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LÁSZLÓ ERDŐS1, TORBEN KRÜGER2 and DOMINIK SCHRÖDER1

1 IST Austria, 3400 Klosterneuburg, Austria;
email: lerdos@ist.ac.at, dschroed@ist.ac.at

2 University of Bonn, 53115 Bonn, Germany;
email: torben.krueger@uni-bonn.de

Received 12 December 2017; accepted 11 February 2019

Abstract

We consider large random matrices with a general slowly decaying correlation among its entries.
We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent
away from the spectral edges, generalizing the recent result of Ajanki et al. [‘Stability of the matrix
Dyson equation and random matrices with correlations’, Probab. Theory Related Fields 173(1–2)
(2019), 293–373] to allow slow correlation decay and arbitrary expectation. The main novel tool is
a systematic diagrammatic control of a multivariate cumulant expansion.

2010 Mathematics Subject Classification: 60B20, 15B52 (primary);

1. Introduction

In recent years it has been proven for increasingly general random matrix
ensembles that their spectral measure converges to a deterministic measure up to
the scale of individual eigenvalues as the size of the matrix tends to infinity, and
that the fluctuation of the individual eigenvalues follows a universal distribution,
independent of the specifics of the random matrix itself. The former is commonly
called a local law, whereas the latter is known as the Wigner–Dyson–Mehta
(WDM) universality conjecture, first envisioned by Wigner in the 1950’s and
formalized later by Dyson and Mehta in the 1960’s [36]. In fact, the conjecture
extends beyond the customary random matrix ensembles in probability theory
and is believed to hold for any random operator in the delocalization regime of
the Anderson metal–insulator phase transition. Given this profound universality
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conjecture for general disordered quantum systems, the ultimate goal of local
spectral analysis of large random matrices is to prove the WDM conjecture for the
largest possible class of matrix ensembles. In the current paper we complete this
programme for random matrices with a general, slow correlation decay among its
matrix elements. Previous works covered only correlations with such a fast decay
that, in a certain sense, they could be treated as a perturbation of the independent
model. Here we present a new method that goes well beyond the perturbative
regime. It relies on a novel multiscale version of the cumulant expansion and
its rigorous Feynman diagrammatic representation that can be useful for other
problems as well. To put our work in context, we now explain the previous results.

In the last ten years a powerful new approach, the three-step strategy has been
developed to resolve WDM universality problems, see [19] for a summary. In
particular, the WDM conjecture in its classical form, stated for Wigner matrices
with a general distribution of the entries, has been proven with this strategy
in [14, 15, 21]; an independent proof for the Hermitian symmetry class was
given in [42]. Recent advances have crystallized that the only model-dependent
step in this strategy is the first one, the local law. The other two steps, the fast
relaxation to equilibrium of the Dyson Brownian motion and the approximation
by Gaussian divisible ensembles, have been formulated as very general ‘black-
box’ tools whose only input is the local law [17, 31, 32]. Thus the proof of the
WDM universality, at least for mean field ensembles, is automatically reduced to
obtaining a local law.

Both local law and universality have first been established for Wigner matrices,
which are real symmetric or complex Hermitian N × N matrices with mean-
zero entries which are independent and identically distributed (i.i.d.) up to
symmetry [15, 16]. For Wigner matrices it has long been known that the limiting,
or self-consistent density is the Wigner semicircle law. In subsequent work the
condition on the independent and identically entries has been relaxed in several
steps. First, it was proven in [21], that for generalized Wigner ensembles, that is,
for matrices with stochastic variance profile and uniform upper and lower bound
on the variance of the matrix entries, the local law and universality also hold, with
the self-consistent density still given by the semicircle law. Next, the condition of
stochasticity was removed by introducing the Wigner-type ensemble [2], in which
case the self-consistent density is, generally, not semicircular any more. Finally,
the independence condition was dropped and in [3] both a local law on the optimal
local scale and bulk universality were obtained for matrices with correlated entries
with fast decaying general correlations. Special correlation structures were also
considered before in [1, 11] on a local scale. We also mention that there exists
an extensive literature on the global law for random matrices with correlated
entries [6, 8, 9, 25, 26, 39, 40]. These results, however, either concern Gaussian
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random matrices or more specific correlation structures than considered in the
present work. In a parallel development the zero-mean condition on the matrix
elements has also been relaxed. First this was achieved for the deformed Wigner
ensembles that have diagonal deterministic shifts in [34, 37] and more recently for
independent and identically distributed Wigner matrices shifted by an arbitrary
deterministic matrix in [28].

In this paper we prove a local law and bulk universality for random
matrices with a slowly decaying correlation structure and arbitrary expectation,
generalizing both [3, 28]. The main point is to considerably relax the condition
on the decay of correlations compared to [3]: We allow for a polynomial decay
of order two in a neighbourhood of size �

√
N around every entry and we

only have to assume a polynomial decay of a certain finite order outside these
neighbourhoods. Another novelty is that our new concept of neighbourhoods is
completely general, it is not induced by the product structure of the index set
labelling the matrix elements. In particular, the improved correlation condition
also includes many other matrix models of interest, for example, general block
matrix type models, that have not been covered by [3].

Regarding strategy of proving the local law, the starting point is to find the
deterministic approximation of the resolvent G(z) = (H − z)−1 of the random
matrix H with a complex spectral parameter z in the upper half plane H = {z ∈
C | =z > 0}. This approximation is given as the solution M = M(z) to the Matrix
Dyson Equation (MDE)

1+ (z − A + S[M])M = 0,

where the expectation matrix A ..= EH and the linear map S[V ] ..= E(H −
A)V (H − A) on the space of matrices V encode the first two moments of the
random matrix. The resolvent approximately satisfies the MDE with an additive
perturbation term

D ..= (H − A)G + S[G]G.

The smallness of D and stability of the MDE against small perturbations imply
that G is indeed close to M . The necessary stability properties of the MDE have
already been established in [3], so the main focus in this paper is to bound D in
appropriate norms that can then be fed into the stability analysis. Most proofs of
the previous local laws loosely follow a strategy of first reducing the problem to
a smaller number of relevant variables, such as the diagonal entries of G. Instead,
correlated ensembles require to carry out the analysis genuinely on the matrix
level since G is not even approximately diagonal. This key feature distinguishes
the current paper as well as [3] from all previous works, where the Dyson equation
was only a scalar equation for the trace of the resolvent or a vector equation for its
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diagonal elements. Although adding a general expectation matrix A to a Wigner
matrix already induces a nondiagonal resolvent, diagonalization of A reduced the
analysis to the scalar level in [28]. A similar algebraic reduction is not possible
for general correlations even if they decay as fast as in [3]. However, in [3] every
matrix quantity, such as G or M , still had a very fast off-diagonal decay and thus
it was sufficient to focus only on matrix elements very close to the diagonal; the
rest was treated as an irrelevant error. For the slow correlation decay considered in
this paper such direct perturbative treatment for the off-diagonal elements is not
possible. In fact, with our new method we can even handle the essentially optimal
integrable correlation decay on a scale

√
N near the diagonal.

To obtain a probabilistic bound on D, essentially two approaches are available.
When G is approximately diagonal and when the columns of H are independent,
one may use resolvent expansion formulae involving minors that lead to standard
linear and quadratic large deviation bounds – a natural idea that first arose in the
works of Girko and Pastur [24, 38], as well as in the works of Bai et al., for
example, [7]. For correlated models the natural extension of this method requires
a somewhat involved successive expansion of minors; this was the main technical
tool in [3]. This approach is thus restricted to very fast correlation decay since it is
essentially a perturbation around nearly diagonal matrices. The alternative method
relies on the cumulant expansion of the form Eh f (h)=

∑
k(κk+1/k!)E f (k), where

κk is the kth order cumulant of the random variable h. The power of this expansion
in studying resolvents of random matrices was first recognized in [30] and it has
been revived in several recent papers, for example, [18, 27, 33]. It gives more
flexibility than the minor expansion on two accounts. First, it can handle the
stochastic effect of individual matrix elements instead of treating an entire column
at the same time. This observation was essential in [28] to handle deformations of
Wigner matrices with an arbitrary expectation matrix. Single entry expansions,
as opposed to expansion by entire columns, also appeared in the proof of a
version of the fluctuation averaging theorem [22], but in this context it did not
have any major advantage over the row expansions. Secondly, a multivariate
version of the cumulant expansion is inherently well suited to correlated models;
it automatically keeps track of the correlation structure without artificial cut-offs
and strong restrictions on the off-diagonal decay. This is the method we use to
bound D in the current work to handle the slow correlation decay effectively.

After presenting our main results in Section 2, in Section 3 we first give
a multivariate cumulant expansion formula with an explicit error term that is
especially well suited for mean field random matrix models. The main ingredient
is a novel precumulant decoupling identity, Lemma 3.1. We were not able to
find these formulae in the literature; related formulae, however, have probably
been known. They are reminiscent to the Wick polynomials, their relationship is
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explained in Appendix B. Some consequences are collected in Section 3.3 via a
toy model. When applying it to our problem, in order to bookkeep the numerous
terms, we develop a graphical language which allows us to actually compute
E |Λ(D)|p up to a tiny error for arbitrary linear functionals Λ. The structure
of D contains an essential cancellation: the term (H − A)G is compensated by
S[G]G that acts as a counter term or self-energy renormalization in the physics
terminology. Our cumulant expansion automatically exploits this cancellation to
all orders and the diagrammatic representation in Sections 4.1–4.4 conveniently
visualizes this mechanism. Section 4 contains the main novel part of this paper, in
Section 5 we combine the bounds on D with the stability argument for the MDE
to prove the local law. Section 6 is devoted to the short proofs of bulk universality
and other natural corollaries of the local law.

2. Main results

For a Hermitian N × N random matrix H = H (N ) we denote its resolvent by

G(z) = G(N )(z) = (H − z)−1,

where the spectral parameter z is assumed to be in the upper half plane H. The
first two moments of H determine the limiting behaviour of G(z) in the large N
limit. More specifically, let

A ..= EH, H =.. A +
1
√

N
W, S[V ] ..=

1
N

EW V W,

where S is a linear map on the space of N×N matrices and W is a random matrix
with zero expectation. Then the unique, deterministic solution M = M(z) to the
matrix Dyson equation (MDE)

1+ (z − A + S[M])M = 0 such that =M ..=
1
2i
[M − M∗] > 0, (1)

approximates the random matrix G(z) increasingly well as N tends to ∞. Here
=M > 0 indicates that the matrix =M is positive definite. The properties of (1)
and its solution have been comprehensively studied in [3]. In particular, it has
been shown that

1
N

Tr M(z) =
∫
R

1
x − z

dµ(x)

is the Stieltjes transform of a measure µ on R, which we call the self-consistent
density of states, and whose support suppµ we call the self-consistent spectrum.
Under an additional flatness Assumption (see Assumption (E) later) it has also
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been shown that µ is absolutely continuous with compactly supported Hölder
continuous probability density

dµ(x) = ρ(x) dx and that ρ(z) ..=
1
πN
=Tr M(z)

is the harmonic extension of ρ : R→ [0,∞). Moreover, (1) is stable with respect
to small additive perturbations and therefore it is sufficient to show that the error
matrix D = D(z) defined by

D ..= 1+ (z − A + S[G])G = (H − A + S[G])G = W
√

N
G + S[G]G (2)

is small.
Choosing the correct norm to measure smallness of the error terms is a key

technical ingredient. Similarly to the resolvent G, the error matrix D is very
large in the usual induced `p

→ `q matrix norms, but its quadratic form 〈x, Dy〉
is under control with very high probability for any fixed deterministic vectors
x, y. Furthermore, to improve precision, we distinguish two different concepts
of measuring the size of D. We show that D can be bounded in isotropic
sense as |〈x, Dy〉| . ‖x‖ ‖y‖ /

√
N=z for fixed deterministic vectors x, y as well

as in an averaged sense as N−1 |Tr B D| . ‖B‖ /N=z for fixed deterministic
matrices B. Here ‖x‖ , ‖y‖ , ‖B‖ denote the standard (Euclidean) vector norm
‖x‖2

=
∑

a |xa|
2 and (matrix) operator norm ‖B‖ ..= sup

‖x‖,‖y‖61 |〈x, By〉|. The
second step of the proof will be to show that because D is small, and (1) is stable
under small additive perturbations, also G − M is small in an appropriate sense.

2.1. Notations and conventions. An inequality with a subscript indicates that
we allow for a constant in the bound depending only on the quantities in the
subscript. For example, A(N , ε) 6ε B(N , ε) means that there exists a constant
C = C(ε), independent of N , such that A(N , ε) 6 C(ε)B(N , ε) holds for all N
and ε > 0. In many statements we implicitly assume that N is sufficiently large,
depending on any other parameters of the model. Moreover, we write f ∼ g if
f =O (g) and g =O ( f ), if it is clear from the context in which regime we claim
this comparability and how the implicit constant may depend on parameters.

An abstract index set J of size N labels the rows and columns of our matrix
(generally one can think of J = [N ] ..= {1, . . . , N } but there is no need for
having a (partial) order or a notion of distance on J ). The elements of J will
be denoted by letters a, b, . . . and i, j, . . . from the beginning of the alphabet.
We use boldfaced letters x, y,u, v, . . . from the end of the alphabet to denote J -
vectors with entries x = (xa)a∈J . We denote the set of ordered pairs of indices by

https://doi.org/10.1017/fms.2019.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.2


Random matrices with slow correlation decay 7

I ..= J × J and often call the elements of I labels to avoid confusion with other
types of indices, and denote them by Greek letters α = (a, b) ∈ I . The matrix
element wab will thus often be denoted by wα. Summations of the form

∑
a and∑

α are always understood to sum over all a ∈ J and α ∈ I .
For indices a, b ∈ J and vectors x, y ∈ CJ we shall use the notations

Axy
..= 〈x, Ay〉 , Axa

..= 〈x, Aea〉 , Aax
..= 〈ea, Ax〉 ,

where ea is the ath standard basis vector. We frequently write ∆ab
= eaet

b for
the matrix of all zeros except a one in the (a, b) entry. The normalized trace of an
N×N matrix is denoted by 〈A〉 ..= N−1 Tr A. Sometimes we also use the notation
〈z〉 ..= 1 + |z| for the complex number z, but this should not create confusions
as it will only be used for z. We furthermore use the maximum norm and the
normalized Hilbert–Schmidt norm

‖A‖max
..= max

a,b
|Aab| , ‖A‖hs

..=

[
1
N

∑
a,b

|Aab|
2
]1/2

for an N × N matrix A.

2.2. Assumptions. We now formulate our main assumptions on W and A.

ASSUMPTION (A) (Bounded expectation). There exists some constant C such
that ‖A‖ 6 C for all N .

ASSUMPTION (B) (Finite moments). For all q ∈ N there exists a constant µq

such that E |wα|q 6 µq for all α.

Next, we formulate our conditions on the correlation decay conveniently
phrased in terms of the multivariate cumulants κ of random variables of {wα |
α ∈ I }. In Appendix A we recall the definition and some basic properties of
multivariate cumulants. First we present a simple condition in terms of a tree-type
ρ-mixing decay of the cumulants with respect to the standard Euclidean metric
on [N ]2. Later, in Section 2.5, we formulate weaker and more general conditions
which we actually use for the proof of our results but their formulation is quite
involved, so for the sake of clarity we first rather state simpler but more restrictive
assumptions.

Consider J = [N ], I = [N ]2 equipped with the standard Euclidean distance
modulo the Hermitian symmetry, that is, for α, β ∈ I we set d(α, β) ..=

min{|α − β| , |αt
− β|} where αt ..= (b, a) for α = (a, b). This distance naturally

extends to subsets of I , that is, d(A, B) = min{d(α, β) | α ∈ A, β ∈ B} for any
A, B ⊂ I .
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Assumption (CD). [Polynomially decaying metric correlation structure] For the
k = 2 point correlation we assume a decay of the type

|κ( f1(W ), f2(W ))| 6
C

1+ d(supp f1, supp f2)s
‖ f1‖2 ‖ f2‖2 , (3a)

for some s > 12 and all square integrable functions f1, f2 on N × N matrices.
For k > 3 we assume a decay condition of the form

|κ( f1(W ), . . . , fk(W ))| 6k

∏
e∈E(Tmin)

|κ(e)| , (3b)

where Tmin is the minimal spanning tree in the complete graph on the vertices
1, . . . , k with respect to the edge length d({i, j}) = d(supp fi , supp f j), that
is, the tree for which the sum of the lengths d(e) is minimal, and κ({i, j}) =
κ( fi , f j).

A correlation decay of type (3b) is typical for various statistical physics models,
see, for example, [12]. Besides the assumptions on the decay of correlations we
also impose a flatness condition to guarantee the stability of the Dyson equation:

ASSUMPTION (E) (Flatness). There exist constants 0 < c < C such that

c 〈T 〉 6 S[T ] 6 C 〈T 〉

for any positive semi-definite matrix T .

Flatness is a certain mean field condition on the random matrix W . In particular,
choosing T to be the diagonal matrix with a single nonzero entry in the (i, i)
element, flatness implies that the variances of the matrix elements E

∣∣wi j

∣∣2 are
comparable for all i, j = 1, . . . , N .

2.3. Local law. We now formulate our main theorem on the isotropic and
averaged local laws. They compare the resolvent G with the (unique) solution
to the MDE in (1) away from the spectral edges. To specify the range of spectral
parameters z we define two spectral domains specified via any given parameters
δ, γ > 0. Outside of the self-consistent spectrum we work on

Dδ
out

..=
{
z ∈ H | |z| 6 N C0, dist(z, suppµ) > N−δ

}
for some arbitrary fixed C0 > 100. Under Assumption (E), which guarantees the
existence of a density ρ, we consider the spectral domains

Dδ
γ

..=
{
z ∈ H | |z| 6 N C0, η > N−1+γ , ρ(x)+ dist(x, suppµ) > N−δ

}
,
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where z = x + iη, that will be used away from the edges of the self-consistent
spectrum.

THEOREM 2.1 (Local law outside of the spectrum and global law). Under
Assumptions (A), (B) and (CD), the following statements hold: For any ε > 0
there exists δ > 0 such that for all D > 0 we have the isotropic law away from
the spectrum,

P
(
|〈x, (G − M)y〉| 6 ‖x‖ ‖y‖

N ε

〈z〉2
√

N
in Dδ

out

)
> 1− C N−D (4a)

for all deterministic vectors x, y ∈ CN and we have the averaged law away from
the spectrum,

P
(
|〈B(G − M)〉| 6 ‖B‖

N ε

〈z〉2 N
in Dδ

out

)
> 1− C N−D (4b)

for all deterministic matrices B ∈ CN×N . In fact, for small ε, δ can be chosen
such that δ = cε for some absolute constant c > 0. Here G = G(z), M = M(z)
and C = C(D, ε) is some constant, depending only on its arguments and the
constants in Assumptions (A)–(CD). Moreover, instead of Assumption (CD) it
is sufficient to assume the more general Assumptions (C) (or (C)’ for complex
Hermitian matrices) and (D), as stated in Section 2.5.

