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1. Introduction and Notation. In this paper all the scalars are real
and all matrices are, if not stated to be otherwise, p-rowed square
matrices. The diagonal and superdiagonal elements of a symmetric
matrix, and the superdiagonal elements of askew-symmetric matrix,
will be called the distinct elements of the respective matrices. S will
denote both the set of all symmetric matrices and the \p (p + l)-dimen-
sional space whose coordinates are the distinct elements arranged in
some specific order. K will denote both the set of all skew-symmetric
matrices and the \p (p — l)-dimensional space whose coordinates are
the distinct elements arranged in some specific order. Any sub-set of
2 (K) will mean both the sub-set of symmetric (skew-symmetric)
matrices and the set of points of 21 (K). Any point function defined
in 2 (K) will be written as a function of a symmetric (skew-symmetric)
matrix. Da will denote the diagonal matrix whose diagonal elements
are a1, a2, . . . , ap. The characteristic roots of a symmetric matrix
will be called its roots.

The orthogonal matrices F with | F + / | =)= 0 and the skew-
symmetric matrices X are in (1, ^-correspondence, on account of tlio
following pair of equivalent equations:

(i) r = 2(/ + x ) - 1 - / ,
d') X= 2 ( 7 + F ) - 1 - 7 .
That the skew-symmetry of X implies the orthogonality of F, and
vice versa,1 is the direct result of the following computation:

[2(7 + X)-1- 7] [2(I + X ) - i - J ] '
= (/ + Z)-! (I-X) (I + X)(I-X)-1

= (I + X) -i (7 + X) (I - X) (I - X) - 1 = / ,

[2 (I + T) ~1 - I] + [2 (/ + r) " 1 - I]'
= 2(1 + T ) - ] + 2 ( 7 + F ) - 1 r - 2 / = 2 ( / + F ) - 1 ( i ' + F) - 2 / = 0.

If S e S, and if its roots are 9U.... 6P, it is well known that
(2) S = ADe^'
where A is some orthogonal matrix.

1 This result, together with a lengthy derivation, is given in Kowalewski,.
JErinfiihrung in die Determinantenfheorie (Leipzig, 1909), pp. 171-175.
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LEMMA 1. If A is any p x p matrix, there is a matrix De, with
*i = + 1 or — 1 (i = 1, . . . , p), such that \ A + Dc | =j= 0.

Proof. The lemma is evidently true for p = 1. Assume it is
true for p — 1. Write

/A, b'
A=(

\c d

-where A1 is {p — 1) x (p — 1) and 6, c are rows. By assumption
there is a !>„, with ^ = + 1 or — 1 {i = 1, ...,£> — 1), such that

| i , + 5 , | 4 : 0 . Since

v b'
d+ 1 d — 1 = 2

the two determinants on the left side of (3) cannot both vanish.
Hence the lemma is proved.

LEMMA 2. If S e 2 , there is an orthogonal V with \ V + I | =(=0

Proof. For the A in (2) there is, by Lemma 1, a Dt with
j A + De | =|= 0. Hence | ADe + / | =|= 0. Moreover, ADe also satisfies
(2). Hence the matrix F = AD€ answers all the requirements.

Combining Lemma 2 with (1) we obtain

THEOREM 1. / / S e S, there is an X e K such that

<4) S = [2 (/ + X)~1 - 7] Z

In § 2 we investigate the uniqueness of the expression (4) for a
given S. (4) expresses each distinct element of £ as a function of
\V (P + 1) arguments, viz., the distinct elements of X and the d's.
In § 3 we evaluate the functional determinant of these functions or,
to use another term, the Jacobian of the transformation (4). In § 4
we apply the results to prove a formula for the integral of some
Junction of S.

2. The symmetric matrices S which have multiple roots satisfy
the equation / (*S) = 0, where / (S) is the discriminant of the character-
istic equation of S. Let F be the surface / (8) = 0. If S e 2 — F,
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we shall so name the roots 0,, . . . . 8P t h a t 6X> B2> ... > 8P. Thus
each 0t is a well-defined function of S. The equation

(5) S=VDtr
r,

where F = (y!3) is orthogonal, then uniquely determines every column
of F except for a sign. In particular,

\YU\= 9ii8) (i=2 p)

are well-defined functions of S. Let Ft be the surface gt (S) = 0.
If S e S - F - Fz - ... - Fp, we take Yu = ~ 9t (8) (* = 2> • ••> *>)-
Thus all the columns except the first one of F are uniquely determined,
since the signs of the top elements of these columns are determined.
Hence we have

LEMMA 3. / / S e £ — F — F2 — ... — Fp, equation (5) has exactly
two solutions for V: Y1andTi, whose elements (1, 2), (1, 3), ...,(l,p),
are all negative. Tt and T2 differ only in the respect that the first column
of one is the negative of the first column of the other.

