On Symmetric, Orthogonal, and Skew-Symmetric Matrices

By P. L. Hsu

(Received 9th July $1948 . \quad$ Read 5th November 1948.)

1. Introduction and Notation. In this paper all the scalars are real and all matrices are, if not stated to be otherwise, p-rowed square matrices. The diagonal and superdiagonal elements of a symmetric matrix, and the superdiagonal elements of a skew-symmetric matrix, will be called the distinct elements of the respective matrices. Σ will denote both the set of all symmetric matrices and the $\frac{1}{2} p(p+1)$-dimen. sional space whose coordinates are the distinct elements arranged in some specific order. K will denote both the set of all skew-symmetric matrices and the $\frac{1}{2} p(p-1)$-dimensional space whose coordinates are the distinct elements arranged in some specific order. Any sub-set of $\Sigma(K)$ will mean both the sub-set of symmetric (skew-symmetric) matrices and the set of points of $\Sigma(K)$. Any point function defined in $\Sigma(K)$ will be written as a function of a symmetric (skew-symmetric) matrix. D_{a} will denote the diagonal matrix whose diagonal elements are $a_{1}, a_{2}, \ldots, a_{p}$. The characteristic roots of a symmetric matrix will be called its roots.

The orthogonal matrices Γ with $|\Gamma+I| \neq 0$ and the skewsymmetric matrices X are in (1, 1)-correspondence, on account of the following pair of equivalent equations:

$$
\begin{align*}
& \Gamma=2(I+X)^{-1}-I, \tag{1}\\
& X=2(I+\Gamma)^{-1}-I .
\end{align*}
$$

That the skew-symmetry of X implies the orthogonality of Γ, and vice versa, ${ }^{1}$ is the direct result of the following computation:

$$
\left.\begin{array}{l}
{\left[2(I+X)^{-1}-I\right]\left[2(I+X)^{-1}-I\right]^{\prime}} \\
\quad=(I+X)^{-1}(I-X)(I+X)(I-X)^{-1} \\
\quad=(I+X)^{-1}(I+X)(I-X)(I-X)^{-1}=I
\end{array}\right] \begin{aligned}
& {\left[2(I+\Gamma)^{-1}-I\right]+\left[2(I+\Gamma)^{-1}-I\right]^{\prime}} \\
& =2(I+\Gamma)^{-1}+2(I+\Gamma)^{-1} \Gamma-2 I=2(I+\Gamma)^{-1}(I+\Gamma)-2 I=0 .
\end{aligned}
$$

If $S \in \Sigma$, and if its roots are $\theta_{1}, \ldots, \theta_{p}$, it is well known that

$$
\begin{equation*}
S=\Delta D_{\theta} \Delta^{\prime} \tag{2}
\end{equation*}
$$

where Δ is some orthogonal matrix.

[^0]Lemma 1. If A is any $p \times p$ matrix, there is a matrix D_{e}, with $\epsilon_{i}=+1$ or $-1(i=1, \ldots, p)$, such that $\left|A+D_{\epsilon}\right| \neq 0$.

Proof. The lemma is evidently true for $p=1$. Assume it is true for $p-1$. Write

$$
A=\left(\begin{array}{ll}
A_{1} & b^{\prime} \\
c & d
\end{array}\right)
$$

where A_{1} is $(p-1) \times(p-1)$ and b, c are rows. By assumption there is a D_{η}, with $\eta_{i}=+1$ or $-1(i=1, \ldots, p-1)$, such that $\left|A_{1}+D_{\eta}\right| \neq 0$. Since

$$
\left|\begin{array}{cc}
A_{1}+D_{\eta} & b^{\prime} \tag{3}\\
c & d+1
\end{array}\right|-\left|\begin{array}{rr}
A_{1}+D_{\eta} & b^{\prime} \\
c & d-1
\end{array}\right|=2\left|A_{1}+D_{\eta}\right| \neq 0
$$

the two determinants on the left side of (3) cannot both vanish. Hence the lemma is proved.

Lemma 2. If $S \in \Sigma$, there is an orthogonal Γ with $|\Gamma+I| \neq 0$ such that $S=\Gamma D_{\theta} \Gamma^{\prime}$.