If we additionally assume flatness in the form of Assumption (E), then we also
obtain an optimal local law away from the spectral edges, especially in the bulk,

THEOREM 2.2 (Local law in the bulk of the spectrum). Under Assumptions (A),
(B), (CD) and (E), the following statements hold: For any γ, ε > 0 there exists
δ > 0 such that for all D > 0 we have the isotropic law in the bulk,

P
(
|〈x, (G − M)y〉| 6 ‖x‖ ‖y‖

N ε

√
N=z

in Dδ
γ

)
> 1− C N−D (5a)

for all deterministic vectors x, y ∈ CN and we have the averaged law in the bulk,

P
(
|〈B(G − M)〉| 6 ‖B‖

N ε

N=z
in Dδ

γ

)
> 1− C N−D (5b)

for all deterministic matrices B ∈ CN×N . In fact, δ can be chosen such that
δ = c min{ε, γ } for some absolute constant c > 0. Here C = C(D, ε, γ ) is
some constant, depending only on its arguments and the constants in Assumptions
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(A)–(E). Moreover, as in the previous theorem, instead of Assumption (CD) it
is sufficient to assume the more general Assumptions (C) (or (C)’ for complex
Hermitian matrices) and (D), as stated in Section 2.5.

Note that both theorems cover the regime where z is far away from the
spectrum; in this case the estimates in Theorem 2.1 are stronger and require
less conditions. Theorem 2.2 is really relevant when <z is inside the bulk of the
spectrum and =z is very small; this is why we called it local law in the bulk. In the
literature this regime is typically characterized by ρ(<z) > δ for some δ > 0, but
in Theorem 2.2 it is extended to ρ(<z) > N−δ for some sufficiently small δ > 0.

2.4. Delocalization, rigidity and universality. The local law is the main
input for eigenvector delocalization, eigenvalue rigidity and universality, as stated
below. We formulate them as corollaries since they follow from a general theory
that has been developed recently. We explain how to adapt the general arguments
to prove these corollaries in Sections 5.4 and 6.

COROLLARY 2.3 (No eigenvalues outside the support of the self-consistent
density). Under the assumptions of Theorem 2.1 there exists a δ > 0 such that
for any D > 0,

P
(
Spec H 6⊂ (−N−δ, N−δ)+ suppµ

)
6D N−D,

where suppµ ⊂ R is the support of the self-consistent density of states µ.

COROLLARY 2.4 (Bulk delocalization). Under the assumptions of Theorem 2.2
it holds for an `2-normalized eigenvector u corresponding to a bulk eigenvalue λ
of H that

P
(

max
a∈J
|ua| >

N ε

√
N
, Hu = λu, ρ(λ) > δ

)
6ε,δ,D N−D

for any ε, δ, D > 0.

COROLLARY 2.5 (Bulk rigidity). Under the assumptions of Theorem 2.2 the
following holds. Let λ1 6 · · · 6 λN be the ordered eigenvalues of H and denote
the classical position of the eigenvalue close to energy E ∈ R by

k(E) ..=

⌈
N
∫ E

−∞

ρ(x) dx
⌉
,
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where d·e denotes the ceiling function. It then holds that

P
(

sup
{∣∣λk(E) − E

∣∣ | E ∈ R, ρ(E) > δ
}
>

N ε

N

)
6ε,δ,D N−D

for any ε, δ, D > 0.

For proving the bulk universality we replace the lower bound from
Assumption (E) by the following, stronger, assumption:

ASSUMPTION (F) (Fullness). There exists a constant λ > 0 such that

E |Tr BW |2 > λTr B2

for any deterministic matrix B of the same symmetry class as H .

Fullness is a technical condition which ensures that the covariance matrix of
W is bounded from below by that of a full GUE or GOE matrix with variance λ.
Note this is the only condition that induces the difference between the complex
Hermitian and real symmetric symmetry classes in the following universality
statement.

COROLLARY 2.6 (Bulk universality). Under the assumptions of Theorem 2.2 and
additionally Assumption (F) the following holds: Let k ∈ N, δ > 0, E ∈ R with
ρ(E) > δ and let Φ : Rk

→ R be a compactly supported smooth test function.
Denote the k-point correlation function of the eigenvalues of H by ρk and denote
the corresponding k-point correlation function of the GOE/GUE-point process by
Υk . Then there exists a positive constant c = c(δ, k) > 0 such that∣∣∣∣∫

Rk
Φ(t)

[
1

ρ(E)
ρk

(
E1+

t
Nρ(E)

)
− Υk(t)

]
d t
∣∣∣∣ 6Φ,δ,k N−c,∣∣∣∣EΦ((Nρ(λk(E))[λk(E)+ j − λk(E)]

)k

j=1

)
−EGOE/GUEΦ

((
Nρsc(0)[λdN/2e+ j − λdN/2e]

)k

j=1

)∣∣∣∣ 6Φ,δ,k N−c,

where 1 is the vector of k ones, 1 = (1, . . . , 1), the expectation EGOE/GUE is taken
with respect to the Gaussian matrix ensemble in the same symmetry class as H,
and ρsc denotes the semicircular density.

REMARK 2.7. We chose the standard Euclidean distance on J in the formulation
of Assumption (CD) merely for convenience. In the context of [3] a similar key
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assumption was formulated in terms of a pseudometric δ on J which has sub-P-
dimensional volume, that is,

max
a∈J
|{b ∈ J | δ(a, b) 6 τ }| 6 τ P

for all τ > 1 and some P > 0. This pseudometric naturally extends to I as a
product metric modulo the symmetry,

δ2((a, b), (c, d)) ..= min {max{δ(a, c), δ(b, d)},max{δ(a, d), δ(b, c)}} ,

and to any two subsets A, B of I as

δ2(A, B) ..= min{δ2(α, β) | α ∈ A, β ∈ B}.

All our results hold in this more general setup as well if d is replaced by
δ2 in Assumption (CD) and we require that s > 12P . We do not pursue the
pseudometric formulation further in the present work since the relaxed decay
conditions formulated in Section 2.5 are more general as they allow for further
symmetries in the matrix, for which (CD) is not satisfied irrespective of the
pseudometric. A typical example for such an additional symmetry is the fourfold
model (see [4]).

2.5. Relaxed assumption on correlation decay. We now state the more
general conditions on the correlation structure which are actually used in the
proof of Theorem 2.2 and its corollaries, and are implied by Assumption (CD).
For the more general conditions we split the correlation into two regimes. In the
short range regime we express the correlation decay as a condition on cumulants,
while in the long range regime, beyond neighbourhoods of size

√
N , we impose

a mixing condition.
In the short range regime we assume the boundedness of certain norms on

cumulants κ(α1, . . . , αk)
..= κ(wα1, . . . , wαk ) of matrix entries wα, which are

modifications of the usual `1-summability condition

1
N 2

∑
α1,...,αk

|κ(α1, . . . , αk)| <∞.

Cumulant norms. In order to formulate the conditions on the cumulants concisely,
we from now on assume that W is real symmetric. We refer the reader to
Appendix C for the necessary modifications for the complex Hermitian case. In
Appendix A we recall the equivalent analytical and combinatorial definitions of κ
for the reader’s convenience (see also [41]). We note that κ is invariant under any
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permutation of its arguments. Here we recall one central property of cumulants
(which is also proved in the appendix): If wα1, . . . , wα j are independent from
wα j+1, . . . , wαk for some 1 6 j 6 k − 1, then κ(α1, . . . , αk) vanishes. Intuitively,
the kth order cumulant κ(α1, . . . , αk) measures the part of the correlation of
wα1, . . . , wαk , which is truly of k-body type. For our results, cumulants of order
four and higher require simple `1-type bounds, while the second and third order
cumulants are controlled in specific, somewhat stronger norms. Finiteness of
these norms imply a decay of correlation in a certain combinatorial sense even
without a distance on the index set I . The isotropic and the averaged bound on D
require slightly different norms, so we define two sets of norms distinguished by
appropriate superscripts and we also define their sums without superscript.

We first introduce some custom notations which keep the definition of the
cumulant norms relatively compact. If, in place of an index a ∈ J , we write a
dot (·) in a scalar quantity then we consider the quantity as a vector indexed by
the coordinate at the place of the dot. For example κ(a1·, a2b2) is a J -vector, the
i th entry of which is κ(a1i, a2b2), and ‖κ(a1·, a2b2)‖ is its (Euclidean) vector
norm. Similarly, ‖A(∗, ∗)‖ refers to the operator norm of the matrix with matrix
elements A(i, j). We also define a combination of these conventions, in particular∥∥ ‖κ(x∗, ∗·)‖ ∥∥ will denote the operator norm ‖A‖ of the matrix A with matrix
elements A(i, j) = ‖κ(xi, j ·)‖ =

∥∥∑
a xaκ(ai, j ·)

∥∥. Since ‖A‖ = ‖At‖ this does
not introduce ambiguities with respect of the order of i, j . Notice that we use dot
(·) for the dummy variable related to the inner norm and star (∗) for the outer
norm.

For kth order cumulants we set

|||κ|||k
..= |||κ|||av

k + |||κ|||
iso
k , |||κ|||av/iso

= |||κ|||
av/iso
6R

..= max
26k6R

|||κ|||
av/iso
k , (6a)

where the averaged norms are given by

|||κ|||av
2

..=
∥∥ |κ(∗, ∗)| ∥∥, |||κ|||av

k
..= N−2

∑
α1,...,αk

|κ(α1, . . . , αk)| , k > 4,

|||κ|||av
3

..=

∥∥∥∑
α1

|κ(α1, ∗, ∗)|

∥∥∥
+ inf

κ=κdd+κdc+κcd+κcc

(
|||κdd |||dd + |||κdc|||dc + |||κcd |||cd + |||κcc|||cc

)
(6b)

and the infimum is taken over all decompositions of κ in four symmetric functions
κdd, κcd , and so forth. The letters d and c refer to ‘direct’ and ‘cross’, see
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Remark 2.8 below. The corresponding norms are given by

|||κ|||cc = |||κ|||dd
..= N−1

√√√√∑
b2,a3

(∑
a2,b3

∑
α1

|κ(α1, a2b2, a3b3)|

)2

,

|||κ|||cd
..= N−1

√√√√∑
b3,a1

(∑
a3,b1

∑
α2

|κ(a1b1, α2, a3b3)|

)2

,

|||κ|||dc
..= N−1

√√√√∑
b1,a2

(∑
a1,b2

∑
α3

|κ(a1b1, a2b2, α3)|

)2

.

(6c)

For the isotropic bound we define

|||κ|||iso
2

..= inf
κ=κd+κc

(
|||κd |||d + |||κc|||c

)
|||κ|||d

..= sup
‖x‖61

∥∥ ‖κ(x∗, ·∗)‖ ∥∥, |||κ|||c ..= sup
‖x‖61

∥∥ ‖κ(x∗, ∗·)‖ ∥∥,
|||κ|||iso

k
..=

∥∥∥ ∑
α1,...,αk−2

|κ(α1, . . . , αk−2, ∗, ∗)|

∥∥∥, k > 3,

(6d)

where the inner norms in (6d) indicate vector norms and the outer norms operator
norms, and the infimum is taken over all decomposition of κ into the sum of
symmetric κc and κd .

REMARK 2.8. We remark that the particular form of the norms |||κ|||iso
2 and |||κ|||av

3
on κ is chosen to conform with the Hermitian symmetry. For example, in the case
of Wigner matrices we have

κ(a1b1, a2b2) = δa1,a2δb1,b2 + δa1,b2δb1,a2

=.. κd(a1b1, a2b2)+ κc(a1b1, a2b2),
(7)

that is, the cumulant naturally splits into a direct and a cross part κd and κc. In
general, the splitting κ = κc + κd may not be unique but for the sharpest bound
we can consider the most optimal splitting; this is reflected in the infimum in the
definition of |||κ|||iso

2 . Note that in the example (7) |||κd |||d and |||κc|||c are bounded,
but |||κc|||d would not be. A similar rationale stands behind the definition of |||κ|||av

3 .
We also remark that only the conditions on |||κ|||iso

2 and |||κ|||av
3 use the product

structure I = J× J . All other decay conditions are inherently conditions on index
pairs α ∈ I .
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ASSUMPTION (C) (κ–correlation decay). There exists a constant C such that for
all R ∈ N and ε > 0

|||κ|||iso
2 6 C, |||κ||| = |||κ|||6R

..= max
26k6R

|||κ|||k 6ε,R N ε,

where the norms |||·|||k and |||·|||iso
2 on kth order cumulants were defined in (6). If the

matrix W is complex Hermitian we use Assumption (C)’, as stated in Appendix C
instead of Assumption (C).

Furthermore, in the long range regime beyond certain neighbourhoods of size
�
√

N we assume a finite polynomial decay of correlations that is reminiscent
of the standard ρ-mixing condition in statistical physics (see, for example, [10]
for an overview of various mixing conditions). We need this decay in a certain
iterated sense that we now formulate precisely.

ASSUMPTION (D) (Higher order correlation decay). There exists µ > 0 such
that the following holds: For every α ∈ I and q, R ∈ N there exists a sequence
of nested sets Nk = Nk(α) such that α ∈ N1 ⊂ N2 ⊂ · · · ⊂ NR = N ⊂ I ,
|N | 6 N 1/2−µ and

κ
(

f (WI\
⋃

j Nn j+1), g1(WNn1 \
⋃

j 6=1 N (α j )), . . . , gq(WNnq \
⋃

j 6=q N (α j ))
)

6R,q,µ N−3q
‖ f ‖q+1

q∏
j=1

∥∥g j

∥∥
q+1 ,

where Nnk = Nnk (αk), for any n1, . . . , nq < R, α1, . . . , αq ∈ I and functions f,
g1, . . . , gq . We refer to these sets as ‘neighbourhoods’ of α, although we do not
assume any topological structure on I . For any N ⊂ I , here WN denotes the set
of wα indexed by α ∈ N .

REMARK 2.9. For the proof of Theorem 2.2 we need Assumptions (B), (C)
and (D) only for finitely many values of q, R up to some threshold, depending
only on the parameters D, γ, ε in the statement and µ from Assumption (D).
This follows from the fact that the high-moment bound from Theorem 4.1 is only
needed for a finite value of p which relates to certain threshold on q, R.

2.6. Some examples. We end this section by providing examples of correlated
matrix models satisfying Assumptions (C)–(D). Our main example is the
one already advertised in Assumption (CD). In Example 2.10 we check that
Assumption (CD) indeed implies (C)–(D).
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EXAMPLE 2.10 (Polynomially decaying model). Recall the metric setting of
Assumption (CD). Simple calculations show that Assumption (C) is satisfied even
if we only request s > 2 in (3), independent of the chosen neighbourhood systems.
As for Assumption (D), we define the neighbourhoods Nk(α)

..= {β ∈ I | d(α,
β) 6 k N 1/4−µ

} so that d(Nk(α),Nk+1(α)
c) = N 1/4−µ. To ensure that∣∣κ( f1(WNn(α)), f2(WNn+1(α)c)

)∣∣ 6 ‖ f1‖2 ‖ f2‖2

N 3
,

we thus have to choose s > 12/(1 − 4µ). The tree decay structure (3b) then
ensures that Assumption (D) is satisfied for all q .

EXAMPLE 2.11 (Block matrix). For n,M, N ∈ N with nM = N we set J = [N ]
and consider an n × n-block matrix with identical copies of an M × M Wigner
matrix in each block. We introduce an equivalence relation on I = J × J in such
a way that we first identify a ∼ b ∈ J if a = b (mod M), and then (a, b) ∼ (c,
d) ∈ I if (a, b) = (c, d) or (a, b) = (d, c) according to the Hermitian symmetry.
Then the correlation structure is such that κ(α1, . . . , αk) = O (1) if α1, . . . , αk

all belong to the same equivalence class and κ(α1, . . . , αk) = 0 otherwise. Since
every entry is correlated with at most O

(
n2
)

other entries, Assumptions (C), (D)
are clearly satisfied as long as n is bounded.

The same correlation structure is obtained if the blocks contain possibly
different random matrices with independent entries (respecting only the overall
Hermitian symmetry, but possibly without symmetry within each block), see
for example, the ensemble discussed in [5]. Furthermore, one may combine the
block matrix model with a polynomially decaying model from Example 2.10 to
construct yet another example for which Theorem 2.2 is applicable. In this general
model the matrices in each block should merely exhibit a polynomially decaying
correlation instead of strictly independent elements.

EXAMPLE 2.12 (Correlated Gaussian matrix models). Since all higher order
cumulants for Gaussian random variables vanish, our method allows to prove
the local law (and its corollaries) for correlated Gaussian random matrix models
under even weaker conditions. In fact, besides Assumptions (A) and (E) (or (F)
for universality) we only have to assume that

|||κ|||av
2 + |||κ|||

iso
2 6ε N ε

for all ε > 0. In particular, this includes the polynomially decaying model
from Example 2.10 for s > 2. These statements can be directly proved by
following our general proof, setting all higher order cumulants to zero and using
neighbourhoods N (α) = I for all α. The details are left to the reader.
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EXAMPLE 2.13 (Fourfold symmetry). A Wigner matrix W with fourfold
symmetry is a matrix of independent entries wα of unit variance up to the
symmetries wa,b = wb,a = w−a,−b = w−b,−a for all a, b ∈ Z/NZ. From the
explicit formula

κ(ab, cd) = κd(ab, cd)+ κc(ab, cd)
..= (δa,cδb,d + δa,−cδb,−d)+ (δa,dδb,c + δa,−dδb,−c),

and a similar one for the third order cumulants, Assumption (C) is straightforward
to verify. By choosing the neighbourhoods N (α) to contain the three other
companions of α from the symmetry, it is obvious that also Assumption (D) is
fulfilled. Strictly speaking, the flatness condition (E) is violated by the fourfold
symmetry, but as the resulting M is diagonal, there is an easy replacement for the
flatness. For more details on the random matrix model with a fourfold symmetry
we refer the reader to [4].

A similar argument shows that Assumptions (C)–(D) are also satisfied for
other symmetries which naturally split in such a way that wa,b is identified with
w f1(a), f2(b) andwg1(b),g2(a) for a finite collection of functions fi , gi . The appropriate
replacement for the flatness condition (E), however, has to be checked on a case-
by-case basis.

3. General multivariate cumulant expansion

The goal of this section is the derivation of a finite-order multivariate cumulant
expansion with a precise control on the approximation error.

3.1. Precumulants: definition and relation to cumulants. We begin by
introducing the concept of precumulants and establishing some of their important
properties. For any collection of random variables X, Y1, . . . , Ym we define the
quantities

K (X) ..= X
K t1,...,tm (X;Y) = K t1,...,tm (X; Y1, . . . , Ym)

..= Ym(1tm6tm−1 − E)Ym−1(1tm−16tm−2 − E)Ym−2 · · ·

× Y1(1t161 − E)X

for m > 1, that depend on real parameters t1, . . . , tm ∈ [0, 1]. We call them
time ordered precumulants. We moreover introduce the integrated symmetrized
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precumulants

K (X;Y) ..=

∑
σ∈S|Y |

∫∫ 1

0
K t1,...,t|Y |(X; σ(Y)) d t,

where S|Y | is the group of permutations on a |Y |-element set and d t = dt1 · · · dtm

indicates integration over [0, 1]|Y |. Note that the first variable X of K (X;Y)
plays a special role. Moreover, K (X;Y) is invariant under permutations of the
components of the vector Y . These precumulants are—other than the actual
cumulants—random variables, but their expectations turn out to produce the
traditional cumulants, justifying their name. While they appear to be very natural
objects in the study of cumulants, we are not aware whether the precumulants K
have been previously studied, and whether the result of the following lemma is
already known.

