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Introduction
Imagine that you go for a walk with your friend. You walk along a

closed loop around a university campus, finishing at the point where you
started. You and your friend keep the same distance throughout your walk.
You walk on the ‘outside’.

How much longer would your path be than your friend's? What about if
you two go for a 15 km hike around a big lake? The answer is quite simple
and for a non-mathematician possibly unexpected: it does not matter how
long is your loop, you would always walk just as much more as if you
circled once around your friend at a given distance. The statement sensibly
generalises to paths that are not closed and even not smooth. And we could
say, these beautiful realisations intuitively and essentially follow from the
definition of , indeed from the elementary fact that the circumference and
radius of a circle are directly proportional.

π

The result is well known to mathematicians and especially to differential
geometry specialists (compare for example [1, p. 47, exercise 6]), but,
contrary to its beauty, intuitive accessibility and motivational power, remain
widely unknown to many curious mathematics teachers and students.

1.  Parallel paths and their length
Parallel lines are a well-known concept from elementary school. Parallel

paths are mathematically more sophisticated to define but their intuitive
meaning is pretty obvious. For example, two promenaders may walk along
parallel paths even when the paths are winding. Also intuitively obvious are
the parallel paths that left and right wheels of a car travel (when a car moves
along a winding road). For simplicity, we shall consider only parallel paths in a
plane. While it is obvious that the travelled distance is the same if we observe
two parallel lines, it is interesting to ask the following question: What is the
difference in lengths between the two paths travelled by the right and left
wheels of a car? The idea of comparing the lengths of parallel paths might be
encountered already within a very simple question in elementary geometry:

Assume the planet Earth is a perfect sphere and we put a ring around
the equator which is 100 m longer than the equator. The ring is
positioned equidistantly all around the equator. Is there enough space
for a cat to slip through under the ring? What about for a mouse?

For a ‘conscious mathematician’, the answer is clearly affirmative: even a
giraffe could easily walk under the ring. The answer follows from the
elementary geometric equation

2π (R + d) = 2πR + 100,
where  is the radius of the sphere (Earth) and  is the distance between theR d
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equator and the ring. From the above equation we get , which is
mathematically no surprise as the radius ( ) and the circumference ( ) of a
circle are proportional and . We can see our equator and the ring
as two parallel paths, which would be travelled by two wheels moving on an
imaginary plane, the inside wheel along a circle (of equator size) and the
outer at a distance . The outer wheel would travel only for  longer
distance independently of the size of the circle. That seems obvious for the
two wheels travelling along any circle. What about if the parallel paths were
more complicated? If the two parallel paths consist of four straight lines and
four quarter of circles, as in Figure 1, we get the same result. The outer path
is  longer than the inner path. Note, that this idea basically explains the
start lines in athletic stadiums.

d ≈ 16 m
R C

C = 2πR

d 2πd

2πd

Could the above observation be true for any (simple) closed parallel
plane path (see Figure 2)? We will see that the answer is in the affirmative.
For the proof of this statement, we will need some (basic) differential
geometry (see for example [1], [2]).

B
d

A

FIGURE 1: Parallel paths of four straight lines and four quarter circles

B
d

A

FIGURE 2: Random (simple) closed parallel path

2.  Smooth closed curves
We start with smooth closed curves in -plane. Let ,

 be a smooth closed curve, given by arc length parameter .
xy c : [0,1] → �2

c (0) = c (l) s
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Since the curve's  parameter is its arc length, we have
 as a unit tangent vector and  is a

normal (perpendicular to the curve) vector. The normal vector  is
perpendicular to the right of the direction of the movement along the curve,
which is determined by a parameter .

c (s) = (x (s) , y (s))
c′ (s) = (x′ (s) , y′ (s)) η(s) = (y′ (s), −x′ (s))

η (s)

s
For a smooth curve  we define its curvature at point  (Figure 3a) asc c (s)

κ (s) = lim
�s → 0

�ϕ
�s

=
dϕ
ds

.