By virtue of Lemma 3 all the elements yi;- (i, j = 2, . . . , p) of F
are well-defined functions of S. Writing F(1) = (y,;)(,-, j = 2 ,.p) w e have

F(1) + / | = h(S), a well-defined function of S. Let F' be the surfac&
h(S)=0. LetE = I,-F-Fi-...-Fp-F'.

LEMMA 4. If S e E, one of the determinants | Fx -f / | and | F2 + 7 |
in Lemma 3 is zero while the other is not zero.

Proof. By Lemma 3 and the defiinition of E we have

| F 1 + / | + | F 2 + / | = 2 | Fd> + / j =}= 0.

Hence one of the determinants is not zero. Suppose | Tx+I \ =(= 0-
Then, by (1), F l = 2(Z + X)~ 1 — / , where X is skew-symmetric.
Letting H be the diagonal matrix [— 1, 1, . . . , 1] we have Fs = V1 H*
Hence

| r 2 + / | = i r 1 # + / | = | 2 ( / + x ) - 1 # + / - # |
= \X + I\ - 1 ! 2H;+ (/ + X) (I - H) | .

I t is easily seen that the first row of the matrix 1H + (7 -f- X) {I — H)
consists of zeros. Hence | F2 + 7 | = 0 . This completes the proof.

If we take F to be Yx or Tt according as | F2 + 7 | =f= 0 or
| F2 + 7 | 4= 0 we obtain

LEMMA 5. If S e E, there is a unique F which satisfies (5) and
the following conditions:
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(i) y i i < 0 ( t = 2 , . . . , p )

(ii) i r + 1 : =|= o.

By combining Lemma 5 with (1) and noticing that in (1) the non-
diagonal elements of F and (I + X)~* must have the same sign, we
obtain

THEOREM 2. If 8 e E, the equation (4) has a unique solution in
X such that the elements (1, 2), (1, 3), . . . , (1, p) of (I + X)-1 are all
negative.

Let 31 be the sub-set of K defined by the condition that the
elements (1, 2), (1, 3), . . . , (1, p) of (/ -f- X)-1 are all negative, let 0
be the sub-set of the space of (8U..., 6P) denned by the condition
0j > 02 > • .•> 0P, and let E* = M x 0, a sub-set of the \p (p + l)-di-
mensional space. Theorem 2 asserts that the equation (4) effects a
{1, l)-mapping of E* on E. ISotice also that by the definition of E,
i t differs from S by a set of measure zero.

3. In order to facilitate the computation of the functional
determinant1 for (4) we shall adopt the following notation. If
x = (a;,, . . . , xm) and y = (ylt ..., ym) and if

m
Xi= I, a^j (i = 1, . . . , m),

3=1

then we define the symbol D (z; y) to be the discriminant | a^ | .

LEMMA 6.

(i) D(x;y)=—±—
D (y; x)

(ii) D(x;y) = D(x;z) D(z;y).

Proof, (i) is an immediate consequence of definition; (ii) is a
special case of the multiplicative law of functional determinants.

The extension of (ii) to more than two factors is obvious.
In the equation

<6) X = AYA',

X is symmetric or skew-symmetric according as Y is symmetric or
•skew-symmetric. In either case (6) expresses each distinct element
of X as a linear function of the distinct elements of Y, with coefficients
depending on A. The following lemma gives the discriminant D (X; Y)
of this set of linear functions.

1 Functional determinants are considered as determined up to a sign. In all the
computations in this section signs of functional determinants are neglected.
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LEMMA 7. For (6) we have

| A | p +1 if Y is symmetric

| A | p ~ 1 if Y is skew-symmetric.

Proof. It is sufficient to prove (7) for a non-singular A. Now
every non-singular matrix is a product of a finite number of matrices
of either of the following two types, (a) a diagonal matrix whose
diagonal elements are 1 with the exception of one, which is, say,
a; (b) a matrix whose diagonal elements are 1 and whose non-diagonal
elements are 0 with the exception of one. Further, if we denote
D (X; Y) for (6) by P(A), a moment of reflection will show that
P (AB) = P(A) P (B). Hence it is sufficient to prove (7) for A belong-

r ap+1

ing to either of the types (a) and (b), i.e. D(X; Y) = I p-i if A is

of type (a) and D(X; Y) = 1 for both cases if A is of type (b). The
proof of these assertions is easy and is left to the reader.

If xlt ..., xm are functions of yx, . . . , ym, then by definition the
functional determinant is equal to D(dx; dy), where dx denotes the
system dxlt ..., dxm. For brevity we write dA for the matrix whose
elements are the differentials of the elements of A.

In order to differentiate (1) we use the formula

Then

(8) d r = -2(1 + X)-1 dX {I + X)- x = - I (I + T) dX (I + F).
Let J be the functional determinant for (4), i.e. for

(9) s = rz^r'
where F is given by (1). Differentiating (9) and using (8) we have

(10) dS = TDedT' + (dF) D,V + TDer = \YDe (I + F') dX (I + V)
-l(I+T)dX(I + F) DeT' + TDder'.