LEMMA 3.1 (Precumulant lemma). Let X be a random variable and let Y , Z be
random vectors. Then we have

EK (X;Y) = κ(X,Y), (8a)

K (X;Y) = κ(X,Y)+ X (ΠY)−
∑
Y ′⊂Y

(ΠY ′)κ(X,Y \ Y ′), (8b)

and the precumulant decoupling identity

K (X;Y t Z)− κ(X,Y t Z) = (ΠZ)
[
K (X;Y)− κ(X,Y)

]
−

∑
Y ′⊂Y
Z′(Z

(ΠY ′)(ΠZ′)κ(X, (Y \ Y ′) t (Z \ Z′)), (8c)

where Y ′ ⊂ Y indicates that Y ′ is a subvector of Y (with Y ′ = ∅ and Y ′ = Y
allowed) and Y \ Y ′ is the vector of the remaining entries. By Z′ ( Z we denote
all proper subvectors of Z, that is, not including Z. By ΠZ we mean the product
of all entries of the vector Z, while by Z∪Y we mean the concatenation of the
two vectors Z,Y . The order of the vector is of no importance as K (X;Y) is
symmetric with respect to the vector Y and κ is overall symmetric.

We note that (8c) is intentionally not symmetric in Y , Z, although an
analogous formula holds with Y and Z interchanged. The relation (8c) should
be interpreted as a refined version of the fact that centred precumulants factor
independent random variables. Indeed, if Z was independent of X,Y , then the
sum in (8c) would vanish by independence properties of the cumulant and (8c)
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would simplify to

K (X;Y t Z)− κ(X,Y t Z) = (ΠZ)
[
K (X;Y)− κ(X,Y)

]
.

In our applications Z will depend only very weakly on X and Y , hence the sum
in (8c) will be a small error term.

Proof. By the definition of the precumulants, we have for Y = (Y1, . . . , Ym)

K (X;Y) =
∑
σ∈Sm

∫∫ 1

0
Yσ(m)(1tm6tm−1 − E)Yσ(m−1)(1tm−16tm−2 − E) · · ·

× (1t26t1 − E)Yσ(1)(1t161 − E)X d t.

Multiplying out the brackets and pulling the characteristic functions involving
the t-variables out of the expectations, each term is a product of moments of
(X,Y)-monomials. We rearrange the sum according to the number of moments in
the form that K (X;Y) =

∑m
b=0 φb, where φb contains exactly b moments. These

terms are given by

φb = (−1)b
∑

16 j1<···< jb6m

∑
σ∈Sm

∫∫ 1

0
1tm6···6t jb

· · ·1t j1−16···6t1 d t

× Yσ(m) · · · Yσ( jb)(EYσ( jb−1) · · · Yσ( jb−1)) · · ·

× (EYσ( j2−1) · · · Yσ( j1))(EYσ( j1−1) · · · Yσ(1)X), (9)

for b > 1, and the integral in (9) can be computed to give∫∫ 1

0
[ · · · ] d t =

1
(m − jb + 1)!

1
( jb − jb−1)!

· · ·
1

( j2 − j1)!

1
( j1 − 1)!

=.. V .

Here we introduced an additional variable t0 = 1 for notational convenience and
follow the convention that the last factor in (9) for j1 = 1 reads EX . For b = 0
the analogue of (9) is given by

φ0 =

(∑
σ∈Sm

∫∫ 1

0
1tm6···6t1 d t

)
Y1 · · · Ym X = Y1 · · · Ym X.

Let the summation indices 1 6 j1 < · · · < jb 6 m be fixed and fix
a labelled partition of [m] = π1 t · · · t πb+1 into subsets of sizes |π1| =

j1 − 1, |π2| = j2 − j1, . . . , |πb| = jb − jb−1 and |πb+1| = m − jb + 1.
Those permutations σ in (9) for which σ([1, j1 − 1]) = π1, σ ([ j1, j2 − 1]) =
π2, . . . , σ ([ jb−1, jb − 1]) = πb and σ([ jb,m]) = πm+1 all produce the same term
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(−1)bVΠYπb+1 · · · (EΠYπ2)(EXΠYπ1), where Yπ = (Yk | k ∈ π). We note that
π1 plays a special role since it is explicitly allowed to be the empty set, in which
the last factor is just X . The combinatorial factor V is precisely cancelled by the
number of such permutations, that is, 1/V . Thus (9) can be rewritten as

φb = (−1)b
∑

π1t···tπb+1=[m]
|π j |>1 for j>2

ΠYπb+1(EΠYπb) · · · (EΠYπ2)(EXΠYπ1), (10a)

and therefore

K (X;Y) =
m∑

b=0

(−1)b
∑

π1t···tπb+1=[m]
|π j |>1 for j>2

ΠYπb+1(EΠYπb) · · · (EXΠYπ1). (10b)

We recognize the expectation of (10a) as the sum over all unlabelled partitions
P ` (X,Y) with |P| = b + 1 blocks, undercounting by a factor of b! as the first
b factors on the rhs. of (10a) after taking the expectation are interchangeable (the
last factor is special due to X ). We can thus conclude that EK (X;Y) reads

EK (X;Y) =
m∑

b=0

(−1)bb!
∑

P`(X,Y)
|P |=b+1

∏
A∈P

EΠ(X,Y)A = κ(X,Y), (11)

where we used (A.4) in the ultimate step, an identity that is equivalent to the
analytical definition of the cumulant, see Appendix A for more details. This
completes the proof of (8a). Now (8b) follows from first separating b = 0 to
produce the X (ΠY) term and then separating the πb+1 summation in (10b) so
that Yπb+1 plays the role of Y ′ for Y ′ 6= ∅. The sum over the remaining moments
is exactly the cumulant κ(X,Y \ Y ′), see (11). Finally, the term Y ′ = ∅ in (8b)
cancels the first κ(X,Y) term, completing the proof of (8b). The identity (8c)
follows from (8b) where Y plays the role of Y tZ. The Z′ = Z term is considered
separately, and then the identity (8b) is used again, this time for X and Y .

3.2. Precumulant expansion formula. We consider a random vectorw ∈ RI ,
indexed by an abstract set I , and a sufficiently often differentiable function
f : RI

→ C. The goal is to derive an expansion for Ewi0 f (w) in the variables
indexed by a fixed subset N ⊂ I that contains a distinguished element i0 ∈ N .
The expansion will be in terms of cumulants κ(wi1, . . . , wim ) and expectations
E∂i f of derivatives ∂i f ..= ∂i1 · · · ∂im f , where we identify ∂i = ∂wi and i =
{i1, . . . , im}. To state the expansion formula compactly we first introduce some

https://doi.org/10.1017/fms.2019.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.2


Random matrices with slow correlation decay 21

notations and definitions. We recall that a multiset is an unordered set with
possible multiple appearances of the same element. For a given tuple i = (i1,

. . . , im) ∈ N m we define the multisets

w i
..= {wi1, . . . , wim } and the augmented multiset wi0 i

..= {wi0} t w i ,

where we consider t as a disjoint union in the sense that wi0 i has m + 1 elements
(counting repetitions), regardless of whether i0 = ik for some k ∈ [m]. Similarly,
we write w

∗
⊂ w to indicate that w

∗
is a sub-multiset of a multiset w. As

cumulants are invariant under permutations of their entries we write κ(w) for
multisets w of random variables. We also write Πw ..=

∏m
j=1wi j for the product

of elements of a multiset w = {wi j | j ∈ [m]}.
Equipped with Lemma 3.1 we can now state and prove the version of the

multivariate cumulant expansion with a remainder that is best suitable for our
application. Recall from (8a) that EK (wi0;w i) = κ(wi0 i).

PROPOSITION 3.2 (Multivariate cumulant expansion). Let f : RI
→ C be R

times differentiable with bounded derivatives and let w ∈ RI be a random vector
with finite moments up to order R. Fix a subset N ⊂ I and an element i0 ∈ N ,
then it holds that

Ewi0 f (w) = Ω

+

R−1∑
m=0

∑
i∈Nm

[
E
κ(wi0 i)

m!
∂i f + E

K (wi0;w i)− κ(wi0 i)

m!
∂i f

∣∣
wN=0

]
(12a)

where

Ω( f, i0,N ) ..=

∑
i∈N R

E
∫∫ 1

0
K t1,...,tR (wi0, . . . , wiR ) dt1 · · · dtR−1

×

∫ 1

0
(∂i f )(tRw

′,w′′) dtR, (12b)

and where for m = 0 the derivative should be considered as the 0th derivative,
that is, as the function itself. Here we introduced a decomposition w = (w′,w′′)
of all random variables w = wI such that w′ = wN = (wi | i ∈ N ) and w′′ =
wN c = (wi | i ∈ I \N ) and we write f (w) = f (w′,w′′). Moreover, if E |wi |

2R 6
µ2R for all i ∈ I , then

|Ω( f, i0,N )| 6R µ
1/2
2R

∑
i∈N R

∫ 1

0

(
E
∣∣(∂i f )(tRw

′,w′′)
∣∣2 )1/2

dtR. (13)
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Proof. For functions f = f (w), g = g(w) a Taylor expansion yields, for any
s > 0,

Eg(w) f (sw′,w′′) = (Eg)(E f (0,w′′))+ Cov(g, f (0,w′′))

+

∑
i∈N

∫ s

0
Eg(w)wi(∂i f )(tw′,w′′) dt

and after another Taylor expansion to restore f (w′,w′′) in the first term we find

Eg(w) f (sw′,w′′) = (Eg)(E f )+ Cov(g, f (0,w′′))

+

∑
i∈N

∫ 1

0
Ewi [1t6s g − (Eg)](∂i f )(tw′,w′′) dt. (14)

Here we follow the convention that if no argument is written, then Eg = Eg(w).
Starting with g(w) = wi0 , the last term in (14) requires to compute
EK t(wi0;wi)(∂i f )(tw′,w′′) with t = t1, i = i1. So this has the structure
Eg̃ f̃ (tw′,w′′) with g̃ = K t1 and f̃ = ∂i1 f and we can use (14) again. Iterating
this procedure with

(g(w), s, i, t) = (K t1,...,tm−1(wi0;wi1, . . . , wim−1), tm−1, im, tm)

for m = 1, . . . , R, we arrive at

Ewi0 f =
R−1∑
m=0

∑
i1,...,im∈N

(
E
∫∫ 1

0
K t1,...,tm d t

)
(E∂i f )

+

R−1∑
m=0

∑
i1,...,il∈N

E
(∫∫ 1

0
K t1,...,tm d t − E

∫∫ 1

0
K t1,...,tm d t

)
(∂i f )(0,w′′)

+

∑
i1,...,iR∈N

E
∫∫ 1

0
K t1,...,tR dt1 · · · dtR−1

∫ 1

0
(∂i f )(tRw

′,w′′) dtR, (15)

where K t1,...,tm = K t1,...,tm (wi0, . . . , wim) and d t = dt1 · · · dtm . We note that (15)
does not include the sum over permutations, but since the summation over all
i1, . . . , im is taken we can artificially insert the permutation as in∑

i1,...,im

φ(i1, . . . , im) =
1

m!

∑
i1,...,im

∑
σ∈Sm

φ(iσ(1), . . . , iσ(m)).

Now (12a) follows from combining (15) with (8a). Finally, (13) follows directly
from a simple application of the Hölder inequality.
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3.3. Toy model. Proposition 3.2 will be the main ingredient for the
probabilistic part of the proofs of Theorems 2.1 and 2.2. For pedagogical
reasons we first demonstrate the multiplicative cancellation effect of self-energy
renormalization through iterated cumulant expansion in a toy model.

Let f and w be as in Proposition 3.2 and let us suppose that I is equipped
with a metric d . We furthermore assume that Ew = 0 and that the multivariate
cumulants of w follow a tree-like mixing decay structure as in Example 2.10, that
is,

κ( f1(w), . . . , fk(w)) .
∏

{i, j}∈E(Tmin)

1
1+ d(supp fi , supp f j)s

(16)

for some s > 0, where Tmin is the tree such that the sum of d(supp fi , supp f j)

along its edges {i, j} ∈ E(Tmin) is minimal. Fix now a finite positive integer
parameter R and a large length scale l > 0. Around every i ∈ I we use the
metric d to define neighbourhoods N (i) ..= { j ∈ I | d(i, j) 6 l R} and Nk(i) ..=

{ j ∈ I | d(i, j) 6 lk}, as in Assumption (D). For definiteness we furthermore
assume that I has dimension two in the sense that |N | ∼ l2 R2 as for the standard
labelling of a matrix where I = [N ]2. We now assume that f does not depend
strongly on any single wi , more specifically, for an multi-index i we assume

|∂i f | . |N |−(1+ε)|i | , i = (i1, . . . , i p), |i | = p. (17)

This bound ensures that the size of the derivative in the Taylor expansion in the
neighbourhood N compensates for the combinatorics.

3.3.1. Expansion of a weakly dependent function. For this setup we want to
study the size of the expression

Ewi1 · · ·wi p f (w)

where i1, . . . , i p are in general position in the sense that their N (ik)

neighbourhoods do not intersect. If f were constant we could use the following
lemma:

LEMMA 3.3. Assume that w has a tree-like correlation decay as in (16) and
assume that the random variables g0(w), . . . , gp(w) have mutually l-separated
supports, that is, that d(supp gi , supp g j) & l for all i 6= j . If furthermore Egk = 0
for k = 1, . . . , p, then it holds that∣∣Eg0 · · · gp

∣∣ . l−sdp/2e.
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Proof. Due to a basic identity on cumulants, see (A.2), we have that

Eg0 · · · gp =
∑

A1t···tAk=[0,p]

κ(gA1) · · · κ(gAk ),

where the sum goes over all partitions [0, p] and gA = {gk | k ∈ A}. From (16) it
follows that ∣∣κ(gAk )

∣∣ . l−s(|Ak |−1)

and due to the assumption of zero mean Egk = 0 for k ∈ [p]we have that κ(gA) =

0 whenever A = {k} for some k ∈ [p]. It follows that the worst case is given by
pair partitions with |Ak | = 2 for all Ak not containing 0 which completes the
proof.

From this lemma with g0 = 1 and gk = wik for k = 1, . . . , p we conclude that
for constant f we have the asymptotic bound

∣∣ f Ewi1 · · ·wi p

∣∣ . l−sdp/2e by the
zero-mean assumption κ(wi) = Ewi = 0. We now want to argue that for weakly
dependent f as in (17) a similar bound still holds true although f depends on
all variables. Note that the weak dependence renders the minimal spanning tree
distance trivial and a direct application of (16) would not give any decay. For
brevity, we introduce the notations

κ(i, j) ..= κ(wi , w j ), K (i; j) ..= K (wi ;w j ),

that is, we identify cumulants and precumulants as functions of indices rather than
random variables. We begin by expanding the first wi1 to obtain from (12a)

Ewi1 · · ·wi p f =
N (i1)∑

j1

E
[
κ(i1, j 1)∣∣ j 1

∣∣! + K (i1; j 1)− EK (i1; j 1)∣∣ j 1

∣∣!
∣∣∣∣→
wN (i1)=0

]
×wi2 · · ·wi p∂ j1

f +O
(
l−2εR

)
, (18)

where we set
∑N

j
..=
∑

06m<R

∑
j∈Nm and the parameter R, the maximal order

of the expansion, is omitted for brevity. The notation |→wN=0 means that in all
expressions to the right, the argumentw is set to zero in the set N , that is,wN = 0.
This effect includes expectation values and cumulants. Note that |→wN1=0|

→

wN2=0 =

|
→

wN1∪N2=0, that is, the effects of multiple |→ operators accumulate. For example,

f (w1, w2)|
→

w1=0 g(w1, w2)|
→

w2=0 h(w1, w2) = f (w1, w2)g(0, w2)h(0, 0). (19)

However, the order of |→w1=0 and |→w2=0 matters as long as there is a nontrivial
function in between, clearly

g(w1, w2)|
→

w2=0 f (w1, w2)|
→

w1=0 h(w1, w2) = g(w1, w2) f (0, w2)h(0, 0),
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which is different from (19). Finally, the error term in (18) was estimated
using (13), and by comparing the combinatorics |N |R of the summation to the
size of the Rth derivative,

∣∣∂i1 · · · ∂iR f
∣∣ 6 |N |−(1+ε)R . We choose R ≈ ps/4ε

large, so that the error term is negligible.
Iterating this procedure, we find

Ewi1 · · ·wi p f = O
(
l−sp/2)

+

(∏
k∈[p]

N (ik )∑
jk

)
E
→∏

k∈[p]

[
κ(ik, j k)∣∣ j k

∣∣! + K (ik; j k)− EK (ik; j k)∣∣ j k

∣∣!
∣∣∣∣→
wN (ik )=0

]
× ∂ j1

· · · ∂ jp
f (20)

where
∏
→

k∈[p] ak indicates that the order of the factors ak is taken to be increasing
in k, that is, as a1 · · · ap. This is important due to the noncommutativity of
the effect of the |→ operation on subsequent factors. We now open the bracket
in (20) and first consider the extreme case, where we take the product all the
first terms from each bracket, that is, the product of p factors with κ . In this
case the summation is of order 1 as the cumulant assumption (16) implies that∑

j∈Ik |κ(i, j)| . 1 for any fixed i1 if s > 2. Therefore the worst case is when the
least total number of derivatives is taken, that is, when

∣∣ j l

∣∣ = 1 for all l, in which
case

∣∣∂ j1
· · · ∂ jp

f
∣∣ . |N |−(1+ε)p . l−2p. Now we consider the other extreme case

where all the (K − EK ) = (K − κ) factors are multiplied. There we a priori
do not see the smallness as the summation size |N || j1|+···+| jp| roughly cancels
the derivative size |N |−(1+ε)(| j1|+···+| jp|). The desired smallness thus has to come
from the correlation decay (16). We can, however not directly apply the tree-like
decay structure since there does not have to be a ‘security distance’ between the
supports of w jk

and f . For those k with such a security we can apply the tree-like
decay immediately, and for those k where there is no such security distance we
instead use (8c) to write K − κ approximately as the product of two functions
whose supports are separated by a security distance of scale l. Indeed, if j k is not
separated from supp f at least by l, then by the pigeon-hole principle of placing
less than R labels into R nested layers, it splits into two groups j (i)k and j (o)k of
‘inside’ and ‘outside’ indices such that dist( j (i)k , j (o)k ) & l. Now by (8c) we have
that

K (ik; j k)− κ(ik; j k) = (Π j (o)k )
[
K (ik; j (i)k )− κ(ik, j (i)k )

]
−

∑
n(o)k ( j (o)k

∑
n(i)k ⊂ j (i)k

(Πn(i)k )(Πn(o)k )κ(ik, j (i)k \ n(i)k , j (o)k \ n(o)k ), (21)

whereΠ j ..= Πw j . When multiplying (21) for all k, in the product of the second
terms we (multiplicatively) collect p decay factors l−s , resulting in l−sp. For the
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product of the first terms we have to estimate a term of the type Eg1 · · · gp f̃
with gk being zero-mean random variables such that all factors have mutually l-
separated support. Here we set gk

..= K (ik; j (i)k ) − κ(ik, j (i)k ) and absorbed the
Π j (o)k factors into f̃ . It follows that

|Eg1 · · · gp f̃ | . l−sdp/2e,

from Lemma 3.3. In this argument we only considered the two extreme cases
when we opened the bracket in (20) and even in the product Π(K − κ), after
using (21) for each factor we only considered the two extreme cases. There are
many mixed terms in both steps but they can be estimated similarly and altogether
we have ∣∣Ewi1 · · ·wi p f

∣∣ . l−2p
+ l−sp/2,

that is, a power law decay whose exponent is proportional to the number of
factors.

3.3.2. Expansion of a product of weakly dependent functions and self-energy
renormalization. Now we generalize the expansion from Section 3.3.1 and
consider another simple example: the iterated expansion of multipole weakly
dependent functions. In particular, we introduce the concept of self-energy
renormalization.