The reciprocal of the curvature is called the radius of curvature:
. Note that  and  correspond to a

straight line. If the curvature is positive, the curve is ‘turning left’ and if it is
negative, it is ‘turning right’, with regard to the direction of travel
determined by the parameter . The radius of curvature can be nicely
visualised by imagining the circle around which a car would travel if the
steering wheel were to get locked at a specific point, while the car was
travelling along a smooth curve (Figure 3b).

ρ (s) = 1 / κ (s) κ (s) = 0 ρ (s) = ±∞

s

(a) (b)

c (s)

ρ (s)

�s �ϕ

FIGURE 3: Radius of curvature

We define , where  determines the distance
between the two paths. Curve  is obviously parallel to . Let the
function  measure the length of the curve . A small
increment  of  can be described in terms of  and small increments

 of . Let the point  move along the curve  and on its right point  along
the curve . We consider three different cases:

C (s) = c (s) + d · η (s) d
C (s) c (s)

L : [0, l] → � C (s)
dL (s) L ρ (s)

ds s A c B
C

1. Turn left:  moves faster then , ,  (Figure 4).B A ρ (s) > 0 dL (s) = ρ(s) + d
ρ(s) ds

2. Wide turn right:  moves slower then ,  and ,

 (Figure 5a).

B A ρ (s) < 0 −ρ (s) ≥ 0

dL (s) =
−ρ (s) − d

−ρ (s)
ds =

ρ (s) + d
ρ (s)

ds

3. Sharp turn right:  moves backwards,  and ,

 (Figure 5b).

B ρ (s) < 0 −ρ (s) < d

dL (s) =
ρ (s) + d

ρ (s)
ds

The first two options are determined by , when .
The third option is determined by ,when . Note
that in the first two options,  moves along a smooth curve, while the third
option forces  to move along a piecewise smooth curve with cusps. And as
in Figure 5b,  moves backwards between the two cusps.

κ (s) ≥ −1
d dL(s) = ρ(s)+ d

ρ(s) ds
κ (s) < −1

d dL(s) = ρ(s)+ d
−ρ(s) ds

B
B
B
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ρ (s) ds
d

A B

dL

FIGURE 4: Path differential when ρ (s) > 0

The first two options are determined by , when .
The third option is determined by ,when . Note
that in the first two options,  moves along a smooth curve, while the third
option forces  to move along a piecewise smooth curve with cusps. And as
in Figure 5b,  moves backwards between the two cusps.

κ (s) ≥ −1
d dL(s) = ρ(s)+ d

ρ(s) ds
κ (s) < −1

d dL(s) = ρ(s)+ d
−ρ(s) ds

B
B
B

−ρ (s) −ρ (s)
ds ds

d
d

A AB

B
dL dL

(a) (b)

FIGURE 5: Path differential when , (a) , (b) ρ (s) < 0 −ρ (s) ≥ d −ρ (s) < d

We define . Therefore  for every , where
. The differential  whenever . Let us

calculate

dLr(s) = ρ(s)+ d
ρ(s) ds dLr(s) = dL(s) s

κ (s) ≥ −1
d dLr(s) = −dL(s) κ (s) < −1

d

∫
l

0
dLr (s) = ∫

l

0 (1 +
d

ρ (s)) ds = l + d ∫
l

0

1
ρ (s)

 ds.

The equation

∫
l

0

ds
ρ (s)

= ∫
l

0
κ (s)  ds = 2πn (1)

gives the ‘total curvature’ of the (plane) curve , where  tells us how many
times the tangent vector  (or normal vector ) rotates for  in the
positive direction while point  travels along the whole path of the curve
. If  is a closed path,  is an integer, sometimes called ‘index’ or ‘turning

number’ (of a closed plane curve). With a simple closed path as in Figures
2, 7 and 8, we get , while for the path in Figure 6, .

c n
c′ (s) η (s) 360°

c′ (s)
c c n

n = 1 n = 0

Note: The quantity  does not represent the length of the curve
in the strict sense. Recall that those parts of the curve  where the
curvature was negative and its absolute value was bigger than

, were subtracted and not added to the full length of the curve.