Proof. For the Δ in (2) there is, by Lemma 1, a D_{e} with $\left|\Delta+D_{\epsilon}\right| \neq 0$. Hence $\left|\Delta D_{e}+I\right| \neq 0$. Moreover, $\Delta D_{\text {e }}$ also satisfies (2). Hence the matrix $\Gamma=\Delta D_{\mathrm{e}}$ answers all the requirements.

Combining Lemma 2 with (1) we obtain
Theorem 1. If $S \in \Sigma$, there is an $X \in K$ such that

$$
\begin{equation*}
S=\left[2(I+X)^{-1}-I\right] D_{\theta}\left[2(I+X)^{-1}-I\right]^{\prime} \tag{4}
\end{equation*}
$$

In § 2 we investigate the uniqueness of the expression (4) for a given S. (4) expresses each distinct element of S as a function of $\frac{1}{2} p(p+1)$ arguments, viz., the distinct elements of X and the θ 's. In § 3 we evaluate the functional determinant of these functions or, to use another term, the Jacobian of the transformation (4). In § 4 we apply the results to prove a formula for the integral of some function of S.
2. The symmetric matrices S which have multiple roots satisfy the equation $f(S)=0$, where $f(S)$ is the discriminant of the characteristic equation of S. Let F be the surface $f(S)=0$. If $S \in \Sigma-F$,
we shall so name the roots $\theta_{1}, \ldots, \theta_{p}$ that $\theta_{1}>\theta_{2}>\ldots>\theta_{p}$. Thus each θ_{i} is a well-defined function of S. The equation

$$
\begin{equation*}
S=\Gamma^{\prime} D_{\theta} \Gamma^{\prime} \tag{5}
\end{equation*}
$$

where $\Gamma=\left(\gamma_{i j}\right)$ is orthogonal, then uniquely determines every column of Γ except for a sign. In particular,

$$
\left|\gamma_{1 i}\right|=g_{i}(S) \quad(i=2, \ldots, p)
$$

are well-defined functions of S. Let F_{i} be the surface $g_{i}(S)=0$. If $S \in \Sigma-F-F_{2}-\ldots-F_{p}$, we take $\gamma_{1 i}=-g_{i}(S)(i=2, \ldots, p)$. Thus all the columns except the first one of Γ are uniquely determined. since the signs of the top elements of these columns are determined. Hence we have

Lemma 3. If $S \in \Sigma-F-F_{2}-\ldots-F_{p}$, equation (5) has exactly two solutions for $\Gamma: \Gamma_{1}$ and Γ_{2}, whose elements (1, 2), (1, 3), ..., (1, p), are all negative. Γ_{1} and Γ_{2} differ only in the respect that the first column of one is the negative of the first column of the other.

By virtue of Lemma 3 all the elements $\gamma_{i j}(i, j=2, \ldots, p)$ of Γ are well-defined functions of S. Writing $\Gamma^{(1)}=\left(\gamma_{i j}\right)_{(i, j=2 \ldots p)}$ we have $\left|\Gamma^{(1)}+I\right|=h(S)$, a well-defined function of S. Let F^{\prime} be the surface $h(S)=0 . \quad$ Let $E=\Sigma-F-F_{z}-\ldots-F_{p}-F^{\prime}$.

Lemma 4. If $S \in E$, one of the determinants $\left|\Gamma_{1}+I\right|$ and $\left|\Gamma_{2}+I\right|$ in Lemma 3 is zero while the other is not zero.

Proof. By Lemma 3 and the definition of E we have

$$
\left|\Gamma_{1}+I\right|+\left|\Gamma_{2}+I\right|=2\left|\Gamma^{(1)}+I\right| \neq 0
$$

Hence one of the determinants is not zero. Suppose $\left|\Gamma_{1}+I\right| \neq 0$. Then, by (1), $\Gamma_{1}=2(I+X)^{-1}-I$, where X is skew-symmetric. Letting H be the diagonal matrix $[-1,1, \ldots, 1]$ we have $\Gamma_{2}=\Gamma_{1} H$. Hence

$$
\begin{aligned}
\left|\Gamma_{2}+I\right|=\left|\Gamma_{1} H+I\right| & =\left|2(I+X)^{-1} H+I-H\right| \\
& =|X+I|^{-1}|2 H+(I+X)(I-H)|
\end{aligned}
$$

It is easily seen that the first row of the matrix $2 H+(I+X)(I-H)$. consists of zeros. Hence $\left|\Gamma_{2}+I\right|=0$. This completes the proof.

