulate curiosity (Bulbulia, 2024d; Hernan & Robins, 2024; 

Hernán, 2017; Hernán & Cole, 2009; Liu et al., 2023; VanderWeele & Hernán, 2012). 

Second, I have not reviewed other graphical tools for identification, such as Single World Intervention  

Graphs. Although causal directed acyclic graphs are powerful tools for addressing identification problems, they 

are not the only graphical tools researchers use to investigate causality. For example, J. Robins (1986) developed 

the ‘finest fully randomized causally interpreted structured tree graph (FFRCISTG),’ which has been more recently 

revived and simplified in Single World Intervention Graphs (refer to Richardson & Robins (2013b)). These graphs 

explicitly factorise counterfactual states, which can be helpful for identification in complex longitudinal settings. 
For some, representing counterfactual states on a graph is more satisfying, as it allows inspection of the 

conditional independence of expectations over 𝑌(𝑎∗) and 𝑌(𝑎) separately. Refer to Bulbulia (2024c) for use cases. 

Third, I have not reviewed workflows downstream of causal identification. This article does not cover statistical 
estimands, statistical estimation, and the interpretation and reporting of causal inferences, which come 

downstream of causal graphs in causal inference workflows. Rapid developments in machine learning offer 

applied researchers new tools for handling model misspecification (Dıaz et al., 2021́ ; Hoffman et al., 2023; Laan 

& Gruber, 2012; Van Der Laan & Rose, 2018; Williams & Díaz, 2021) and assessing treatment effect heterogeneity 

(Athey et al., 2019; Athey & Wager, 2021; Vansteelandt & Dukes, 2022; Wager & Athey, 2018). Those interested 

in workflows for causal inference in panel studies might consider VanderWeele et al. (2020). The workflows in 
my research group can be found here: Bulbulia (2024a). For general approaches, I recommend: 

https://tlverse.org/tmle3/, accessed 10 June 2024. However, readers should be aware that workflows for 

statistical designs and estimation are quickly evolving. 

Nevertheless, after precisely stating our causal question, the most difficult and important challenge is 

considering whether and how it might be identified in the data. The ‘statistical models first’ approach routinely 

applied in most human sciences is soon ending. This approach has been attractive because it is relatively easy to 

implement—the methods do not require extensive training—and because the application of statistical models 
to data appears rigorous. However, if the coefficients we recover from these methods have meaning, this is 

typically accidental. Without a causal framework, these coefficients are not just uninformative about what works 

and why; they lack any meaning (Ogburn & Shpitser, 2021). 

There are many good resources available for learning causal directed acyclic graphs (Barrett, 2021; Cinelli et al., 

2022; Greenland et al., 1999, 1999; Hernan & Robins, 2024; Major-Smith, 2023; McElreath, 2020; Morgan & 

Winship, 2014; Pearl, 2009; Rohrer, 2018; Suzuki et al., 2020). This work aims to add to these resources, first by 

providing additional conceptual orientation to the frameworks and workflows of causal data science, highlighting 

the risks of applying causal graphs without this understanding; second, by using causal diagrams to emphasise 
the importance of ensuring relative timing for the variables whose causal relationships are represented on the 

graph; third, by employing causal diagrams to clarify the limitations of longitudinal data for certain questions in 

causal mediation and time-varying confounding under time-varying treatments, which remain topics of 

confusion in many human sciences (see Bulbulia (2024c) for a detailed explanation). 

For those just getting started on causal diagrams, I recommend Miguel Hernan’s free course here: 
https://www.edx.org/learn/data-analysis/harvard-university-causal-diagrams-draw-your-assumptions-
beforeyour-conclusions, accessed 10 June 2024 
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For those seeking a slightly more technical but still accessible introduction to causal inference and causal DAGs, 

I recommend Brady Neal’s introduction to causal inference course and textbook, both freely available here 

https://www.bradyneal.com/causal-inference-course, accessed 10 June 2024. 

Neurath’s Boat: On the Priority of Assumptions in Science  

We might wonder, if not from the data, where do our assumptions about causality come from? We have said 

that our assumptions must come from expert knowledge. Our reliance on expert knowledge might seem 
counterintuitive for building scientific knowledge. Shouldn’t we use data to build scientific knowledge, not the 

other way around? Isn’t scientific history a record of expert opinions being undone?  

The Austrian philosopher Otto Neurath famously described scientific progress using the metaphor of a ship that 

must be rebuilt at sea: 

… every statement about any happening is saturated with hypotheses of all sorts and these in the 

end are derived from our whole world-view. We are like sailors who on the open sea must 

reconstruct their ship but are never able to start afresh from the bottom. Where a beam is taken 

away a new one must at once be put there, and for this the rest of the ship is used as support. In 

this way, by using the old beams and driftwood, the ship can be shaped entirely anew, but only by 

gradual reconstruction. (Neurath, 1973, p. 199) 

Neurath emphasises the iterative process of accumulating scientific knowledge; new insights are formed from 

the foundation of existing knowledge (Godfrey-Smith, 2006, 2009; Quine, 1981). 

Causal diagrams are at home in Neurath’s boat. We should resist the tradition of science that believes knowledge 

develops solely from the results of statistical tests applied to data. The data have never fully contained the 

answers we seek. When reconstructing knowledge, we have always relied on assumptions. Causal graphs enable 

us to make these assumptions explicit and to understand what we obtain based on them.  
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