∫
l
0 dLr (s) C (s)

C (s)

1
d (κ (s) < −1

d)
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In fact the expression  is exactly what we want to describe, namely,
the difference of the lengths of the paths  and . Summarising:

∫
l
0 dLr (s)

c C

• If ,  moves slower than  (left part of path in Figure 6).κ (s) > 0 A B
• If ,  and  move straight (with the same speed).κ (s) = 0 A B
• If  and ,  moves faster than  (right part of path in

Figure 6).
κ (s) < 0 −1

d < κ (s) A B

• If ,  moves (in a circle) around the (rotating)  (part of path
in Figure 7).

κ (s) = −1
d A B

• If ,  is making a sharp right turn while  moves backwards
(part of path  in Figure 8).

κ (s) < −1
d A B
c

C

c

A
d

B

FIGURE 6: Path  with curvature c κ (s) > −
1
d

C

c

A
d

B

FIGURE 7: Path  with mostly positive curvature and a portion where curvaturec
κ (s) = −1

d

Summarising the main result we get the following theorem.
Theorem 1: If  moves along a smooth closed path , with  on the right at a
constant distance  and if  (the turning number of the closed curve ) is a
count of how many times  has rotated around  (with respect to the relative
centre at the point ), then point  has moved exactly a  longer path
than point  (independently of the length of the curve ).

A c B
d n c

B A
A B 2πnd

A c
The number  tells us also how many times the segment  has

revolved (in a positive direction) around  throughout the whole move of
n AB

A A
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along the curve . With very sharp turns of  to the right,  moves
backwards. Moves backwards are counted negatively in the whole piecewise
smooth path of .

c A B

B

C
c

A
d

B

FIGURE 8: Path  with mostly positive curvature and a portion where the curvature isc

κ (s) < −
1
d

Corollary 1: As in Theorem 1, let  and  move along parallel closed paths
at a constant distance . If the curvature of the path of  remains greater or
equal to , then , where  denotes the length of
the path of  and  denotes the length of the path of .

A B
d A

−1 / d l (B) = l (A) + 2πnd l (A)
A l (B) B

Corollary 2: If, similarly,  and  move along simple parallel closed paths
at a constant distance  (with  on either side of ), then ,
where the sign is determined so that the outer path is longer.

A B
d B A l (B) = l (A) ± 2πd

Corollary 3: If, similarly,  and  move along simple parallel closed convex
paths at a constant distance  (with  on either side of ), then

, where the sign is determined so that the outer path is
longer.

A B
d B A

l (B) = l (A) ± 2πd

Definition 2: A simple closed plane curve is convex, if the plane area which
it bounds is convex.

Proof (or rather commentary on the last corollary): It is an obvious
consequence, which (because of the convexity assumption) can be proved
independently with very elementary geometric reasoning (see for example
[3]; 14.12).

3. Smooth curves which are not closed
The result can be generalised nicely to curves that are not closed. In (1),

we had

∫
l

0

ds
ρ (s)

= ∫
l

0
κ (s)  ds = 2πn,

where the total curvature of the closed curve , was . If we denote thec 2πn
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total curvature of a possibly not closed smooth curve  by , that isc Θ (c)

∫
l

0

ds
ρ (s)

= ∫
l

0
κ (s)  ds = Θ (c) ,

then  simply measures the angle by which the tangent vector has
rotated with respect to the positive direction, along the whole curve .

Θ (c)
c

Corollary 4: Under the same assumptions as in Theorem 1 and in Corollary
1, except that the path of  might not be closed, we get an exact analogue of
Theorem 1 and Corollary 1 where the difference in paths length becomes

 rather than .

A

Θ (c) d 2πnd

4. Piecewise smooth curves
The path of  might not be smooth at some points. This would mean that

 would, at some points, momentarily change the direction of movement by
rotating through a certain angle. In other words, at that point the direction of
the movement (derivative/gradient) would not be determined. Intuitively, it is
easy to picture how we walk, smoothly, until some point where we rotate
around our axis to change the direction of our movement. In the language of
differential geometry, the curve is not smooth at this point but we say that the
curve is piecewise smooth. Visualising our two points  and , we imagine
moving along a piecewise smooth curve and point  on the right side of  at
distance . At points where  suddenly changes the direction, rotating (at the
spot) in a positive direction (to left) for an angle  (measured in radians),
point  circles around  covering arc of length  in a positive direction
(Figure 9a). If  rotates in a negative direction (to right),  moves backwards
on an arc of the appropriate length (Figure 9b). It might be worth mentioning
that at the kinks of the piecewise smooth curve, we should consider the speed
with which  turns. If  were to move with constant speed also along these
kinks, that would mean that  turns momentarily (in zero time) and that
moves along the appropriate loop with very high (infinite) speed. In this
situation we could redefine the total curvature of a piecewise smooth curve
by adding or subtracting the appropriate angle of rotation of  at the cusps of
the piecewise smooth curve.