If we take Γ to be Γ_{1} or Γ_{2} according as $\left|\Gamma_{1}+I\right| \neq 0$ or $\left|\Gamma_{2}+I\right| \neq 0$ we obtain

Lemma 5. If $S \in E$, there is a unique Γ which satisfies (5) and the following conditions:
(i) $\gamma_{1 i}<0 \quad(i=2, \ldots, p)$
(ii) $: \Gamma+I: \neq 0$.

By combining Lemma 5 with (1) and noticing that in (1) the nondiagonal elements of Γ and $(I+X)^{-1}$ must have the same sign, we obtain

Theorem 2. If $S \in E$, the equation (4) has a unique solution in X such that the elements $(1,2),(1,3), \ldots,(1, p)$ of $(I+X)^{-1}$ are all negative.

Let M be the sub-set of K defined by the condition that the elements $(1,2),(1,3), \ldots,(1, p)$ of $(I+X)^{-1}$ are all negative, let Θ be the sub-set of the space of $\left(\theta_{1}, \ldots, \theta_{p}\right)$ defined by the condition $\theta_{1}>\theta_{2}>\ldots>\theta_{p}$, and let $E^{*}=M \times \Theta$, a sub-set of the $\frac{1}{2} p(p+1)$-dimensional space. Theorem 2 asserts that the equation (4) effects a (1, 1)-mapping of E^{*}. on E. Notice also that by the definition of E, it differs from Σ by a set of measure zero.
3. In order to facilitate the computation of the functional determinant ${ }^{1}$ for (4) we shall adopt the following notation. If $x=\left(x_{1}, \ldots, x_{n 2}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$ and if

$$
x_{i}=\sum_{j=1}^{m} a_{i j} y_{j} \quad(i=1, \ldots, m)
$$

then we define the symbol $D(x ; y)$ to be the discriminant $\left|a_{i j}\right|$.
Lemma 6.

$$
\begin{aligned}
\text { (i) } & D(x ; y) \\
\text { (ii) } & =\frac{1}{D(y ; x)} \\
\text { (x;y) } & =D(x ; z) D(z ; y) .
\end{aligned}
$$

Proof. (i) is an immediate consequence of definition; (ii) is a special case of the multiplicative law of functional determinants.

The extension of (ii) to more than two factors is obvious.
In the equation

$$
\begin{equation*}
X=A Y A^{\prime} \tag{6}
\end{equation*}
$$

X is symmetric or skew-symmetric according as Y is symmetric or skew-symmetric. In either case (6) expresses each distinct element of X as a linear function of the distinct elements of Y, with coefficients depending on A. The following lemma gives the discriminant $D(X ; Y)$ of this set of linear functions.

[^1]Lemma 7. For (6) we have
$|A|^{p+1} \quad$ if Y is symmetric

$$
D(X ; Y)=\begin{align*}
& |A|^{p-1} \quad \text { if } Y \text { is skew-symmetric. } \tag{7}
\end{align*}
$$

Proof. It is sufficient to prove (7) for a non-singular A. Now every non-singular matrix is a product of a finite number of matrices of either of the following two types, (a) a diagonal matrix whose diagonal elements are 1 with the exception of one, which is, say, a; (b) a matrix whose diagonal elements are 1 and whose non-diagonal elements are 0 with the exception of one. Further, if we denote $D(X ; Y)$ for (6) by $P(A)$, a moment of reflection will show that $P(A B)=P(A) P(B)$. Hence it is sufficient to prove (7) for A belonging to either of the types (a) and (b), i.e. $D(X ; Y)=\left\{\begin{array}{l}a^{p+1} \\ a^{p-1} \text { if } A \text { is }\end{array}\right.$ of type (a) and $D(X ; Y)=1$ for both cases if A is of type (b). The proof of these assertions is easy and is left to the reader.