Also,
(11) J = D(dS;dX,d0).
From (10) we get

(12) rdsr = \D,(I + r')dx(i+r)-i(/ + rr)dx(i + DD, + Dde.
If we write £, for ddit and define U and Y by

(13) U = VdS F

(14) Y = (I+
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then

i.e.,
(15)

(12) gives

«•« =

i •

p .

0 T

L

7

. Hsu

(» =

(13), (14) and (15) give respectively

D (dS; U) = p* = 1, by Lemmas 6 and 7;

D(Y; dX) = 2v(v~v \I + X | - ( P - 1 ) , by Lemma 6 and (1);.

D{U; Yt£)=2-to<»-1> U (fl{ - fl,).

Hence, by (11) and Lemma 7,

J = D (dS; U) D(U; Y, g)D(Y, $; dX,

= D(dS; U)D(U; Y, £)D{Y; dX),

and so, finally,
(16) J = 2ip(p-1> \i + x\ -^-1>n(ei-6j).

4. Let us first evaluate the following integrals:

(17) A P = [ J I + X \ - ( P -

(18) Bp

where X is a p-rowed skew-symmetric matrix, dm denotes the volume-
element, K is the \p (p — l)-dimensional space, and M is defined in
the last paragraph of § 2.

We write

so that

= I / + Y

Also, the elements (1, 2), (1, 3), ..., (1, p) of (I+X)-1 are the elements
of the row —(1 + x (7 + Y)~l x'Y l x (/ + Y)'1. Hence M is the set
of points such that every element of the row x (I + Y)~ x is positive..
Making the transformation

x' = (I+Y)u', « = («!, . . . , tt, _i)

whose Jacobian is | I + Y | , we obtain
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x (I + Y)~1 x' = u (I + Y) u' = uu' = %2 + . . . + up _ j 2 .

Hence

(19) A P = \ \ I + Y | -(P-Vdm f . . . f ( 1 + V + - - -

+ « 2
3 , _ 1 ) - ( J ' - 1 ) d M 1 ...duP_1,

(20) £ P = L | / + ^ 1 -<*>-*> d m f . . . f ( l + V + •••
JKi Jo Jo

1 ...dup_lt

where Ky is the \{p— 1) (p — 2) -dimensional space. It follows from
(19) and (20) that
(21) Bp = 2-l*-VAp,

( 2 2 ) A p = A p _ j f . . . f
•̂  — CO J

and the easy computation A2 = n leads to the result
V ~<72 -P (p + D/4

\ / P or — 2 ]~i If-/fy\ {p — 1) (P — 2)/2 p

r = 1

whence also

• ( 24 ) BP = p(P ^

2 n r(r/2)

We can now prove

THEOREM 3. Let f(S) be a function of the distinct elements of the
p-rowed symmetric matrix S, such that f(S) is a function only of the

• roots ex, ..., ep of s, ex ̂  e2 ;> . . . ^ ep-.
f(S) = g(01 0p).

Let 2 be the \p (p + \)-dimensional space. Then

(25) f /(S)dm = ~ f g(9lt ..., 6P) U (0t - fy d$t ... dOp,
J s n T(r/2)Je '<i

r = 1

-where 0 is the domain 61> 62> ... > 9P.

Proof. By the remark at the end of §2 we have

\f(S)dm = \f(S)dm.
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By Theorem 2 we may use the transformation (4), with the Jacobian

(16). Hence

f f(S) dm = 2**<* - i) f \I + X\~<*-Vg (6lt ..., 8p) I I (9t - 6,) dm
J 2 J E* i< j

where E* — MxQ. Hence

f f(8)dm=2*'iP-VBp[ g(6u...,ep)Il {8i - 9,) d6lt... ddv.

Using (24) we get (25).

THEOREM 3 implies the following theorem on the probability dis-
tribution of roots, which is an important subject in statistics.

THEOREM 4. Let the distinct elements of the p-rowed symmetric
matrix 8 be random variables whose joint distribution in S has a
probability density f (S), such that f(S) is a function only of the roots
0 , ^ . . . ^ 9pof S:

f(8) = g(61 6P).

Then the joint distribution of roots in Q has the probability density
function

g(ev ...,ep)n (di-o,).
nr(r/2) f<}

r = 1

Proof. If A is any sub-set of 0, let B be the sub-set of S such
that (0,, ..., 8P) e A. Then

(26) Fv-^9,, ...,8p)eA\ = ^J>(S)f(S)dm,

where <f> (S) = 1 or 0 according as S e B or S e B. Now
£ ($) = ip(8lt ..., 8P), where i/i = 1 or 0 according as {dlt ..., 8P) e A or
not. Hence <j> (S)/(»S)=</r (Bu .... 8p)g (8lt. ..,8P). Applying Theorem 3
to (26) we get

Pr{(0x> . . . . 9p)eA}

l f r ( r / 2 ) J® * " ' i<j l

r = 1 ' .

•p{p + l)/4

= ^ I g(0! ep) Yi(8{—8j)d9l...d8p,

r = 1

which proves the theorem.
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