Let f1, . . . , f p be some functions of w which also depend weakly on each
single wi in such a way that

∣∣∂ j f
∣∣ . |N |−(1+ε)| j |, and let i1, . . . , i p be in general

position as in the previous example. We want to study

E
∏
k∈[p]

wik fk,

which, by (20) with f replaced by
∏

fk , can be expanded to

E
∏
k∈[p]

wik fk = O
(
l−sp/2)

+

∏
k∈[p]

(N (ik )∑
jk

∑
( j l

k )l∈[p]= jk

)

×E
→∏

k∈[p]

[
κ(ik, j k)∣∣ j k

∣∣! + K (ik; j k)− EK (ik; j k)∣∣ j k

∣∣!
∣∣∣∣→
wN (ik )=0

] ∏
n∈[p]

(∂ jn fn).

Here the second sum is the sum over all partitions j 1
k t · · · t j p

k = j k of the multi-
index j k , the multi-index j n is given by the disjoint union j n

= j n
1 t· · ·t j n

p, and
we choose R ≈ ps/4ε, as in the previous example (recall that R is the maximal
order of expansion, that is,

∣∣ j k

∣∣ 6 R). Thus j n
k encodes those derivatives hitting
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fn which originate from the expansion according towik . By expanding the product
we can rewrite this expression as

E
∏
k∈[p]

wik fk =
∑

L1tL2=[p]

E
∏
k∈L1

[N (ik )∑
jk

κ(ik, j k)∣∣ j k

∣∣! ∑
( jn

k )n∈[p]= jk

]

×

→∏
k∈L2

[N (ik )∑
jk

K (ik; j k)− EK (ik; j k)∣∣ j k

∣∣!
∣∣∣∣→
wN (ik )=0

∑
( jn

k )n∈[p]= jk

]
×

∏
n∈[p]

(∂ jn fn)+O
(
l−sp/2) .

It turns out that in many relevant cases, in particular after the summation over i1,

. . . , ik, the leading contribution comes from those k ∈ L1 for which
∣∣ j k

∣∣ = 1 and∣∣ j k
k

∣∣ = 1. To counteract these leading terms we subtract this contribution from
each factor wik fk and instead compute

E
∏
k∈[p]

[
wik fk −

∑
j∈N (ik )

κ(ik, j)∂ j fk
]

=

∑
L1tL2=[p]

E
∏
k∈L1

[N (ik )∑
jk

κ(ik, j k)∣∣ j k

∣∣! ∑
( jn

k )n∈[p]= jk

1
(∣∣ j k

k

∣∣ = 0 if
∣∣ j k

∣∣ = 1
)]

×

→∏
k∈L2

[N (ik )∑
jk

K (ik; j k)− EK (ik; j k)∣∣ j k

∣∣!
∣∣∣∣→
wN (ik )=0

∑
( jn

k )n∈[p]= jk

]
×

∏
n∈[p]

(∂ jn fn)+O
(
l−sp/2) . (22)

We note that this subtraction or self-energy renormalization does not affect the
power counting bound of l−2p

+ l−sp/2 because it does not change the order of the
terms but only excludes certain allocations of derivatives. However, beyond power
counting, this exclusion can still reduce the effective size of the term considerably,
see Section 4 where f is the resolvent of a random matrix.

4. Bound on the error matrix D through a multivariate cumulant
expansion

In this section we prove an isotropic and averaged bound on the error matrix
D defined in (2), in the form of high-moment estimates using the multivariate
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cumulant expansion. To formalize the bounds, we define the high-moment norms
for random variables X and random matrices A by

‖X‖p
..= (E |X |p)1/p,

‖A‖p
..= sup
‖x‖,‖y‖61

‖〈x, Ay〉‖p =

[
sup

‖x‖,‖y‖61
E |〈x, Ay〉|p

]1/p
,

where the supremum is taken over deterministic vectors x, y.

THEOREM 4.1 (Bound on the error). Under Assumptions (A), (B) and (D), there
exist a constant C∗ such that for any p > 1, ε > 0, z with =z > N−1, B ∈ CN×N

and x, y ∈ CN it holds that

‖〈x, Dy〉‖p

‖x‖ ‖y‖
6ε,p (1+ |||S||| + |||κ|||iso

6R)N
ε

√
‖=G‖q

N=z

×

(
1+ 〈z〉 ‖G‖q

)C∗/µ
(

1+
〈z〉 ‖G‖q

Nµ

)(C∗ p)/µ

(23a)

‖〈B D〉‖p

‖B‖
6ε,p (1+ |||S||| + |||κ|||av

6R)N
ε
‖=G‖q

N=z

×

(
1+ 〈z〉 ‖G‖q

)C∗/µ
(

1+
〈z〉 ‖G‖q

Nµ

)(C∗ p)/µ

, (23b)

where q = C∗ p4/µε, R = 4p/µ, and for convenience we separately defined

|||S||| ..= |||κ|||iso
2 . (24)

REMARK 4.2. We remark that the size of S can be effectively controlled by
|||κ|||iso

2 , justifying the definition of |||S|||. To see this we note that due to

S[V ] = 1
N

∑
α1,α2

κ(α1, α2)∆
α1 V∆α2

an arbitrary partition of κ = κc + κd naturally induces a partition S = Sc +

Sd . Furthermore, it is easy to see that ‖Sc[V ]T ‖p 6 |||κc|||c ‖V ‖2p ‖T ‖2p and
‖Sd[V ]T ‖p 6 |||κd |||d ‖V ‖2p ‖T ‖2p, cf. Lemma D.2, thus

‖S[V ]T ‖p 6 |||κ|||iso
2 ‖V ‖2p ‖T ‖2p .

Here we recall that the double-index α stands for a pair α = (a, b) of single
indices, and that the matrix ∆α is a matrix of 0’s except for a 1 in the (a, b)-entry.
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REMARK 4.3. We point out an additional feature of the estimates in (23a)–(23b):
they not only provide the optimal power of ‖=G‖q /(N=z), but the power of
‖G‖q , without an extra smallness factor N−µ, is independent of p. This will be
essential in the second part of the proof of the local law, see (76) later.

The main tool for proving Theorem 4.1 is the multivariate cumulant expansion
from Proposition 3.2. To connect to the toy model considered in Section 3.3,
we note that the self-energy renormalization of N−1/2W G is −S[G]G, up to an
irrelevant contribution from indices j 6∈ N (ik) in (22). In this sense the error
term D = N−1/2W G + S[G]G is the difference of N−1/2W G and its self-energy
renormalization. As already noted in the context of the toy model we recall that
this subtraction does not change the power counting of the resulting terms. It does,
however, exclude certain allocations of derivatives which in the case of N−1/2W G
means that the main contributions coming from the diagonal elements of the form
Gaa are absent. Off-diagonal elements Gab are smaller on average, in fact the main
gain comes from the key formula about resolvents of Hermitian matrices∑

b

|Gab|
2
=
=Gbb

η
,

where η = =z. This identity follows directly from the spectral theorem. In the
physics literature it is often called Ward identity and we refer to it with this name.
Notice that a sum of order N is reduced to a 1/η factor, so the Ward identity
effectively gains a factor of 1/(Nη) over the naive power counting. However, this
effect is available only if off-diagonal elements of the resolvent are summed up,
the same reduction would not take place in the sum

∑
a |Gaa|

2 which remains of
order N . So the precise index structure is important. The next calculation shows
this effect in the simplest case.

Exemplary gain through self-energy renormalization. We now give a short
calculation to demonstrate the role of self-energy renormalization term S[G]G
while computing E 〈D〉2. Notice that

〈D〉 =
1
N

∑
a

[∑
b

wab
√

N
Gba + (S[G]G)aa

]
=

1
N

∑
a,b

[
wab
√

N
Gba −

∑
c,d

κ(ab, cd)
N

∂cd Gba

]
(25)

is the sum of terms of the form wi f plus their self-energy renormalization

−N−1
∑
c,d

κ(ab, cd)∂cd Gba
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where i = (a, b) and f = Gab. We note that (25) is the direct analogue of the
self-energy renormalization in the toy model discussed in Section 3.3, see (22).
In (25) we expanded S[V ] =

∑
α,β N−1κ(α, β)∆αV∆β and used the fact that the

resolvent derivative reads ∆αG = −G∆αG. Thus one should think of S[G]G
as being the matrix self-energy renormalization of N−1/2W G. To present this
example in the simplest form, we assume that W is a Gaussian random matrix
which automatically makes all higher order cumulants vanish. We find

E 〈D〉2 = N−1
∑
α1,β1

κ(α1, β1)E 〈∆α1 G〉
〈
∆β1 G

〉
+ N−2

∑
α1,β1

κ(α1, β1)
∑
α2,β2

κ(α2, β2)E
〈
∆α1 G∆β2 G

〉 〈
∆α2 G∆β1 G

〉
,

the first term of which can be further bounded by

N−1
∑
α1,β1

∣∣κ(α1, β1) 〈∆
α1 G〉

〈
∆β1 G

〉∣∣ 6 |||κ|||av
2

N

∑
α

|〈∆αG〉|2

=
|||κ|||av

2

N 3

∑
a,b

|Gba|
2
=
|||κ|||av

2

N 2

〈=G〉
η

.

For the second term we instead compute∑
α1,β1

∑
α2,β2

∣∣∣∣κ(α1, β1)κ(α2, β2)

N 2

〈
∆α1 G∆β2 G

〉 〈
∆α2 G∆β1 G

〉∣∣∣∣
6
(|||κ|||av

2 )
2

N 2

∑
α1,α2

|〈∆α2 G∆α1 G〉|2

=
(|||κ|||av

2 )
2

N 4

∑
a1,b1,a2,b2

∣∣Gb2a1

∣∣2 ∣∣Gb1a2

∣∣2 = (|||κ|||av
2 )

2 〈=G〉2

(Nη)2

and we conclude that

E |〈D〉|2 6
1

N 2
E
[
|||κ|||av

2 〈=G〉
η

+

(
|||κ|||av

2 〈=G〉
η

)2]
,

which is small if η � 1/N . Without self-energy renormalization, however, that
is„ for E

〈
N−1/2W G

〉2 we, for example, also encounter a term of the type

N−2
∑
α1,β1

κ(α1, β1)
∑
α2,β2

κ(α2, β2)E
〈
∆α1 G∆β1 G

〉 〈
∆α2 G∆β2 G

〉
,

which is of order 1 because it lacks the gain from the Ward identity.
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4.1. Computation of high moments of D through cancellation identities.
Before going into the proof of Theorem 4.1, we sketch the strategy. For arbitrary
linear (or conjugate linear in the sense that Λ(λ·) = λΛ(·) for λ ∈ C) functionals
Λ(1), . . . , Λ(k) we derive an explicit expansion for

EΛ(1)(D) · · ·Λ(k)(D) (26)

in terms of joint cumulants κ(α1, . . . , αk) of the entries of W and expectations of
products of factors of the form

Λ(∆α1 G∆α2 G · · ·G∆αk G).

In other words, we express (26) solely in terms of matrix elements of G, which
allows for a very systematic estimate. For the main part of the expansion we then
specialize to Λ(k)(D) = 〈B D〉, Λ(k)(D) = 〈x, Dy〉 or their complex conjugates,
and develop a graphical representation of the expansion. In this framework both
the averaged and the isotropic bound on D reduce to a sophisticated power
counting argument which—with the help of Ward estimates—directly gives the
desired size of the averaged and isotropic error.

Equipped with the cumulant expansion from Proposition 3.2, we now aim at
expressing EΛ(1)(D) · · ·Λ(p)(D) for linear and conjugate linear functions Λ( j),
purely in terms of the expectation of products of G’s in the form

Λα1,...,αk
..= −(−1)k N−k/2

{
Λ(∆α1 G · · ·∆αk G) if Λ is linear,
Λ(∆αt

1 G · · ·∆αt
k G) if Λ is conjugate linear,

(27)

for double indices α1, . . . , αk ∈ I = J × J , where we recall that for α = (a, b)
the transpose αt denotes αt

= (b, a). The sign choice will make the subsequent
expansion sign-free. The reason for the N−k/2 prefactor is that the Λα1,...,αk terms
appear through k derivatives of G’s each of which carries a N−1/2 from the
scaling H = A + N−1/2W . Since the derivatives of G naturally come with many
permutations from the Leibniz rule, we also use the notations

Λ{α1,...,αm }
..=

∑
σ∈Sm

Λασ(1),...,ασ(m), Λα,{α1,...,αm }
..=

∑
σ∈Sm

Λα,ασ(1),...,ασ(m),

Λα,β
..=

∑
α∈α

Λα,α∪β\{α} (28)

for multisets {α1, . . . , αm}, α, β. We follow the convention that underlined Greek
letters denote multisets of labels from I , while nonunderlined Greek letters still
denote single labels from I . By convention we set Λ∅ = Λ∅,β = 0. The last two
definitions in (28) reflect the fact that the first index of Λ will often play a special
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role since derivatives of Λα1,...,αk will all keep α1 as their first index. With these
notations, we note that

Λα = −1(|α| > 0)Λ(G−1∂αG), Λα,β = ∂βΛα

hold for arbitrary multisets α, where
∣∣α∣∣ denotes the number of elements

(counting multiplicity) in the multiset.

Expansion of a single factor of D. We now use Proposition 3.2 to compute
EΛ(D) f for any random variable f (later f will be the product of the other
Λ’s). In the remainder of Section 4 the neighbourhoods N = N (α) are those
from Assumption (D). The analogue of the length scale l from Section 3.3 is thus
N 1/4−µ/2, while the parameter R is still a large integer, depending only on p and
µ. We expand

EΛ(D) f = E
1
√

N

∑
α

wαΛ(∆
αG) f + EΛ(S[G]G) f

= E
∑
α

wαΛα f + EΛ(S[G]G) f

and from (12a) we obtain

EΛ(D) f = EΛ(S[G]G) f +
∑
α

Ω(Λα f, α,N )

+

∑
α

∑
06m<R

∑
β∈Nm

E
[
κ(α, β)

m!
+

K (α;β)− κ(α, β)

m!

∣∣∣∣→
WN=0

]
∂βΛα f.

(29)

Here we follow the convention that β is the tuple with elements (β1, . . . , βm) and
β is the multiset obtained from the entries β = {β1, . . . , βm}, and we recall that
for I = I we denote κ(wα1, . . . , wαk ) and K (wα1;wα2, . . . , wαk ) by κ(α1, . . . , αk)

and K (α1;α2, . . . , αk) (in contrast to the general setting of Section 3 where κ was
viewed as a function of the random variables). For m = 0 the first term in the first
bracket of (29) vanishes due to κ(α) = Ewα = 0; for m = 1 its contribution is
given by∑

α∈I,β∈N

κ(α, β)∂β(Λα f ) =
∑

α∈I,β∈N

κ(α, β)Λα,β f +
∑

α∈I,β∈N

κ(α, β)Λα∂β f,

where we observe that the first term almost cancels the

EΛ(S[G]G) f = −
∑
α,β∈I

κ(α, β)Λα,β f
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term except for the small contribution from β 6∈ N . We thus rewrite (29) in the
form

EΛ(D) f = E
∑

α∈I,β∈N

κ(α, β)Λα∂β f

+E
∑
α∈I

∑
m<R

∑
β∈Nm

[
κ(α, β)

l!
1m>2 +

K (α;β)− κ(α, β)

m!

∣∣∣∣→
WN=0

]
∂β
(
Λα f

)
+E

(
−

∑
α,β∈I

κ(α, β)+
∑

α∈I,β∈N

κ(α, β)

)
Λα,β f +

∑
α

Ω(Λα f, α,N ).

(30a)

In the above derivation of (30) we used directly that Λ is linear. In the case
of conjugate linear we replace Λ(D) by Λ(D∗) which is linear again. This
replacement is remedied by the fact that in the definition of Λα1,...,αk in (27)
we consider transposed double indices. More generally, following the same
computation, we have

EΛ(∂γ D) f = EΛγ f + E
∑

α∈I,β∈N

κ(α, β)Λα,γ ∂β f

+E
∑
α∈I

∑
m<R

∑
β∈Nm

[
κ(α, β)

m!
1m>2 +

K (α;β)− κ(α, β)

m!

∣∣∣∣→
WN=0

]
∂β
(
Λα,γ f

)
+E

(
−

∑
α,β∈I

κ(α, β)+
∑

α∈I,β∈N

κ(α, β)

)
Λα,{β}tγ f +

∑
α

Ω(Λα,γ f, α,N ).

(30b)

We think of the first two terms and the first term of the square bracket in the third
term (30b) as the leading order terms. The second summand in the third term will
be small due to the structure of the precumulants and the fact that the subsequent
function ∂Λ f has the N -randomness removed. The fourth term is small because
the two sums in the parenthesis almost cancel; and finally the fifth term will be
small by choosing R sufficiently large. We call (30) (approximate) cancellation
identities as they exhibit the cancellation of second order statistics due to the
definition of S and D.

Iterated expansion of multiple factors of D. We now use (30b) repeatedly to
compute E

∏
k∈[p]Λ

(k)(D). As a first step we expand the D in the Λ(1) factor,
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for which the special case (30a) is sufficient and we find

EΛ(1)(D)
∏
k>2

Λ(k)(D) =
∑
α1∈I

Ω

(
Λ(1)
α1

∏
k>2

Λ(k)(D), α1,N (α1)

)
+E

∑
α1∈I

β1∈N (α1)

κ(α1, β1)Λ
(1)
α1
∂β1

(∏
k>2

Λ(k)(D)
)

+E
(
−

∑
α1,β1∈I

κ(α1, β1)+
∑
α1∈I

β1∈N (α1)

κ(α1, β1)

)
Λ
(1)
α1,β1

∏
k>2

Λ(k)(D)

+E
∑
α1∈I

∑
m<R

∑
β1∈N (α1)m

[
κ(α1, β1

)

m!
1m>2

+
K (α1;β1

)− κ(α1, β1
)

m!

∣∣∣∣→
WN (α1)=0

]
∂β

1

(
Λ(1)
α1

∏
k>2

Λ(k)(D)
)
. (31)

We now distribute the β
1
-derivatives in the last term among the Λ(1)

α1
and Λ(k)(D)

factors according to the Leibniz rule. We handle the ∂β1 derivative in the second
term similarly but observe that this is slightly different in the sense that the ∂β1

derivative does not hit the Λ(1)
α1

factor. In other words, terms involving second
order cumulants (m = 1) come with the restriction that ∂β1Λ

(1)
α1

derivative is absent.
This is precisely the effect we already encountered in Section 3.3; the self-energy
normalization does not cancel all second order terms, it merely puts a restriction
on the index allocations in such a way that gains through Ward estimates are
guaranteed in all remaining terms. In order to write (31) more concisely we
introduce the notations

∼(l)∑
αl ,βl

..=

∑
αl∈I

∑
16m<R

∑
βl∈N (αl )m

κ(αl, β l
)

m!

∑
β1

l
t···tβ

p
l =βl

1
(
|β l

l
| = 0 if |β

l
| = 1

)
,

∗∑
αl ,βl

..=

∑
αl∈I

∑
06m<R

∑
βl∈N (αl )m

∑
β1

l
t···tβ

p
l =βl

K (αl;β l
)− κ(αl, β l

)

m!
,

#∑
αl ,β

l
l

..=

[
−

∑
αl ,β

l
l ∈I

κS(αl, β
l
l )+

∑
αl∈I

∑
βl

l ∈N (αl )

κ(αl, β
l
l )

]
, (32)

where κS(α1, . . . , αk)
..= κ(w̃α1, . . . , w̃αk ) and where W̃ = (w̃α)α∈I is an identical

copy of W . The reason for introducing this identical copy will become apparent
in the next step. We furthermore follow the convention that βk

l
= ∅ if βk

l
does not
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appear in the summation (which is the case for all k 6= l in
∑#

αl ,β
l
l

in (33)). Using
these notations we can write (31) as

E
∏
k∈[p]

Λ(k)(D) = Ω

+E
(∼(1)∑
α1,β1

+

∗∑
α1,β1

∣∣∣∣→
WN (α1)=0

+

#∑
α1,β

1
1

)
Λα1,β

1
1

p∏
k=2

Λ(k)
(
∂βk

1
D
)
+Ω, (33)

where the error term Ω collects all other terms and is defined in (34) below. We
point out that the notations introduced in (32) implicitly depend on the parameter
R determining the order of expansion.