If x_{1}, \ldots, x_{m} are functions of y_{1}, \ldots, y_{m}, then by definition the functional determinant is equal to $D(d x ; d y)$, where $d x$ denotes the system $d x_{1}, \ldots, d x_{m}$. For brevity we write $d A$ for the matrix whose elements are the differentials of the elements of A.

In order to differentiate (1) we use the formula

$$
d A^{-1}=-A^{-1}(d A) A^{-1}
$$

Then

$$
\begin{equation*}
d \Gamma=-2(I+X)^{-1} d X(I+X)^{-1}=-\frac{1}{2}(I+\Gamma) d X(I+\Gamma) \tag{8}
\end{equation*}
$$

Let J be the functional determinant for (4), i.e. for

$$
\begin{equation*}
S=\Gamma D_{\theta} \Gamma^{\prime} \tag{9}
\end{equation*}
$$

where Γ is given by (1). Differentiating (9) and using (8) we have

$$
\begin{array}{r}
d S=\Gamma D_{\theta} d \Gamma^{\prime}+(d \Gamma) D_{\theta} \Gamma^{\prime}+\Gamma D_{\theta} \Gamma^{\prime}=\frac{1}{2} \Gamma D_{\theta}\left(I+\Gamma^{\prime}\right) d X\left(I+\Gamma^{\prime}\right) \tag{10}\\
-\frac{1}{2}(I+\Gamma) d X(I+\Gamma) D_{\theta} \Gamma^{\prime}+\Gamma D_{d \theta} \Gamma^{\prime} .
\end{array}
$$

Also,

$$
\begin{equation*}
J=D(d S ; d X, d \theta) \tag{11}
\end{equation*}
$$

From (10) we get
(12) $\Gamma^{\prime} d S \Gamma=\frac{1}{2} D_{\theta}\left(I+\Gamma^{\prime}\right) d X(I+\Gamma)-\frac{1}{2}\left(I+\Gamma^{\prime}\right) d X(I+\Gamma) D_{\theta}+D_{d \theta}$.

If we write ξ_{i} for $d \theta_{i}$, and define U and Y by

$$
\begin{gather*}
U=\Gamma^{\prime} d S \Gamma \tag{13}\\
Y=\left(I+\Gamma^{\prime}\right) d X(I+\Gamma) \tag{14}
\end{gather*}
$$

then (12) gives

$$
U=\frac{1}{2} D_{\theta} Y-\frac{1}{2} Y D_{\theta}+D_{\xi}
$$

i.e.,

$$
\begin{array}{lr}
u_{i i}=\xi_{i} \quad(i=1, \ldots, p), \tag{15}\\
u_{i j}=\frac{1}{2}\left(\theta_{i}-\theta_{j}\right) y_{i j} & (i<j) .
\end{array}
$$

(13), (14) and (15) give respectively

$$
\begin{aligned}
& D(d S ; U)=\frac{1}{D(U ; d S)}=1, \text { by Lemmas } 6 \text { and } 7 ; \\
& D(Y ; d X)=2^{p(p-1)}|I+X|-(p-1), \text { by Lemma } 6 \text { and }(1) ; \\
& D(U ; Y, \xi)=2^{-\frac{1}{p} p(p-1)} \prod_{i<j}\left(\theta_{i}-\theta_{j}\right)
\end{aligned}
$$

Hence, by (11) and Lemma 7,

$$
\begin{aligned}
J & =D(d S ; U) D(U ; Y, \xi) D(Y, \xi ; d X, \xi) \\
& =D(d S ; U) D(U ; Y, \xi) D(Y ; d X)
\end{aligned}
$$

and so, finally,

$$
\begin{equation*}
J=2^{\frac{1}{p(p-1)}}|I+X|_{i<j}^{-(p-1)} \prod_{i}\left(\theta_{i}-\theta_{j}\right) . \tag{16}
\end{equation*}
$$

4. Let us first evaluate the following integrals:

$$
\begin{align*}
A_{p} & =\int_{K}|I+X|^{-(p-1)} d m \tag{17}\\
B_{p} & =\int_{M}|I+X|^{-(p-1)} d m \tag{18}
\end{align*}
$$

where X is a p-rowed skew-symmetric matrix, $d m$ denotes the volumeelement, K is the $\frac{1}{2} p(p-1)$-dimensional space, and M is defined in the last paragraph of $\S 2$.