A
A

A B A
B A

d A
ϕ

B A d · ϕ
A B

A A
A B

A

B

A
d

B

A

d

(a) (b)

FIGURE 9: Piecewise smooth paths

Theorem 3: With the above-described sensible interpretation, Theorem 1
and all its corollaries hold also in the case of piecewise smooth paths.

https://doi.org/10.1017/mag.2023.97 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.97


452 THE MATHEMATICAL GAZETTE

5.  About the area between parallel paths
We have seen that the difference of lengths of two (at distance )

parallel plane paths is directly related to the circumference of a circle with
radius  if the curve is closed, and to the length of an appropriate circular
arc if the curve is not closed. Analogous reasoning can be applied to show
that the area between two parallel paths is also closely related to the area of
a circle with the same radius. 

d

d

If  moves along a simple smooth convex closed curve  in a positive
direction and  along a parallel path  at a distance  on the right of , then
it can be proved using only elementary geometry that the area between the
two curves equals to  (see for example [3], 14.12), where
is the length of the curve . But we also have the following result for a non-
convex curve.

A c
B C d A

l (c)  · d + πd2 l (c)
c

Theorem 4: Let  be a simple smooth closed curve of length  such that the

curvature satisfies the inequality . If  is the path parallel

to the path  at distance  (to the right side regarding the positive orientation
of the curve ), then the area between the two curves equals .

c l

κ(s) =
1

ρ(s)
≥ −

1
d

C

c d
c d · l + πd2

Proof: We observe a (differentially small) part of the path c and the area

between  and . When  is positive (Figure 10a), we have the

central angle corresponding to  equal to , and we calculate the

corresponding area as

ds dL κ(s) =
1

ρ(s)
ds dϕ =

ds
ρ(s)

dS (s) = ((ρ (s) + d)2 − ρ (s)2) ds
2ρ (s)

= d · ds +
d2

2
 

ds
ρ (s)

.

When  is negative but greater than or equal to  (Figure 10b),

we get the corresponding area as

κ(s) =
1

ρ(s)
−

1
d

dS (s) = (ρ (s)2 − (−ρ (s) − d)2) ds
−2ρ (s)

= d · ds +
d2

2
 

ds
ρ (s)

.

(a)

ds dS

d

dL

dϕ

ρ (s)

(b)

ds

dS

d
dL

dϕ

−ρ (s)

FIGURE 10: Area between parallel paths
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In both cases we compute the area between the two curves as

S = ∫
l

0
dS (s) = ∫

l

0 (d +
d2

2
 

1
ρ (s)) ds = d · l +

d2

2 ∫
l

0

1
ρ (s)

ds

= d · l +
d2

2
 2π = d · l + πd2.

Remark: The condition  applies to all smooth curves

along which  moves as far as the curve , along which  is forced to move,

remains smooth. The equality  means that  rotates about

its own axis, while  would mean  is moving backwards.

The latter would mess up the notion of the area between the curves.

κ (s) =
1

ρ (s)
> −

1
d

c

A C B
κ (s) =

1
ρ (s)

= −
1
d

B

κ (s) =
1

ρ (s)
< −

1
d

B

In the consideration of the lengths of parallel paths we have seen that
the result can be generalised to piecewise smooth (not necessary closed)
curves. A very similar generalisation can be obtained for the area (as defined
above) between piecewise smooth parallel curves  and  (see for example
Figure 11). In such a case the area between parallel paths  and  is given
by  where  denotes the length of the curve  and  is
the total curvature of the curve .

c C
c C

d · l + Θ (c) (1
2d2) l c Θ (c)

c
C

c

S

d

 FIGURE 11: Area between parallel paths − piecewise smooth curve
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