Estimate of error term Ω . It remains to estimate the error term Ω which is
bounded by

Ω ..=

∑
α1∈I

Ω

(
Λ(1)
α1

∏
k>2

Λ(k)(D), α1,N (α1)

)
6R

∑
α1,β1∈N (α1)R

∥∥∥∥∂β1

(
Λ(1)
α1

∏
k>2

Λ(k)(D)
) ∣∣∣∣

Ŵt

∥∥∥∥
2

(34)

for some t ∈ [0, 1], where Ŵt = Ŵ (α1)
t = tWN (α1) + WN (α1)c , where we recall

the definition of Ω(Λ, α, f ) in (12a) and its bound in (13). To further estimate
this expression, we first distribute the ∂β

1
derivative to the p factors involving

Λ(1), . . . , Λ(p) following the Leibniz rule, and then separate those factors by a
simple application of Hölder inequality into p factors of ‖·‖2p norms. Each of
these factors can be written as a sum of terms of the type

∥∥Λ(k)(∂γG
∣∣

Ŵt
)
∥∥

2p or∥∥Λ(k)(∂γ D
∣∣

Ŵt
)
∥∥

2p for some derivative operator ∂γ . We can then estimate these
norms using ‖Λ(R)‖q 6 ‖Λ‖ ‖R‖q and∥∥∂γG

∣∣
Ŵt

∥∥
q +

∥∥∂γ D
∣∣

Ŵt

∥∥
q 6|γ | N−|γ |/2(1+ |||S|||)(1+ 〈z〉 ‖G‖Cq|γ |)

|γ |+5, (35)

where the second inequality follows from Lemma D.3, and we note that Cp|γ | 6
C Rp2. We now count the total number of derivatives: There are R+ 1 derivatives
from |β

1
| and α1, each providing a factor of N−1/2. It remains to account for the

α1,β1-sums which is at most of size
∑

α1
|N (α1)|

R 6 N 2+R/2−µR . We now choose
R large enough so that

N 2−(R+1)/2+R/2−µR 6 N−p,
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which is satisfied if we choose R > 3p/µ. Combining these rough bounds we
have shown that, up to irrelevant combinatorial factors,

Ω 6p,µ N−p

[ p∏
k=1

‖Λ(k)
‖

](
1+ |||S|||

)p(
1+ 〈z〉 ‖G‖Cp3/µ

)Cp/µ
. (36)

Main expansion formula for multiple factors of D. Formula (33) with the
bound (36) on the error term is the first step where the cumulant expansion
was used in the Λ(1)(D) factor. Now we iterate this procedure for the Λ(2)(D),
Λ(3)(D), . . . inductively. We arrive at the following proposition modulo the
claimed bound on the overall error which we prove after an extensive explanation.

PROPOSITION 4.4. LetΛ(1), . . . , Λ(p) be linear (or conjugate linear) functionals
and let p ∈ N be given. Then we have

E
∏
k∈[p]

Λ(k)(D) = Ω

+E
→∏

l∈[p]

(
1+

∼(l)∑
αl ,βl

+

∗∑
αl ,βl

∣∣∣∣→
WN (αl )=0

+

#∑
αl ,β

l
l

) ∏
k∈[p]

Λ
(k)
αk ,
⊔

l∈[p] β
k
l
,

Λ
(k)⊔

l<k β
k
l
,
⊔

l>k β
k
l
,

(37)

where the first alternative is chosen whenever, after multiplying out the
first product

∏
l , the summation over the index αk is performed. Under

Assumptions (A), (B) and (D), the error term Ω is bounded by

|Ω| 6p,µ

1
N p

[ p∏
k=1

‖Λ(k)
‖

]
(1+ |||S|||)p

(
1+ 〈z〉 ‖G‖q

)Cp/µ
(

1+
〈z〉 ‖G‖q

Nµ

)Cp2/µ

(38)

if we choose R = 4p/µ to be order of expansion in the summations, see (32).
Furthermore, we set q ..= Cp3/µ for some constant C, and ‖Λ(k)

‖ denotes the
operator norm of the linear functional Λ(k).

For (37) we recall the convention that βk
l
= ∅ whenever βk

l
is not summed, that

is„ for the contribution from the 1 in the lth factor, or the contribution from
∑# in

the lth factor for k 6= l. Moreover, we remind the reader that the custom notation
|
→

WN=0 was introduced right after (20). We also note that the terms with a 1 from
the first factor vanish as they containΛ(1)

∅,tl>1β
1
l
= 0. Moreover, we can now explain
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why we introduced the identical copy W̃ of W in the definition of κS in (32). The
cumulants in the representation of the term

S[G]G = −
∑
α,β∈I

κS(α, β)Λα,β

should not be affected by the restriction imposed by the operation |→WN=0.
Changing W to W̃ within the definition of κS protects it from the action of |→WN=0
that turns all subsequent W variables zero. This nonrestriction of the particular
sum is formally achieved by writing S in terms of κS instead of κ . This is only a
notational pedantry, in the next step where we multiply (37) out, it will disappear.
We remark that because of the effect of |→WN=0 the order in which the product
in (37) is performed matters. It starts with l = 1 and ends with l = p.

We point out that the estimate (38) not only provides the necessary N−p factor,
but it also involves at most O (p) power of ‖G‖q without an extra smallness factor
N−µ, see Remark 4.3. While from the perspective of an N -power counting, any
factor ‖G‖q is neutral, of order one, we need to track that its power is not too big.
Factors of ‖G‖q that come with a factor N−µ can be handled much easier and are
not subject to the restriction of their power.

Reformulation of the main expansion formula. We now derive an alternative,
less compact formula (39) for (37) which avoids the provisional

∣∣→ notation. By
expanding the first product in (37) we can rearrange (37) according to partitions
[p] = L1 t · · · t L4, where L i contains those indices l for which the lth factor
in the product contributes with its i th term. In particular L ..= L2 t L3 t L4 ⊂

[p] contains those indices l, for which αl,β l are summed. We shall use the
nomenclature that labels αl and the elements of β

l
are type-l labels. These labels

have been generated in the lth application of the cancellation identities (30). The
partition β1

l
t · · · t β p

l
= β

l
encodes how these labels have been distributed

among the p factors via the Leibniz rule. Thus labels βk
l

have been generated
on Λ(k) at the lth application of (30). Thus L encodes the types of labels present
in the different parts of the expansion. To specify the number of type-l labels we
introduce the notations

Ml
..= |β

l
|, Mk

l
..= |βk

l
|.

Thus the number of labels of type l is Ml + 1 and the number of type-l labels in
Λ(k) is Mk

l + δlk . We observe that in all nonzero terms of (37) the labels αl , β l
for

l ∈ L are distributed to the Λ(1), . . . , Λ(p) in such a way that

(a) there are p factors Λ(1), . . . , Λ(p),
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(b) every Λ(k) carries at least one label (that means
∑

l∈L(M
k
l + δkl) > 1 for

all k),

(c) for every l ∈ L , there exist at least two and at most R − 1 type-l labels (that
is for all l ∈ L , Ml > 1), for l ∈ L4 there exist exactly two type-l labels in
such a way that Ml = M l

l = 1,

(d) if for some l ∈ L2 there are exactly two type-l labels, then these two labels
must occur in distinct Λ′s (that is, if l ∈ L2 and Ml = 1, then M l

l = 0).

(e) for every l ∈ L , the first index of Λ(l) is αl .

We now reformulate (37) in such a way that we first sum up over the partitions
L1 t L2 t L3 t L4 = [p], the collection of multiplicities M = (Mk

l | l ∈ L , k ∈
[p]) and the permutations of indices, and only then perform the actual summation
over the labels from I . As the first three sums carry no N , they are irrelevant for
the N -power counting. From (37) we find

E
∏
k∈[p]

Λ(k)(D) = E
∑

⊔
L i=[p]

∼(L)∑
M

CM

×

∼(M)∑
σ

[∏
l∈L3

(M,l)∑
αl ,βl 6∈N<l

L3

K (αl;β l)− κ(αl,β l)∣∣β l

∣∣!
]
M′
+Op,µ(N−p), (39)

where

M′ ..=

[∏
l∈L4

(
−

∑
αl ,β

l
l ∈I

+

∑
αl∈I\N<l

L3

∑
βl

l ∈N (αl )\N<l
L3

)
κ(αl, β

l
l )

1!

]
M,

M ..=

[∏
l∈L2

(M,l)∑
αl ,βl 6∈N<l

L3

κ(αl,β l)∣∣β l

∣∣!
][∏

k∈L

Λ
(k)
αk ,σk (β

k )

∏
k 6∈L

Λ
(k)
σk (β

k )

] ∣∣∣∣
WNL3

=0

,

and where
∑
∼(L)
M is the sum over all arrays M fulfilling (a)–(e) above and CM are

purely combinatorial constants bounded by a function of p, R; CM 6 C(p, R),
in which we also absorbed the (−1)’s from the L4 terms. Moreover,

∑
∼(M)
σ is

the sum over all permutations σ1, . . . , σp in the permutation groups SM1, . . . , SM p

(where Mk ..=
∑

l∈L Mk
l ) such that for k 6∈ L the first element of σk(β

k) is from
(βk

l | l ∈ L ∩ [k]). Furthermore, for any N ⊂ I we set

(M,l)∑
αl ,βl 6∈N

..=

∑
αl∈I\N

∏
k∈[p]

∑
βk

l ∈(N (αl )\N )
Mk

l

.
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Finally, we introduced the notations N <l
L3

..=
⋃

l>k∈L3
N (αk), and NL3

..=⋃
k∈L3

N (αk). Here the βk
l are actual (ordered) tuples and not multisets, which

is why we denote them by boldfaced Greek letters to avoid possible confusion
with the previously used βk

l
. In (39) we furthermore used the short-hand notation

βk
= (βk

l )l∈L for the tuple (ordered according to the natural order on L ⊂ [p] ⊂ N)
of βk

l . We note that the artificial κS from (37) has been removed in (39) since
we ‘pushed’ the |→-operator all the way to the end. In the following we establish
bounds on (39) for fixed L and M and fixed permutations σ1, . . . , σp. Since the
number of possible choices for M , L and permutations is finite, depending on R
and p only, this will be sufficient for bounding E

∏
Λ(k)(D). We also stress that

the (multi)labels βk
l themselves are not important, but only their type l.

Proof of the error bound in Proposition 4.4. We now turn to the proof of the
claimed error bound (38). So far this was only done for the error from the first
cumulant expansion in (36).

Proof of the error bound in Proposition 4.4. The error Ω in (37) is a sum over p
terms, where the j th term is the error from the expansion of Λ( j)(D). Recalling
the definition of Ω( f, i,N ) from (12b), this j th expansion error is given by

Ω j
..=

∑
α j

Ω

(∏
l< j

(
1+

∼(l)∑
αl ,βl

+

∗∑
αl ,βl

∣∣∣∣→
WN (αl )=0

+

#∑
αl ,β

l
l

) p∏
k=1

Λ̃k, α j ,N (α j)

)
,

where

Λ̃k
..=


Λ
(k)
αk ,
⊔

l∈[p] β
k
l

if k = j or
(

k < j,
∑
αk

)
,

Λ(k)
(
∂⊔

l<k β
k
l
D
)

if k > j,

Λ
(k)⊔

l<k β
k
l
,
⊔

l>k β
k
l

else,

and where ‘if (k < j,
∑

αk
)’ means ‘if k < j and αk is summed’. This j th error

Ω j can be estimated through (13) and Assumption (B) by the sum of[ ∏
l∈L2tL3

(M,l)∑
αl ,βl

][∏
l∈L4

∑
αl ,β

l
l ∈I

]∑
α j

∑
β j∈N (α j )R

×

∥∥∥∥(∏
k∈L

Λ
(k)
αk ,σk (β

k )

)( ∏
k∈[ j]\L

Λ
(k)
σk (β

k )

)(∏
k> j

Λ(k)(∂σk (β
k )D)

∣∣∣∣
Ŵ

)∥∥∥∥
2

, (40)

over partitions L = L2 t L3 t L4 ⊂ [ j − 1], arrays M fulfilling (a)–(e) above
and partitions σk . In all terms Ŵ is a modification of W which differs from W
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in at most C
√

N entries. The previously studied error from (34) for example
corresponds to j = 1, L2 = L3 = L4 = ∅. The combinatorics of all these
summations are independent of N , hence can be neglected. So we can focus on a
single term of the form (40). The norm in (40) will first be estimated by Hölder
and then by (35) to reduce it to many factor of ‖G‖q . We now have to count the
size of the sums, the number of N−1/2 factors from the derivatives, and the number
of ‖G‖q’s we collect in the bound. We start with the sums which are at most of
size

N 2|L2tL3|(N 1/2−µ)ML2tL3 (N 2
· N 2)|L4|N 2(N 1/2−µ)R

= N 2|L2tL3|+(ML2tL3+R)(1/2−µ)+4|L4|+2. (41)

Here the first factor comes from the αl summations for l ∈ L2 t L3, while
the second term comes from the corresponding β l summations. The third factor
comes from the αl, β

l
l -summations for l ∈ L4, and finally the fifth and sixth factor

correspond to the α j and β j summations. Next, we count the total number of
derivatives. Every index αl and βk

l accounts for a derivative, and each derivative
contributes a factor of N−1/2. So we have

(N−1/2)|L2tL3|+ML2tL3+2|L4|+R+1

= N−|L2tL3|/2−ML2tL3 /2−|L4|−(R+1)/2, (42)

so that altogether from (41) and (42) we have an N -power of

N 3/2(|L2tL3|+1)+3|L4|−RµN−µML2tL3 6 N−p N−µML2tL3 .

It remains to count the number of ‖G‖C Rp2 = ‖G‖q coming from the application
of (35), which in total provides∑

k∈L

(1+ |βk
| + 5)+

∑
k∈[ j]\L

(|βk
| + 5)+

∑
k> j

(|βk
| + 5)

= 5p + |L2 t L3| + ML2tL3 + 2 |L4| + R + 1 6 Cp/µ+ ML2tL3

factors of ‖G‖q . The claim (38) now follows from the trivial estimate ML2tL3 6
Rp 6 Cp2/µ.

Subsequently we establish a bound on the rhs. of (39), by first estimating it in
terms of ‖M′‖p, then estimating ‖M′‖p in terms of ‖M‖p and finally bounding
the leading contribution M. We consider the first two steps in this procedure as
errors stemming from the neighbourhood structure of the expansion, while the
third step is concerned with the leading order contribution from the expansions.
In Section 4.2 we consider the errors stemming from the neighbourhood structure,
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while in Sections 4.3 and 4.4 we derive bounds on ‖M‖p for the averaged and
isotropic case, separately. For simplicity we first carry out the technically most
involved argument from Sections 4.3–4.4 in the extreme case L3 = L4 = ∅

where the neighbourhood errors are absent. Finally, we explain the necessary
modifications for the general case in Section 4.5.

4.2. Bound on neighbourhood errors. We start with the bound on the L3-
factors in (39). Neglecting the irrelevant combinatorial factors |β l |! and the
summations over L i , M and σ , we have to estimate

E ..=

[∏
l∈L3

(M,l)∑
αl ,βl 6∈N<l

L3

]
E(αL3,βL3

)

..=

[∏
l∈L3

(M,l)∑
αl ,βl 6∈N<l

L3

]
EM′

∏
l∈L3

[
K (αl;β l)− κ(αl,β l)

]
. (43)

By the pigeon-hole principle we find that for every l ∈ L3 and any assignment
of αl,β l there exist some nl < R such that we have a partition β

l
= β(i)

l
t β(o)

l
into inside and outside elements with β(i)

l
⊂ Nnl (αl) and β(o)

l
⊂ Nnl+1(αl)

c since
|β

l
| = Ml < R (see rule (c)). We recall the nested structure of the neighbourhoods

as stated in Assumption (D), and provide an illustration of the ‘security layers’ in
Figure 1. According to (8c) we can then write (L ′3 collects those indices where we
took the middle term of (8c) in the l factor)

E(αL3,βL3
)

=

∑
L3=L ′3tL ′′3

(−1)|L
′′

3|
∏
l∈L ′′3

[ ∑
γ
(i)
l ⊂β

(i)
l

∑
γ
(o)
l (β(o)l

κ(αl, β
(i)
l
\ γ (i)

l
, β(o)

l
\ γ (o)

l
)

]
×E f

∏
l∈L ′3

[
K (α;β(i)

l
)− κ(α, β(i)

l
)
]
,

where

f ..=M′
∏
l∈L ′3

(
Πβ(o)

l

)∏
l∈L ′′3

[(
Πγ (i)

l

)(
Πγ (o)

l

)]
is a random variable supported in

⋂
l∈L ′3

Nnl+1(αl)
c, that is, well separated from

the variables K (αl;β
(i)
l
) for l ∈ L ′3. It remains to estimate a quantity of the

type E f g1 · · · gk , where f, g1, . . . , gk are random variables whose supports are
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Figure 1. Illustration for the bound on E in (43). Grey dots • denote the β1, β2

labels. Since there are |βi | < R labels and R rings, there is always one empty ring
by the pigeon-hole principle.

pairwise separated by ‘security layers’ and where each gi is of the form K − κ
with Egi = 0. Here k =

∣∣L ′3∣∣ and from Lemma 3.3 and Assumption (D) it follows
that E f g1 · · · gk 6k ‖ f ‖k+1 N−3dk/2e. According to Lemma A.1 the

κ(αl, β
(i)
l
\ γ (i)

l
, β(o)

l
\ γ (o)

l
)

factors are also at least N−3 small and we can conclude that∣∣E(αL3,βL3
)
∣∣ 6p,R N−3d|L3|/2e

∥∥M′
∥∥

p . (44)

Next, we use the triangle inequality to pull the L4 summation out of ‖M′‖p to
achieve a bound in terms of ‖M‖p. We have∣∣∣∣(− ∑

αl ,β
l
l ∈I

+

∑
αl∈I\N<l

L3

∑
βl

l ∈N (αl )\N<l
L3

)
κ(αl, β

l
l )

∣∣∣∣
6

( ∑
αl∈I\N<l

L3

∑
βl

l ∈N
<l
L3

+

∑
αl∈I\N<l

L3

∑
βl

l ∈I\N (αl )

+

∑
αl∈N<l

L3

∑
βl

l ∈I

)
|κ(αl, β

l
l )|
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6

( ∑
βl

l ∈N
<l
L3

∑
αl∈N (βl

l )

+

∑
βl

l ∈N
<l
L3

∑
αl∈I\N (βl

l )

+

∑
αl∈I

∑
βl

l ∈I\N (αl )

+

∑
αl∈N<l

L3

∑
βl

l ∈N (αl )

+

∑
αl∈N<l

L3

∑
βl

l ∈I\N (αl )

)
|κ(αl, β

l
l )| 6 C N ,

where we estimated the first and the fourth term with two small summations
purely by size (C N 1/2−µ)2 6 C N and the other terms using the fact that
|κ(α, β)| . N−3 for β ∈ I \N (α). Summarizing, we thus have that∣∣∣E∏Λ(k)(D)

∣∣∣ 6p,µ N−p

+

∑
⊔

L i=[p]

∼(L)∑
M

N |L4|

N 3d|L3|/2e

∼(M)∑
σ

[∏
l∈L3

(M,l)∑
αl ,βl 6∈N<l

L3

][∏
l∈L4

max
αl ,β

l
l ∈I

]
‖M‖p , (45)

and it only remains to estimate the leading order term M, as defined in (39).
This has to be done separately for averaged and isotropic bound and should be
considered as the main part of the proof. To simplify notations we first prove
the bound on M for the case that L3 = L4 = ∅ and N (α) = I . In particular
L3 = ∅ implies that NL3 = ∅ and therefore in the next two Sections 4.3 and 4.4
we now aim at deriving a bound on

∥∥M((Λ(k))k∈[p]; L ,M, σ )
∥∥

p, where M =

M((Λ(k)); L ,M, σ ) is given by

M ..=

[∏
l∈L

(M,l)∑
αl ,βl

κ(αl,β l)∣∣β l

∣∣!
](∏

k∈L

Λ
(k)
αk ,σk (β

k )

)(∏
k 6∈L

Λ
(k)
σk (β

k )

)
,

(M,l)∑
αl ,βl

..=

∑
αl∈I

∏
k∈[p]

∑
βk

l ∈I Mk
l

. (46)

The definition of M in (46) agrees with the one in (39) in the special case L3 =

L4 = ∅, except for a tiny contribution from β l 6⊂N (αl). The reason for extending
the sum here to the whole index set is twofold: First, we do not have to keep track
of the summation ranges of individual indices, and, second, we demonstrate that
for the main terms separating the contribution outside of the neighbourhoods N
is not necessary, all estimates on M would also hold for the unrestricted sum. In
particular, the neighbourhood decay condition is not necessary for the main terms,
they are used only for bounding M′ in terms of M in Section 4.2. This fact was
already advertised in Example 2.12 where we claimed that in the Gaussian case
we can considerably relax our decay conditions. Later, in Section 4.5 we explain
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how to elevate the proof for the special case L3 = L4 = ∅ with extended index
sets to the general case.