We write

$$
X=\left(\begin{array}{cc}
0 & x \\
-x^{\prime} & Y
\end{array}\right), \quad x=\left(x_{1}, \ldots, x_{p-1}\right)
$$

so that

$$
\cdot|I+X|=\left|\begin{array}{cc}
1 & X \\
-x^{\prime} & I+Y
\end{array}\right|=|I+Y|\left(1+x(I+Y)^{-1} x^{\prime}\right)
$$

Also, the elements $(1,2),(1,3), \ldots,(1, p)$ of $(I+X)^{-1}$ are the elements. of the row - $\left(1+x(I+Y)^{-1} x^{\prime}\right)^{-1} x(I+Y)^{-1}$. Hence M is the set of points such that every element of the row $x(I+Y)^{-1}$ is positive. Making the transformation

$$
x^{\prime}=(I+Y) u^{\prime}, \quad u=\left(u_{1}, \ldots, u_{p-1}\right)
$$

whose Jacobian is $|I+Y|$, we obtain

On Symmetric, Orthogonal, and Skew-Symmetric Matrices 43
$x(I+Y)^{-1} x^{\prime}=u(I+Y) u^{\prime}=u u^{\prime}=u_{1}{ }^{2}+\ldots+u_{p-1}{ }^{2}$.
Hence

$$
\begin{align*}
A_{p}=\int_{K 1}|I+Y|-(p-2) & d m \int_{-\infty}^{\infty} \tag{19}
\end{align*} \quad \ldots \int_{-\infty}^{\infty}\left(1+u_{1}^{2}+\ldots .\right.
$$

$$
\begin{align*}
B_{p}=\int_{K_{1}}|I+Y|-(p-2) & d m \int_{0}^{\infty} \tag{20}
\end{align*} \quad \ldots \int_{0}^{\infty}\left(1+u_{1}^{2}+\ldots .\right.
$$

where K_{1} is the $\frac{1}{2}(p-1)(p-2)$-dimensional space. It follows from (19) and (20) that

$$
\begin{equation*}
B_{p}=2^{-(p-1)} A_{p} \tag{21}
\end{equation*}
$$

$$
\text { (22) } A_{p}=A_{p-1} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(1+u_{1}^{2}+\ldots+u_{p-1}^{2}\right)^{-(p-1)} d u_{1} \ldots d u_{p-1}
$$

$$
=\frac{\pi^{p / 2}}{2^{p-2} \Gamma(p / 2)} A_{p-1}
$$

and the easy computation $A_{2}=\pi$ leads to the result

$$
\begin{equation*}
A_{p}=\prod_{r=3}^{p} \frac{\pi^{\pi / 2}}{2^{r-2} \Gamma(r / 2)}=\frac{\pi^{p(p+1) / 4}}{2^{(p-1)(p-2 \overline{2 / 2})} \prod_{r=1}^{p} \Gamma(r / 2)}, \tag{23}
\end{equation*}
$$

whence also

$$
\begin{equation*}
B_{p}=\frac{\pi^{p(p+1) / 4}}{2^{p(p-1) / 2} \prod_{r=1}^{p} \Gamma(r / 2)} . \tag{24}
\end{equation*}
$$

We can now prove
Theorem 3. Let $f(S)$ be a function of the distinct elements of the p-rowed symmetric matrix S, such that $f(S)$ is a function only of the roots $\theta_{1}, \ldots, \theta_{p}$ of $S, \theta_{1} \geqq \theta_{2} \geqq \ldots \geqq \theta_{p}$:

$$
f(S)=g\left(\theta_{1}, \ldots, \theta_{p}\right)
$$

Let Σ be the $\frac{1}{2} p(p+1)$-dimensional space. Then

$$
\begin{equation*}
\int_{\Sigma} f(S) d m=\frac{\pi^{p(p+1) / 4}}{\prod_{r=1}^{p} \Gamma(r / 2)} \int_{\theta} g\left(\theta_{1}, \ldots, \theta_{p}\right) \prod_{i<j}\left(\theta_{i}-\theta_{j}\right) d \theta_{1} \ldots d \theta_{p} \tag{25}
\end{equation*}
$$