4.3. Averaged bound on D. To treat (46) systematically, we introduce a
graphical representation for any M , L and permutations σ in (46). For the
averaged local law we need averaged estimates on D, so we set

Λ(k)(D) ..= 〈B D〉 or Λ(k)(D) ..= 〈B D〉,

where B is a generic norm-bounded matrix, ‖B‖ . 1 and we recall that 〈·〉 =
N−1 Tr denotes the normalized trace. A factor Λα1,...,αn can be represented as a
directed cyclic graph on the vertex set {α1, . . . , αn}. Up to sign we have∣∣Λα1,...,αn

∣∣ = N−n/2
〈B∆α1 G∆α2 G · · ·∆αn G〉

= N−1−n/2Gb1a2 Gb2a3 · · ·Gbn−1an (G B)bna1, (47)

which we represent as a cyclic graph in such a way that the vertices represent
labels αi = (ai , bi) and a directed edge from αi = (ai , bi) to α j = (a j , b j)

represents Gbi a j . Since we always draw the graphs in a clockwise orientation we
not indicate the direction of the edges specifically. The specific G B factor will be
denoted by a wiggly line instead of a straight line used for the G factors. As an
example, we have the correspondences

In (46) the labels of type l are connected through the κ(αl,β l) factor which
strongly links those labels due to the decay properties of the cumulants. We
represent this fact graphically as a vertex colouring of the graph in which label
types correspond to colours. The set of colours representing the label types L will
be denoted by C . The Ml + 1 vertices of a given type l will be denoted by Vc,
where c is the colour corresponding to l.

We define Val(Γ ), the value of a graph Γ , as summation over all labels
consistent with the colouring, such that equally coloured labels are linked through
a cumulant, of the product of the corresponding Λ’s, just as in (46). For example,
we have

(48)
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or

where we choose the variable names for the labels in accordance with (46)
following the convention that the elements of the tuple βk

l are denoted by (βk
l (1),

βk
l (2), . . .). We warn the reader that Val(Γ ), the value of a diagram itself is a

random variable unlike in customary Feynman diagrammatic expansion theory.
In the following we derive bounds on the value of diagrams. To separate the
conceptual from the technical difficulties we first derive those bounds in a vague
. sense which ignores a technical subtlety: The entries Gab of the resolvent are
bounded with overwhelming probability, but usually not almost surely. In the first
conceptual step we tacitly assume such an almost sure bound and write |Gab| . 1.
Later in Section 4.3.1 we make the bounds rigorous in a high-moment sense. We
note that ifΛ(D) = 〈B D〉, then the edges would represent G∗ and (G B)∗ instead
of G and G B and the order would be reversed (recall that the double indices are
transposed in (27)) but the counting argument is not sensitive to these nuances, so
we omit these distinctions in our graphs.

We now rephrase the rules on M in this graphical representation. They dictate
that we need to consider the set of all vertex coloured graphs Γ with cyclic
components such that:

(a) there exist p connected components, all of which are cycles;

(b) each connected component contains at least one vertex;

(c) each colour colours at least two vertices;

(d) if a colour colours exactly two vertices, then these vertices are in different
components;

(e) for each colour there exists a component in which the vertex after the wiggled
edge (in clockwise orientation) is of that colour.

We note that these rules, compared to (46), disregarded the restrictions on the
permutations σk for k 6∈ L as these are not relevant for the averaged bound. The
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set of graphs satisfying (a)–(e) will be denoted by Gav(p, R) and for each L ,M, σ
the main term M from (46) is given by the value of some graph Γ ∈ Gav(p,R).

M
((
〈B·〉[p/2] , 〈B·〉

[p/2])
; L ,M, σ

)
= Val(Γ ), Γ = Γ (L ,M, σ ) ∈ Gav(p,R)

(49)

where 〈B·〉[p/2] denotes the tuple of p/2 functionals mapping D 7→ 〈B D〉 and
similarly for 〈B·〉. As the number of such graphs is finite for given p, R it follows
that it is sufficient to prove the required bound for every single graph.

As for any fixed colour , the naive size of the value Val(Γ ) is
bounded by

Val(Γ ) . N−p
∏
c∈C

N 2−|Vc |/2 6 1 (50)

since according to (47) every component contributes a factor N−1 and every label
contributes a factor N−1/2, and where the ultimate inequality followed from |Vc|>
2 and |C | 6 p. We now demonstrate that using Ward identities of the form

∑
a

|Gab|
2
=
(=G)bb

η

we can improve upon this naive size by a factor of ψ2p, where ψ ≈ 1/
√

Nη and
η ..= =z. We often use the Ward identity in the form

∑
b

|Gab| 6
√

N
√∑

b

|Gab|
2
= N

√
(=G)aa

Nη
. Nψ,

∑
b

|(G B)ab| . ‖B‖ Nψ

(51a)

which explicitly exhibits a gain of a factor ψ over the trivial bound of order N.
Together with the previous bound∑

b

|Gab|
2 6 Nψ2,

∑
b

|(G B)ab|
2 . ‖B‖2 Nψ2 (51b)

we call (51a)–(51b) Ward estimates. Here we used the trivial bound |G| . 1 and
we set ψ ..=

√
=G/Nη (where =G is meant in an isotropic sense which we define

rigorously later).
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We consider the subset of colours C ′ ..= {c ∈ C | |Vc| 6 3} ⊂ C which colour
either two or three vertices and we intend to use Ward identities only when
summing up vertices with those colours. However, one may not use Ward
estimates for every such summation, for example, even if both a and b were
indices of eligible labels, one cannot gain from both of them in the sum

∑
a,b |Gab|.

We thus need a systematic procedure to identify sufficiently many labels so
that each summation over them can be performed by using Ward estimates. In
the following, we first describe a procedure how to mark those edges we can
potentially use for Ward estimates. Secondly, we show that for sufficiently many
marked edges the Ward estimates can be used in parallel.

Procedure for colours appearing twice in Γ . If a colour appears twice, then it
appears in two different components of Γ , that is„ in one of the following forms

where the white vertices can be of any colour other than (and may even
coincide), the dotted edges indicate an arbitrary continuation of the component
and some additional edges may be wiggled. The picture only shows those two
components with colour , the other components of Γ are not drawn. Vertical
lines separate different cases. When summing up the -coloured labels, we can
use the Ward estimates on all edges adjacent to using the operator norm
|||κ|||av

2 =
∥∥ |κ(∗, ∗)| ∥∥ on κ . To see this we note that

∑
α1,α2

∣∣κ(α1, α2)Aα1 Bα2

∣∣ 6 |||κ|||av
2

√∑
α1

∣∣Aα1

∣∣2√∑
α2

∣∣Bα2

∣∣2, (52)

after which (51b) with

Aα1, Bα1 ∈
{
Gb1a1, (G B)b1a1,Gca1 Gb1d, (G B)ca1 Gb1d,Gca1(G B)b1d

}
and arbitrary fixed indices c, d is applicable.

REMARK 4.5. In the sequel we not write up separate estimates for edges
representing G B instead of G as the same Ward estimates (51a)–(51b) hold true
and the bound is automatic in the sense that there are in total p wiggly edges in
Γ , each of which will contribute a factor of ‖B‖ to the final estimate, regardless
of whether the corresponding edge has been bounded trivially |(G B)α| . ‖B‖ or
by (51a)–(51b).
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L. Erdős, T. Krüger and D. Schröder 48

We find that for every edge connected to we can gain a factor ψ compared
to the naive size of the -sum, using only the trivial bound |G| . 1. We indicate
visually that an edge has potential for a gain ofψ through some colour by putting a
mark (a small arrow) pointing from the vertex towards the edge. Thus in the case
where appears twice we mark all edges adjacent to to obtain the following
marked graphs

We note that these marks indicate that we can use a Ward estimate for every
marked edge, when performing the -summation, while keeping all other labels
fixed. When simultaneously summing over labels from different colours it is not
guaranteed any more that we can perform a Ward estimate for every marked edge.
We later resolve this possible issue by introducing the concept of effective and
ineffective marks.

Procedure for colours appearing three times in Γ . If a colour appears three
times, then the following ten set-ups are possible

(53)

where we explicitly allow components with open continuations to be connected
(unlike in the previous case, where rule (d) applied). We now mark the edges
adjacent to as follows and observe that at most two remain unmarked. Explicitly,
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we choose the markings

and observe that in all but the fifth graph we can gain a factor of ψ for every
marked edge using the first term in the norm |||κ|||av

3 . For example, in the second
graph this follows from∑

α1,α2,α3

∣∣κ(α1, α2, α3)Gca3 Gb3d Gb1a1 Gb2a2

∣∣
. |||κ|||av

3

√∑
α2

∣∣Gb2a2

∣∣2√∑
α3

∣∣Gca3 Gb3d

∣∣2 . |||κ|||av
3 N 2ψ3

and in third graph from∑
α1,α2,α3

∣∣κ(α1, α2, α3)Gb1a2 Gb2a1 Gb3a3

∣∣ . ∑
α2,α3

∣∣Gb3a3

∣∣∑
α1

|κ(α1, α2, α3)|

. |||κ|||av
3 N 2ψ,

where c and d are the connected indices from the white vertices in the graph. The
computations for the other graphs are identical. We note that the markings we
chose above are not the only ones possible. For example we could have replaced

(54)

For the fifth graph in (53) the second term in the |||κ|||av
3 is necessary. The norms

in (6c) ensure that we can perform at least one Ward estimate and we have∑
α1,α2,α3

∣∣κ(α1, α2, α3)Gb1a2 Gb2a3 Gb3a1

∣∣ . |||κ|||av
3 N 2ψ.
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Indeed, for example∑
α1,α2,α3

∣∣κcd(α1, α2, α3)Gb1a2 Gb2a3 Gb3a1

∣∣ . ∑
α1,α2,α3

∣∣κcd(α1, α2, α3)Gb3a1

∣∣
6 |||κcd |||cd N

√∑
b3,a1

∣∣Gb3a1

∣∣2 . |||κcd |||cd N 2ψ,

and the other three cases are similar.

Procedure for all other colours in Γ . For colours in C \ C ′, that is, those which
appear four times or more, we do not intend to use any Ward estimates and
therefore we do not place any additional markings. Thus we only have to control
the size of the summation over any fixed colour, as is guaranteed by the finiteness
of |||κ|||av

k .

Counting of markings. After we have chosen all markings, we select the ‘useful’
ones. We call an edge ineffectively marked if it only carries one mark and joins
two distinctly C ′-coloured vertices. All other marked edges we call effectively
marked because the parallel gain through a Ward estimate is guaranteed for all
those edges. In total, there are at least

∑
c∈C ′ |Vc| edges adjacent to C ′ (that is,

adjacent to a C ′-coloured vertex). After the above marking procedure there are at
most 2

∑
c∈C ′(|Vc| − 2) unmarked or ineffectively marked edges adjacent to C ′.

To see this we note that edges between two C ′-colours with only one marking are
counted as unmarked from the perspective of exactly one of the two colours. Thus
we find that there are at least∑

c∈C ′

|Vc| − 2
∑
c∈C ′

(|Vc| − 2) =
∑
c∈C ′

(4− |Vc|) (55)

effectively marked edges adjacent to C ′ after the marking procedure. We illustrate
this counting in an example. In the graph

we have and there are six edges adjacent to . After
the marking procedure we could for example obtain the graphs
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where the second graph would result from the replaced marking in (54). In both
cases there are two effectively marked edges, in accordance with (55); in the first
example there are also two ineffectively marked edges.

Power counting estimate. The strategy now is that we iteratively perform the
Ward estimates colour by colour in C ′ in no particular order. In each step we thus
remove all the edges adjacent to some given colour, either through Ward estimates
(if the edge was marked in that colour), or through the trivial bound |Gα| . 1. If
some edge is missing because it already was removed in a previous step, then
the corresponding G is replaced by 1 in that estimate (for example, in (52)).
This might reduce the number of available Ward estimates in some steps, but
the concept of effective markings ensures that whenever an effectively marked
edge is removed, then a gain through a Ward estimate is guaranteed. After the
summation over all colours from C ′ we have thus performed Ward estimates in
all the effectively marked edges, which amounts to at least∑

c∈C ′

(4− |Vc|)

gains of the factor ψ . We note that ineffectively marked edges may not
be estimated by a Ward estimates, as it might be necessary to bound the
corresponding G trivially while performing the sum over another colour. Using
only the gains from the effective marks, we can improve on the naive power
counting (50) to conclude that the value of Γ is bounded by

Val(Γ ) . N−p
∏

c∈C\C ′

N 2−|Vc |/2
∏
c∈C ′

(Nψ2)2−|Vc |/2

6 ψ2p N 2|C\C ′|−|VC\C ′ |/2,

(56)

where we used that |C ′| 6 |C | 6 p, |Vc| = 2, 3 for c ∈ C ′ and |Vc| > 4 otherwise,
and that Nψ2 > 1.

4.3.1. Detailed bound. The argument above tacitly assumed bounds of the form
|Gα| . 1 and

∑
α
|Gα|

2 . N 2ψ2. Apart from unspecified and irrelevant constants,
these bounds are not available almost surely, they hold only in the sense of high
moments, for example, E |Gα|

q 6q 1. Secondly, the definition of ψ intentionally
left the role of =G in it vague. The precise definition of ψ will involve high
Lq norms of =G. Moreover, different G-factors in the monomials Λ are not
independent. All these difficulties can be handled by the following general Hölder
inequality. Suppose, we aim at estimating

E
∑

A

X A

∑
B

YA,B
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for random variables X A, YA,B , then we use the Hölder inequality to estimate∥∥∥∑
A

X A

∑
B

YA,B

∥∥∥
q
6

(∑
A

)ε∥∥∥∑
A

X A

∥∥∥
2q

max
A

∥∥∥∑
B

YA,B

∥∥∥
1/ε

(57)

for 0 < ε 6 1/2q . In our procedure (57) enables us to iteratively bound the
graphs colour by colour at the expense of an additional factor N 2pRε in every
colour step of the bound, as the total sum is at most of size N 2pR . To estimate a
G or an =G directly we use the Hölder inequality and note that there are at most
|V | =

∑
c |Vc| 6 pR factors of the form G or G B, so that we can estimate those

terms isotropically by ‖G‖pR/ε , ‖B‖ ‖G‖pR/ε and ‖=G‖pR/ε . We use (57) at most
with q ∈ {1, 2, 4, . . . , 2p−1

} and thus have a restriction of 0 < ε 6 2−p. Thus,
combining the power counting above with the iterated application of the Hölder
inequality, we have shown that

‖Val(Γ )‖p 6p,R,ε N 2p2 Rε
(

1+ |||κ|||av
)p
‖B‖p (1+ ‖G‖|V |pR/ε)ψ

2p
pR/ε

× N 2|C\C ′|−|VC\C ′ |/2,

where ψq
..=
√
‖=G‖q /Nη, for all Γ ∈ Gav(p, R) and 0 < ε 6 1/2p. Therefore,

together with (49) we conclude the bound∥∥∥M((
〈B·〉[p/2] , 〈B·〉

[p/2])
; L ,M, σ

)∥∥∥
p

(58)

6p,R,ε N 2p2 Rε
(

1+ |||κ|||av
)p
‖B‖p (1+ ‖G‖|V |pR/ε)ψ

2p
pR/εN 2|C\C ′|−|VC\C ′ |/2

on (46).

4.4. Isotropic bound on D. We turn to the isotropic bound on D, that is, we
give bounds on (46) with functionals Λ of the following type. We consider fixed
vectors x, y and set Λ(D) = Dxy or Λ(D) = Dxy. Up to sign we then have∣∣Λα1,...,αn

∣∣ = N−n/2(∆α1 G · · ·∆αn G)xy = N−n/2xa1 Gb1a2 · · ·Gbn−1an Gbny.

The graph component representing Λα1,...,αn is a chain in contrast to the cycles in
the averaged case. We also have additional edges representing the first xa1 and last
Gbny factor which we picture as and , respectively. These are special
edges that are adjacent to one vertex only (the dots • and ◦ are not considered as
vertices). We will call them initial and final edge. Due to these special edges
we should, strictly speaking, talk about a special class of hypergraphs consisting
of a union of chains each of them starting and ending with such a special edge,

https://doi.org/10.1017/fms.2019.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.2


Random matrices with slow correlation decay 53

but for simplicity we continue to use the term graph. For example we have the
correspondence

For Λ(D) = Dxy the edges represent xa1 , G∗bk y and G∗bk ak+1
but we do not indicate

complex and Hermitian conjugate visually as they have no consequences on the
argument. We follow the same convention regarding the colouring, as we did in
the averaged case and for example have the representation

We again rephrase the rules on M as rules on the graph Γ . We consider all
vertex coloured graphs Γ such that the connected components are chains with an
initial edge of type and a final edge of type such that:

(a) there exist p connected components, all of which are chains;

(b) every component contains at least one vertex;

(c) every colour occurs at least once on a vertex adjacent to ;

(d) every colour occurs at least twice;

(e) if a colour occurs exactly twice, then it occurs in two different chains.

The set of graphs satisfying (a)–(e) will be denoted by G iso(p, R) and for each
L ,M, σ in (46) we can write the main term M as

M
((
〈x, ·y〉[p/2] , 〈x, ·y〉

[p/2])
; L ,M, σ ) = Val(Γ ), Γ ∈ G iso(p,R) (59)

where 〈x, ·y〉[p/2] denotes the tuple of p/2 functionals mapping D 7→ 〈x, Dy〉
and similarly for 〈x, ·y〉. As the number of such graphs is finite for given p, R it
follows that it sufficient to prove the required bound for every single graph.
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In contrast to the averaged case, where each Λ carried a factor 1/N from the
definition of Λ(D) = N−1 Tr B D, now the naive size of the sum over Γ is not of
order 1, but of order

Val(Γ ) .
∏
c∈C

N 2−|Vc |/2 = N 2|C |−|V |/2, (60)

which can be large. Consequently we have to be more careful in our bound and
first make use of a cancellation.

Step 1: Improved naive size. We first observe that we can reduce the naive
size (60) to order 1, without using any Ward estimates, yet. The improvement
comes from the fact that sums of the type∑

a

vaGab = Gvb

can be directly bounded via the right-hand side by |Gvb| . ‖v‖ using the isotropic
bound. Note that the naive estimate on the left-hand side would be∣∣∣∣∣∑

a

vaGab

∣∣∣∣∣ .∑
a

|va| 6
√

N ‖v‖ ,

and even with a Ward estimate it can only be improved to∣∣∣∣∣∑
a

vaGab

∣∣∣∣∣ 6 ‖v‖
√∑

a

|Gab|
2 6
√

Nψ ‖v‖ .

So the procedure ‘summing up a vector v into the argument of G’ is much more
efficient than a Ward estimate. The limitation of this idea is that only deterministic
vectors v can be summed up, since isotropic bounds on Guv hold only for fixed
vectors u, v.

Improvement for colours occurring twice in Γ . For colours which occur exactly
twice we can sum up the x into a G factor without paying the price of an N factor
from this summation. To do so, we consider an arbitrary partition of κ = κc + κd ,
where one should think of that κd(α1, α2) forces α1 = (a1, b1) to be close to α2 =

(a2, b2), whereas κd(α1, α2) forces (a1, b1) to be close to (b2, a2). In both cases
we can, according to rule (b), perform two single-index summations as follows.
First, we sum up the index a1 of x as∑

a1

κ(a1b1, a2b2)xa1 = κ(xb1, a2b2).
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Then we sum up its companion b2 or a2, depending on whether we consider the
cross or direct term: ∑

b2

κc(xb1, a2b2)Gb2v = Gκc(xb1,a2·)v

or ∑
a2

κd(xb1, a2b2)Gva2 = Gvκd (xb1,·b2),

where v can be any vector or index. Thus we effectively performed a single label
(two-index) summation into a single G factor that will be estimated by a constant
in the isotropic norm. We indicate this summation graphically by introducing half-
vertices and representing the single leftover indices a and b corresponding
to a label α = (a, b) and new (half)edges and representing the
Gκc(xb1,a2·)v and Gvκd (xb1,·b2) factors. To indicate that the half-edges representing
x have been summed, we grey them out. This partial summation can thus be
graphically represented as

since ∑
a1,b1,a2,b2

κ (a1b1, a2b2)
(
xa1 Gb1u

) (
Gva2 Gb2w

)
=

∑
b1,a2

(
Gb1u

) (
Gva2 Gκc(xb1,a2·)w

)
+

∑
b1,b2

(
Gb1u

) (
Gvκd (xb1,·b2)Gb2w

)
,

where u, v,w are the connecting indices from the white vertices.

Improvement for colours occurring three times in Γ . For colours which appear
exactly three times we cannot perform the summation of x directly. We can,
however use a Cauchy–Schwarz in the vertex adjacent to the x–edge to improve
the naive size of the –sum to N 3/2 from N 2. Explicitly, for any index or vector v
we use that∑

ai ,bi

∣∣xai Gbi v
∣∣ .∑

ai ,bi

∣∣xai

∣∣ 6 N 3/2

(∑
ai

∣∣xai

∣∣2)1/2

= N 3/2
‖x‖ .

To indicate the intend to use the Cauchy–Schwarz improvement on a specific x
edge, we mark the corresponding edge with a marking originating in the adjacent
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vertex, very much similar to the marking procedure in the averaged case. To
differentiate this marking from those indicating the potential for a Ward estimate
we use a grey marking . As an example we would indicate

After these two improvements over (60) the naive size (naive in the sense
without any Ward estimates, yet) of the summed graph is

Val(Γ ) .
( ∏

c∈C,
|Vc |=2

N 1−|Vc |/2

)( ∏
c∈C,
|Vc |=3

N 3/2−|Vc |/2

)( ∏
c∈C,
|Vc |>4

N 2−|Vc |/2

)
6 1. (61)

Notice that the first two factors give 1, so the improved power counting for colours
with two or three occurrences is neutral. We thus restored the order 1 bound and
can now focus on the counting of Ward estimates, with which we can further
improve the bound.

Step 2: Further improvements through Ward estimates. The counting procedure
is very similar to what we used in the averaged law in the sense that we mark
potential edges for Ward estimates colour by colour. To be consistent with the
improved naive bound we count the grey initial edges (those from the summation
of colours occurring twice) and the initial edges with a grey arrow (those from the
summation of colours appearing three times) as unmarked, since they will not be
available for Ward estimates.

Marking procedure for colours occurring twice. Colours occurring twice can,
after Step 1, only occur in the reduced forms

where we allow and to stand for an arbitrary
continuation of the graph, as well as the initial and final edge .
In both cases we mark the edges adjacent to the remaining two half-vertices to
obtain:
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Thus for colours appearing twice we always leave two edges unmarked (which
includes the greyed out initial edge). Using the |||κ|||iso

2 norm we indeed find that
the solid edges in the two graphs above can be bounded by∑

b1,a2

∣∣Gb1uGva2 Gκc(xb1,a2·)w
∣∣ . ‖w‖∑

b1,a2

∣∣Gb1uGva2 ‖κc(xb1, a2·)‖
∣∣

. N 2ψ2
|||κ|||iso

2 ‖x‖ ‖u‖ ‖v‖ ‖w‖ (62)

and ∑
b1,b2

∣∣Gb1uGvκd (xb1,·b2)Gb2w
∣∣ . ‖v‖∑

b1,b2

∣∣Gb1uGb2w ‖κd(xb1, ·b2)‖
∣∣

. N 2ψ2
|||κ|||iso

2 ‖x‖ ‖u‖ ‖v‖ ‖w‖

where the vectors (which are allowed to be indices, as well) u, v,w are the
endpoints of the edges in the three white vertices.

REMARK 4.6. In the case that stands for the initial edge , we
cannot use the Ward estimate, but use instead that x is a vector of finite norm,
providing a gain of N−1/2

� ψ . For example, we could bound the graph

by ∑
b1,a2

∣∣Gb1uxa2 Gκc(xb1,a2·)w
∣∣ . N 2 ψ

√
N
|||κ|||iso

2 ‖x‖
2
‖u‖ ‖w‖ ,

which is better than (62) as
√

Nψ > 1. In the sequel we will not specifically
distinguish this case when instead of a Ward estimate we have to use the finite
norm of x, as the procedure is identical and the resulting bound is always smaller
in the latter case.

We also will not separately consider the case when stands for
the final edge , as we can use the same Ward estimate as before, with the
difference that u and/or w are replaced by y.

We will not manually keep track of the number of ‖x‖ , ‖y‖ in the bound as
it is automatic in the sense that there are p initial and p final edges in Γ , each
contributing a factor of ‖x‖ , ‖y‖ to the final estimate.
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Marking procedure for colours occurring three times. Colours appearing three
times occur in one of the following four forms

and in all cases we mark the edges adjacent to in such a way that at most three
edges (including the initial edge with the grey mark) remain unmarked. Indeed,
we mark the edges as follows.

Very similar to the bound using |||κ|||av
3 , we find that using the norm |||κ|||iso

3 we can
perform Ward estimates on all marked edges.

Marking procedure for colours occurring more than three times. For any colour
c occurring more than three times we claim that we can always mark edges in
such a way that at most 2 |Vc| − 4 edges adjacent to Vc remain unmarked. Indeed,
if we call an edge connected to two c–coloured vertices c–internal and denote
their set E int

c , then there are 2 |Vc| − |E int
c | edges adjacent to c. Out of this set of

all c-adjacent edges, we mark any two and thus the claim is trivially fulfilled if
|E int

c | > 2. If |E int
c | = 0, then the graph contains two single vertices of colour c,

for which we mark all four adjacent edges, that is,

also confirming the claim in this case. Finally, if |E int
c | = 1, then the graph has to

contain
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for which we mark the three indicated edges, confirming the claim also in this final
case. We note (again similarly to |||κ|||av

3 ) that the norm |||κ|||iso
k allows to perform

Ward estimates on all marked edges.

Counting of markings. In contrast to the averaged case, we now call an edge
ineffectively marked if it only carries one mark and connects any two distinctly
coloured vertices (in the averaged case the analogous definition was restricted
to C ′-coloured vertices). All other marked edges we call effectively marked. In
particular the initial and final edge are always effectively marked, once they are
marked. By construction, all effectively marked edges can be summed up by Ward
estimates. In total, there are exactly p+

∑
c∈C |Vc| edges in Γ . After the marking

procedure there are at most∑
c∈C,|Vc |=2

2+
∑

c∈C,|Vc |=3

3+
∑

c∈C,|Vc |>4

(2 |Vc| − 4)

unmarked or ineffectively marked edges in Γ . Thus there are at least(
p +

∑
c∈C

|Vc|

)
−

( ∑
c∈C,|Vc |=2

2+
∑

c∈C,|Vc |=3

3+
∑

c∈C,|Vc |>4

(2 |Vc| − 4)
)

= p +
∑

c∈C,|Vc |>4

(4− |Vc|) (63)

effectively marked edges in Γ , which can be negative, but it turns out that in this
case the (improved) naive size already is sufficiently small.

Power counting estimate. The strategy for performing the Ward estimates is
identical to that in the averaged case; we perform them colour by colour in an
arbitrary order. According to the improved naive bound from Step 1, and recalling
that the power counting for |Vc| = 2 and |Vc| = 3 gives 1, that is, is neutral, and
the counting of additional effective markings we find that the summed value of Γ
is bounded by

Val(Γ ) . N 2|C\C ′|−|VC\C ′ |/2ψ (p+4|C\C ′|−|VC\C ′ |)+,

where C ′ are those colours c with |Vc| = 2, 3.

Detailed estimate. Finally, this power counting is performed with the procedure
of iterated Hölder inequalities, exactly as in the averaged case to obtain

‖Val(Γ )‖p 6ε,R,p N 2p2 Rε
(

1+ |||κ|||iso
)p
‖x‖p
‖y‖p (1+ ‖G‖|V |pR/ε)

×ψ
(p+4|C\C ′|−|VC\C ′ |)+

pR/ε N 2|C\C ′|−|VC\C ′ |/2
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L. Erdős, T. Krüger and D. Schröder 60

for all Γ ∈ G iso(p, R) and 0 < ε 6 1/2p. Therefore we conclude together
with (59) that∥∥∥M((

〈x, ·y〉[p/2] , 〈x, ·y〉
[p/2])
; L ,M, σ

)∥∥∥
p

6ε,R,p N 2p2 Rε
(

1+ |||κ|||iso
)p
‖x‖p
‖y‖p

× (1+ ‖G‖|V |pR/ε)ψ
(p+4|C\C ′|−|VC\C ′ |)+

pR/ε N 2|C\C ′|−|VC\C ′ |/2. (64)

4.5. Modifications for general case. In the previous Sections 4.3 and 4.4 we
estimated M defined in (46) under the simplifying assumptions L3 = L4 = ∅

and N (αl) = I . For the final bound in (45) we need to treat all other cases. In this
section we now demonstrate that these simplifying assumptions are not substantial
and that the results from (55) and (63) on the number of available Ward estimates
remain valid in the more general setting. By definition, M depends on the labels
of types L3 and L4, which are considered fixed in the subsequent discussion. The
graphs we introduced to systematically bound M do not change in their form for
the general case, but only have additional fixed vertices αl , β l for l ∈ L3 ∪ L4,
which we consider as uncoloured. Thus we enlarge the set graphs Gav and G iso

to G̃av and G̃ iso, which are defined by the previously stated rules (a)–(e) with the
addition of

(f) certain vertices may be uncoloured.

These uncoloured vertices represent exactly those labels of types L3 and L4,
which are parameters of M, as defined in (39). For example, the previously
studied graphs

can be extended to

The definition of the value naturally extends to these larger classes of graphs, but
without a summation over the uncoloured vertices. In the above example (48) is
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then replaced by

where γ (1), γ (2), γ (3) are the fixed labels and the value of the graph depends on
them. The isotropic case is analogous.

The argument in Sections 4.3 and 4.4, however, only concern those labels which
are actually summed over, that is, those of type l for l ∈ L2. In other words,
we only aim at improving the L2-summation by Ward estimates. The presence
of additional fixed labels do neither change the naive bounds, the improvement
through Ward estimates, nor the counting of those Ward estimates.

Next, the restricted summations due to the neighbourhood sets N (α) ⊂ I do
also not change the argument. In fact, Ward estimates stay true for restricted
summations since ∑

a∈J

|Gax|
2 6

∑
a∈J

|Gax|
2
=
=Gxx

η

for arbitrary J ⊂ J . Also the procedure for improving the naive size in
Section 4.4 holds true if only summed over subsets, that is,∑

a1∈J

κ(a1b1, a2b2)xa1 = κ(xJ b1, a2b2),

where the subvector xJ has bounded norm ‖xJ ‖ 6 ‖x‖.
Finally, the modification of M by setting WNL3

= 0 also does not change the
substance of the argument as the bound verbatim also covers this modified W ,
and the final bounds can be rephrased in terms of ‖G‖ as ‖Ĝ‖q 6q 1+‖G‖3

6q , as
demonstrated in Lemma D.3.

4.6. Proof of Theorem 4.1. We now have all the ingredients to complete the
proof of Theorem 4.1 starting from (45), where we recall that M was defined
in (39).

Proof of the averaged bound. We recall from (50) that for the averaged bound the
naive size of M is given by

M . N−p N−|L|/2−ML/2 N 2|L2|,
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where the first factor comes from the normalized trace, the second from the
derivatives and the third from the L2 summations. We demonstrated in Section 4.3
(see (56) and the counting estimate (55)) that through Ward estimates we can
improve the naive size N 2|L2| of the L2 summation to

M . N−p N−|L3tL4|/2−ML3tL4 /2
∏
l∈L2
Ml>3

N 3/2−Ml/2
∏
l∈L2
Ml62

(Nψ2)3/2−Ml/2

6 N−|L1|N−3|L3|/2−ML3 /2 N−2|L4|ψ2|L2|
∏
l∈L2
Ml>3

N (3−Ml )/2,

where we used that Nψ2 > 1 and that ML4 = |L4| and we recall that p = |L1| +

|L2| + |L3| + |L4|. Consequently we have from (45) that

E |〈B D〉|p .p,µ N−p

+

∑
⊔

L i=[p]

N−|L1|ψ2|L2|

[∏
l∈L2
Ml>3

N (3−Ml )/2

]
N−|L3|−µML3 N−|L4|,

.p,µ N−p
+ ψ2p

∑
⊔

L i=[p]

[∏
l∈L2
Ml>3

N (3−Ml )/2

]
N−µML3

.p,µ ψ
2p

∑
⊔

L i=[p]

N−(1/2)(ML2−3p)+−µML3 , (65)

where we bounded the L3-summation in (45) by N 2|L3|(N 1/2−µ)ML3 =

N 2|L3|+ML3 /2 N−µML3 in the first line, and used N−1 6 ψ2 in the second. To
conclude the moment bound (23b) from (65) we have to count the number of
‖G‖q’s just as in the proof of (59). The key point is to collect enough N−µ factors
so that all but maybe O (p) factors ‖G‖q could be compensated by an N−µ. Since
all |L i | and ML4 = |L4| are of order p, the only way of collecting more than Cp
factors of ‖G‖q is having ML2 or ML3 bigger than a constant times p. But in this
case we collect the same order of factors of the type N−1/2 or N−µ from (65) and
the claim follows since N−1/2 6 N−µ.

Proof of the isotropic bound. We recall from (61) that for the isotropic law the
improved naive size of M is given by

M . N−|L3tL4|/2−ML3tL4 /2
∏
l∈L2
Ml>3

N 3/2−Ml/2
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and from (63) that we can always perform at least(
p +

∑
l∈L2,Ml>3

(3− Ml)

)
+

Ward estimates. Consequently, with Proposition 4.4 and (45) we obtain

E
∣∣Dxy

∣∣p
.p,µ N−p

+

∑
⊔

L i=[p]

N−µML3ψ

(
p+
∑

l∈L2,Ml>3(3−Ml )

)
+

×

∏
l∈L2
Ml>3

N 3/2−Ml/2, (66)

where we again bounded the L3 summation in (45) by N 2|L3|+ML3 /2 N−µML3 . The
rhs. of (66) is bounded by ψ p since every missing ψ power is compensated by an
N−1/2

� ψ . To conclude the moment bound (23a) from (66) we again have to
count the number of ‖G‖q-factors as in the proof of (64) This very similar to the
averaged case above and completes the proof of Theorem 4.1.

5. Proof of the stability of the MDE and proof of the local law

Before going into the proof of Theorem 2.2, we collect some facts from [3, 5,
29] about the deterministic MDE (1) and its solution.

PROPOSITION 5.1 (Stability of MDE and properties of the solution). The
following hold true under Assumption (A).

(i) The MDE (1) has a unique solution M = M(z) for all z ∈ H and moreover
the map z 7→ M(z) is holomorphic.

(ii) The holomorphic function 〈M〉 : H → H is the Stieltjes transform of a
probability measure µ on R.

(iii) There exists a constant c > 0 such that we have the bounds

c
〈z〉 + |||S||| dist(z, suppµ)−1

6 ‖M(z)‖ 6
1

dist(z, suppµ)

‖=M‖ 6
η

dist(z, suppµ)2
,

where we recall the definition of |||S||| in (24).
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L. Erdős, T. Krüger and D. Schröder 64

(iv) There exist constants c,C > 0 such that

∥∥(1− CM(z)S)−1
∥∥

hs→hs 6 c
[

〈z〉
dist(z, suppµ)

+
|||S|||

dist(z, suppµ)2

]C

,

where C is the sandwiching operator CR[T ] ..= RT R. The norm on the lhs. is
the operator norm where 1 − CMS is viewed as a linear map on the space
of matrices equipped with the Hilbert–Schmidt norm.

If, in addition, Assumption (E) is also satisfied, then the following statements hold
true, as well.

(v) The measure µ from (ii) is absolutely continuous with respect to the
Lebesgue measure and has a continuous density ρ : R → [0,∞), called
the self-consistent density of states, which is also real analytic on the open
set {ρ > 0}.

(vi) There exist constants c,C > 0 such that we have the bounds

c
〈z〉

6 ‖M(z)‖ 6
C

ρ(z)+ dist(z, supp ρ)
,

cρ(z) 6 =M(z) 6 C 〈z〉2 ‖M(z)‖2 ρ(z)

in terms of the harmonic extension ρ(z) ..= π−1
= 〈M(z)〉 of the self-

consistent density of states to the upper half plane H.

(vii) There exist constants c,C > 0 such that∥∥(1− CM(z)S)−1
∥∥

hs→hs 6 c
(

1+
[
ρ(z)+ dist(z, supp ρ)

]−C
)
.

Proof. Parts (i)–(ii) follow from [29, Theorem 2.1]. Parts (iii)–(iv) follow
from [5, Section 3] and ‖M‖ >

∥∥M−1
∥∥−1. Finally, parts (v)–(vii) follow from [3,

Propositions 2.2, 4.2, 4.4].