where Θ is the domain $\theta_{1}>\theta_{2}>\ldots>\theta_{p}$.
Proof. By the remark at the end of $\S 2$ we have

$$
\int_{\Sigma} f(S) d m=\int_{E} f(S) d m
$$

By Theorem 2 we may use the transformation (4), with the Jacobian (16). Hence
$\int_{\Sigma} f(S) d m=2^{\frac{1}{2 p}(p-1)} \int_{E^{*}}|I+X|^{-(p-1)} g\left(\theta_{1}, \ldots, \theta_{p}\right) \prod_{i<j}\left(\theta_{i}-\theta_{j}\right) d m$ where $E^{*}=M \times \Theta$. Hence
$\int_{\Sigma} f(S) d m=2^{\sharp p(p-1)} B_{p} \int_{\Theta} g\left(\theta_{1}, \ldots, \theta_{p}\right) \prod_{i<}\left(\theta_{i}-\theta_{j}\right) d \theta_{1}, \ldots d \theta_{p}$.
Using (24) we get (25).
Theorem 3 implies the following theorem on the probability distribution of roots, which is an important subject in statistics.

Theorem 4. Let the distinct elements of the p-rowed symmetric matrix S be random variables whose joint distribution in Σ has a probability density $f(S)$, such that $f(S)$ is a function only of the roots $\theta_{1} \geqq \ldots \geqq \theta_{p}$ of $S:$

$$
f(S)=g\left(\theta_{1}, \ldots, \theta_{p}\right)
$$

Then the joint distribution of roots in Θ has the probability density function

$$
\frac{\pi^{p(p+1) / 4}}{\prod_{r=1}^{p} \Gamma(r / 2)} g\left(\theta_{1}, \ldots, \theta_{p}\right) \prod_{i<j}\left(\theta_{i}-\theta_{j}\right)
$$

Proof. If A is any sub-set of Θ, let B be the sub-set of Σ such that $\left(\theta_{1}, \ldots, \theta_{p}\right) \in A$. Then

$$
\begin{equation*}
\left.\operatorname{Pr}\left\{\theta_{1}, \ldots, \theta_{p}\right) \in A\right\}=\int_{\leq} \phi(S) f(S) d m \tag{26}
\end{equation*}
$$

where $\phi(S)=1$ or 0 according as $S \in B$ or $S \bar{\epsilon} B$. Now
$\phi(S)=\psi\left(\theta_{1}, \ldots, \theta_{p}\right)$, where $\psi=1$ or 0 according as $\left(\theta_{1}, \ldots, \theta_{p}\right) \in A$ or not. Hence $\phi(S) f(S)=\psi\left(\theta_{1}, \ldots, \theta_{p}\right) g\left(\theta_{1}, \ldots, \theta_{p}\right)$. Applying Theorem 3 to (26) we get

$$
\operatorname{Pr}\left\{\left(\theta_{1}, \ldots, \theta_{p}\right) \in A\right\}
$$

$$
\begin{aligned}
& =\frac{\pi^{p(p+1) / 4}}{\prod_{r=1}^{p} \Gamma(r / 2)} \int_{\theta} \psi\left(\theta_{1}, \ldots, \theta_{p}\right) g\left(\theta_{1}, \ldots, \theta_{p}\right) \prod_{i<j}\left(\theta_{i}-\theta_{j}\right) d \theta_{1} \ldots d \theta_{p} \\
& =\frac{\prod_{r=1}^{p(p+1) / 4}}{\prod_{r=1}^{p} \Gamma(r / 2)} \int_{A} g\left(\theta_{1}, \ldots, \theta_{p}\right) \prod_{i<j}\left(\theta_{i}-\theta_{j}\right) d \theta_{1} \ldots d \theta_{p}
\end{aligned}
$$

which proves the theorem.
University of North Carolina, U.S.A.

[^0]: 1 This result, together with a lengthy derivation, is given in Kowalewski, Einführung in die Determinantentheorie (Leipzig, 1909), pp. 171-175.

[^1]: 1 Functional determinants are considered as determined up to a sign. In all the computations in this section signs of functional determinants are neglected.