Due to Assumption (C), (24) and (73) below we have |||S||| 6 C . Therefore
parts (iii),(iv),(vi) and (vii) show that we have

〈z〉 ‖M(z)‖ 6ε N ε and
∥∥(1− CMS)−1

∥∥
hs→hs 6ε N ε in Dδ

out (67)

and also in Dδ
0 under Assumption (E), for some δ = δ(ε) > 0. Similarly to (67),

we often state estimates that hold both in the spectral domain Dδ
out without

Assumption (E) as well as in the spectral domain Dδ
γ but under Assumption (E).

We recall that according to our convention about 6ε , (67) implies the existence of
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a constant C(ε) such that the inequalities hold true with that constant for all z in
the given ε-dependent domains.

5.1. Definition of an isotropic norm suitable for the stability analysis. For
a fixed z ∈ H define the map

Jz[G, D] ..= 1+ (z − A + S[G])G − D

on arbitrary matrices G and D. From the definition of D = D(z) (2) and the
solution M = M(z) of the MDE (1) it follows that Jz[M(z), 0] = 0 and Jz[G(z),
D(z)] = 0. Throughout this discussion we fix z and we omit it from the notation,
that is, J = Jz . We consider G as a function G = G(D) of an arbitrary error
matrix D satisfying J [G(D), D] = 0. Via the implicit function theorem, this
relation defines a unique function G(D) for sufficiently small D and G(D) will
be analytic as long as J is stable. The stability will be formulated in a specific
norm that takes into account that the smallness of D can only be established in
isotropic sense, that is, in the sense of high-moment bound on Dxy for any fixed
deterministic vectors x, y. To define this special norm, we fix vectors x, y and
define sets of vectors containing the standard basis vectors ea, a ∈ J , recursively
by

I0
..= {x, y} ∪ {ea | a ∈ J } ,

Ik+1
..= Ik ∪ {Mu | u ∈ Ik}

∪ {κc((Mu)a, b·), κd((Mu)a, ·b) | u ∈ Ik, a, b ∈ J } ,

which give rise to the norm

‖G‖∗ = ‖G‖
K ,x,y
∗

..=

∑
06k<K

N−k/2K
‖G‖Ik

+ N−1/2 max
u∈IK

‖G ·u‖
‖u‖

,

‖G‖I
..= max

u,v∈I

|Guv|

‖u‖ ‖v‖
,

where we choose K later.

THEOREM 5.2. Let K ∈ N, x, y ∈ CN , and denote the open ball of radius δ
around M in (CN×N , ‖·‖K ,x,y

∗
) by Bδ(M). Then for

ε1
..=

[
1+ |||S||| ‖M‖2

+ |||S|||2 ‖M‖4
∥∥(1− CMS)−1

∥∥
hs→hs

]−2

10N 1/K ‖M‖2
|||S|||

,

ε2
..=

√
ε1

10 |||S|||

(68)
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there exists a unique function G : Bε1(0)→ Bε2(M) with G(0) = M that satisfies
J [G(D), D] = 0. Moreover, the function G is analytic and satisfies

‖G(D1)− G(D2)‖∗ 6 10 N 1/(2K )
∥∥(1− CMS)−1

∥∥
∗→∗
‖M‖ ‖D1 − D2‖∗ . (69)

for any D1, D2 ∈ Bε1(0).

Proof. First, we rewrite the equation J [G, D] = 0 in the form J̃ [V, D] = 0,
where

J̃ [V, D] ..= (1− CMS)V − MS[V ]V + M D, V ..= G − M

and for arbitrary V and D we claim the bounds

‖MS[V ]V ‖∗ 6 N 1/(2K )
|||S||| ‖M‖ ‖V ‖2

∗
, (70a)

‖M D‖∗ 6 N 1/(2K )
‖M‖ ‖D‖∗ , (70b)∥∥(1− CMS)−1

∥∥
∗→∗

6 1+ |||S||| ‖M‖2
+ |||S|||2 ‖M‖4

∥∥(1− CMS)−1
∥∥

hs→hs .

(70c)

We start with the proof of (70a). Let κ = κc + κd be an arbitrary partition which
induces a partition of S = Sc + Sd (as in Remark 4.2). Then for u, v ∈ Ik we
compute

|(MSc[V ]V )uv|

‖u‖ ‖v‖
6

1
N

∑
a,b

∣∣VabVκc((Mu)a,b·)v
∣∣

‖u‖ ‖v‖

6 |||κc|||c ‖V ‖max ‖M‖min
{
‖V ‖Ik+1

,
‖V·v‖
‖v‖

}
,

|(MSd[V ]V )uv|

‖u‖ ‖v‖
6

1
N

∑
a,b

∣∣Vaκd ((Mu)a,·b)Vbv
∣∣

‖u‖ ‖v‖
(71)

6 |||κd |||d ‖M‖min
{
‖V ‖Ik+1

‖V·v‖
√

N ‖v‖
, ‖V ‖max

‖V·v‖
‖v‖

}
,

where we used |Vaw| 6
√

N ‖V ‖max ‖w‖ in the second bound of (71), so that

‖MSe[V ]V ‖∗ =
∑

06k<K

‖MSe[V ]V ‖Ik

N k/2K
+max

u∈IK

‖(MSe[V ]V )·u‖
√

N ‖u‖

6 N 1/(2K )
|||κe|||e ‖M‖ ‖V ‖

2
∗

for e ∈ {c, d} and (70a) follows immediately, recalling (24). Next, (70b) follows
directly from

|(M D)uv|

‖u‖ ‖v‖
6 ‖M‖min

{
‖D‖Ik+1

,
‖D·v‖
‖v‖

}
.
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Finally, we show (70c). We use a three term geometric expansion to obtain∥∥(1− CMS)−1
∥∥
∗→∗

6 1+ ‖CMS‖∗→∗ + ‖CMS‖∗→hs

∥∥(1− CMS)−1
∥∥

hs→hs
‖CMS‖hs→∗

6 1+ ‖M‖2
‖S‖max→‖·‖

+ ‖M‖4
‖S‖max→‖·‖

∥∥(1− CMS)−1
∥∥

hs→hs
‖S‖hs→‖·‖ (72)

and it only remains to derive bounds on ‖S‖max→‖·‖ and ‖S‖hs→‖·‖. We begin to
compute for the cross part κc and arbitrary normalized vectors v,u ∈ CN that

|Sc[V ]vu| =

∣∣∣ 1
N

∑
b1,a2

〈κc(vb1, a2·),u〉 Vb1a2

∣∣∣
6
‖V ‖max

N

∑
b1,a2

‖κc(vb1, a2·)‖ 6 |||κc|||c ‖V ‖max ,

and

|Sc[V ]vu| =

∣∣∣ 1
N

∑
a1,a2,b2

va1

〈
κc(a1·, a2b2), V·a2

〉
ub2

∣∣∣
6

1
N

∑
a1,a2,b2

∣∣va1

∣∣ ‖κc(a1·, a2b2)‖
∣∣ub2

∣∣ ∥∥V·a2

∥∥ 6
|||κc|||c

N

∑
a2

∥∥V·a2

∥∥
6 |||κc|||c

√
1
N

∑
b1,a2

∣∣Vb1a2

∣∣2 = |||κc|||c ‖V ‖hs .

Next, we estimate for the direct part κd that

|Sd[V ]vu| =

∣∣∣ 1
N

∑
b1,b2

〈
κd(vb1, ·b2), Vb1·

〉
ub2

∣∣∣
6

1
N

∑
b1,b2

∥∥Vb1·

∥∥ ‖κd(vb1, ·b2)‖
∣∣ub2

∣∣ 6 |||κd |||d

N

√∑
b1

∥∥Vb1·

∥∥2

6
|||κd |||d

N

√∑
b1,a2

∣∣Vb1a2

∣∣2 6 |||κd |||d min
{
‖V ‖hs
√

N
, ‖V ‖max

}
,

so that it follows that, using (24),

‖S[V ]‖ = sup
‖v‖,‖u‖61

|S[V ]vu| 6 |||S|||min {‖V ‖hs , ‖V ‖max} ,

max
{
‖S‖max→‖·‖ , ‖S‖hs→‖·‖

}
6 |||S|||

(73)
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and therefore (70c) follows from (72) with (73). Now the statement (69) follows
from the implicit function theorem as formulated in Lemma D.1 applied to the
equation J̃ [G − M, D] = 0 written in the form

(1− CMS)V − MS[V ]V = −M D

with A = 1− CMS, B = M and d = D in the notation of Lemma D.1.

This general stability result will be used in the following form

‖G − M‖∗ 6ε N ε+1/(2K ) ‖D‖∗
〈z〉

in Dδ
out and in Dδ

0 under Assumption (E) (74)

for some δ = δ(ε) > 0, as long as ‖D‖∗ 6 N−1/(2K ) 〈z〉2 by applying it to D1 = 0,
D2 = D(z) and using (67) and (70c).

5.2. Stochastic domination and relation to high-moment bounds. In order
to keep the notation compact, we now introduce a commonly used (see, for
example, [13]) notion of high-probability bound.

DEFINITION 5.3 (Stochastic domination). If

X =
(
X (N )(u) | N ∈ N, u ∈ U (N )

)
, Y =

(
Y (N )(u) | N ∈ N, u ∈ U (N )

)
are families of random variables indexed by N , and possibly some parameter u,
then we say that X is stochastically dominated by Y , if for all ε, D > 0 we have

sup
u∈U (N )

P
[
X (N )(u) > N εY (N )(u)

]
6 N−D

for large enough N > N0(ε, D). In this case we use the notation X ≺ Y .

It can be checked (see [13, Lemma 4.4]) that ≺ satisfies the usual arithmetic
properties, for example, if X1 ≺ Y1 and X2 ≺ Y2, then also X1 + X2 ≺ Y1 +

Y2 and X1 X2 ≺ Y1Y2. We say that a (sequence of) events A = A(N ) holds with
overwhelming probability if P(A(N )) > 1− N−D for any D > 0 and N > N0(D).
In particular, under Assumption (B), we have wi j ≺ 1.

In the following lemma we establish that a control of the ‖·‖K ,x,y
∗

-norm for all x,
y in a high-probability sense is essentially equivalent to a control of the ‖·‖p-norm
for all p.

LEMMA 5.4. Let R be a random matrix and Φ a deterministic control parameter.
Then the following implications hold:
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(i) If Φ > N−C , ‖R‖ 6 N C and |Rxy| ≺ Φ for all normalized x, y and some C,
then also ‖R‖p 6p,ε N εΦ for all ε > 0, p > 1.

(ii) Conversely, if ‖R‖p 6p,ε N εΦ for all ε > 0, p > 1, then ‖R‖K ,x,y
∗
≺ Φ for

any fixed K ∈ N, x, y ∈ CN .

Proof. We begin with the proof of (ii) and infer from Markov’s inequality and
Hölder’s inequality (as in (57)) that

P (‖R‖∗ > N σΦ) 6 P
(
2 ‖R‖IK

> N σΦ
)
6p

E ‖R‖p
IK

N σ pΦ p

6p |IK |
2/r E ‖R‖p

pr

N σ pΦ p
6p,r,ε |IK |

2/r N εp−σ p,

and since |IK | 6 4K N K+2 we conclude that ‖R‖∗ ≺ Φ by choosing ε sufficiently
small and p, r sufficiently large. On the other hand, (i) directly follows from

‖R‖p 6 N εΦ + sup
‖x‖,‖y‖61

( ∣∣Rxy
∣∣P[

∣∣Rxy
∣∣ > N εΦ]1/p

)
.

5.3. Bootstrapping step. The proof of the local law follows a bootstrapping
procedure: First, we prove the local law for η > N , and afterwards we iteratively
show that if the local law holds for η > N γ0 , then it also holds for η > N γ1 for
some γ1 < γ0. We now formulate the iteration step.

PROPOSITION 5.5. The following holds true under the assumptions of
Theorem 2.2: Let δ, γ > 0 and γ0 > γ1 > γ with 4(2C∗/µ+ 1)(γ0− γ1) <

γ < 1/2 and suppose that

‖G − M‖p 6γ,p
N−γ /6

〈z〉
in Dδ

γ0
, (75)

holds for all p > 1, where C∗ is the constant from Theorem 4.1. Then the same
inequality (75) (with a possibly different implicit constant depending on γ, δ, p)
holds also true in Dδ′

γ1
for some δ′ = δ′(γ, δ) > 0. Furthermore, the same statement

holds true under the assumptions of Theorem 2.1 if we replace Dδ
γ0

and Dδ
γ1

by
Dδ
γ0
∩ Dδ

out and Dδ
γ1
∩ Dδ

out, respectively, in the above sentence.

Proof. We first prove the assertion under the assumptions of Theorem 2.2. In the
proof we abbreviate the step size from γ0 to γ1 by γs

..= γ0 − γ1. We suppress the
dependence of the constants on δ, γ in our notation. In particular, (75) and (67)
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imply ‖G‖p 6p,γ N γs 〈z〉−1 in Dδ′

γ0
with δ′ = δ′(γ ). For fixed E the function

η 7→ f (η) ..= η ‖G(E + iη)‖p satisfies

lim inf
ε→0

f (η + ε)− f (η)
ε

> ‖G(E + iη)‖p − η

∥∥∥∥lim
ε→0

G(E + i(η + ε))− G(E + iη)
ε

∥∥∥∥
p

= ‖G(E + iη)‖p − η
∥∥G(E + iη)2

∥∥
p > 0,

where we used

η
∣∣〈x,G2y

〉∣∣ 6 η

2

(〈
x, |G|2 x

〉
+
〈
y, |G|2 y

〉)
6

1
2
(〈x,=Gx〉 + 〈y,=Gy〉)

in the last step. We thus know that η 7→ η ‖G(E + iη)‖p is monotone and we can
conclude that 〈z〉 ‖G‖p 6p,γ N 2γs in Dδ′

γ1
. From (23a) and γs < µ it thus follows

that
‖D‖p 6p,γ,ε N ε+2(C∗/µ+1/2)γs−γ /2 6 N ε−γ /4 in Dδ′

γ1
. (76)

Note that the exponent in the right-hand side is independent of p; this was possible
because the power of ‖G‖q in (23a) was linear in p.

We now relate these high-moment bounds to high-probability bounds in the
‖·‖∗ norm, as defined before Theorem 5.2 and find for any fixed x, y and K that
‖D‖∗ ≺ N−γ /4 from Lemma 5.4(ii) (we recall that the ‖·‖∗ implicitly depends on
x, y and K ). Next, we apply (74) to obtain

‖G − M‖∗ χ(‖G − M‖∗ 6 N−γ /9) ≺
N−γ /5

〈z〉
in Dδ′

γ1
, (77)

provided K > 10/γ . The bound (77) shows that there is a gap in the set of possible
values for ‖G − M‖∗. The extension of (75) to Dδ′

γ1
then follows from a standard

continuity argument using a fine grid of intermediate values of η: Suppose
that (77) were true as a deterministic inequality. Since η 7→ ‖(G −M)(E + iη)‖∗
is continuous, and for η = N−1+γ0 we know that ‖(G − M)(E + iη)‖∗ 6 N−γ /6

by (75) and Lemma 5.4(ii), we would conclude the same bound for η = N−1+γ1 .
Going back to the ‖·‖p-norm by Lemma 5.4(i) we could conclude (75) in Dδ

γ1
.

Since (77) may not control ‖G − M‖∗ on a set of very small probability, and we
cannot exclude a ‘bad’ set for every η ∈ [N−1+γ1, N−1+γ0], we use a fine N−3-grid.
The relation (77) is only used for a discrete set of η’s and intermediate values
are controlled by the η−1-Lipschitz continuity of ‖G − M‖∗ in the continuity
argument above. This completes the proof of Proposition 5.5 in the setup of
Theorem 2.2. The proof in the setup of Theorem 2.1 is identical except for the
fact that the inequalities (67) and (74) only hold true in the restricted set Dδ

out
without Assumption (E).
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5.4. Proof of the local law and the absence of eigenvalues outside of the
support. We now have all the ingredients to complete the proof of Theorems 2.1
and 2.2.

Proof of Theorems 2.1, 2.2 and Corollary 2.3. We first prove Theorem 2.2 and
then remark in the end how to adapt it to prove Theorem 2.1. The proof involves
five steps. In the first step we derive a weak initial isotropic bound, which we
improve in the second step to obtain the isotropic local law. In the third step we
use the isotropic local law to obtain the averaged local law in the bulk, which
we use in the fourth step to establish that with very high probability there are no
eigenvalues outside the support of ρ, also proving Corollary 2.3. Finally, in the
fifth step we use the fact that there are no eigenvalues outside the support of ρ to
improve the isotropic and averaged law outside the support.

Step 1: Initial isotropic bound. We claim the initial bound

‖G − M‖p 6p,γ
N−γ /6

〈z〉
in Dδ

γ (78)

for some δ = δ(γ ). First, we aim at proving (78) for large η > N , that is, in
Dδ
γ=2 = Dδ

2 for arbitrary δ. We use that

‖H‖ = max
k
|λk | 6

√
Tr |H |2 6

√
Tr |A|2 +

√
N−1 Tr |W |2 ≺

√
N ,

as follows from Assumptions (A) and (B). Since |z| > N and ‖H‖ ≺
√

N , we
have ‖G‖p 6p 〈z〉−1 and ‖=G‖p 6p 〈z〉−2 η and thus from Theorem 4.1 it follows
that

‖D‖p 6p,ε
N ε

〈z〉
√

N
in Dδ

2.

We now fix normalized vectors x, y and any K > 10/γ in the norm ‖·‖∗ = ‖·‖
K ,x,y
∗

and translate these p norm bounds into high-probability bounds using Lemma 5.4
to infer ‖D‖∗ ≺ 〈z〉

−1 /
√

N and ‖G‖∗ ≺ 〈z〉
−1. Using the stability in the form

of (74) and absorbing N ε factors into ≺ we conclude

‖G − M‖∗ ≺
N 1/(2K )

〈z〉2
√

N
in Dδ

2.

Now (78) in Dδ
2 follows from 5.4(i) since x, y and K were arbitrary. By applying

Proposition 5.5 iteratively starting from γ0 = 2 and (possibly) reducing δ in every
step we can then conclude that (78) holds in all of Dδ

γ for some δ = δ(γ ) > 0.
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Step 2: Iterative improvement of the isotropic bound. We now iteratively improve
the initial bound (78) until we reach the intermediate bound

‖G − M‖p 6p,ε
N ε

〈z〉

(√
‖=M‖

Nη
+

1
〈z〉

1
Nη

)
in Dδ

γ (79)

for δ = δ(ε) > 0. From (78) and the bound on 〈z〉 ‖M‖ from (67) we conclude that
〈z〉 ‖G‖p is N ε-bounded in Dδ

γ for some δ = δ(ε) > 0. Then from Theorem 4.1
and (78), again, it follows that

‖D‖p 6p,ε N ε

√
‖=G‖q

Nη
, ‖G − M‖∗ + ‖D‖∗ ≺ N−γ /6 in Dδ

γ . (80)

From now on all claimed bounds hold true uniformly in all of Dδ
γ ; we therefore

suppress this qualifier in the following steps. In order to prove (79), we show
inductively

‖G − M‖p 6p,ε N εΨl, (81)

where we define successively improving control parameters (Ψl)
L
l=0 through

Ψ0
..= 1 and Ψl+1

..= N−σΨl = N−(l+1)σ , where σ ∈ (0, 1) is arbitrary. The final
iteration step L is chosen to be the largest integer such that

ΨL >
N σ

〈z〉

(√
‖=M‖

Nη
+

1
〈z〉

N σ

Nη

)
. (82)

For the induction step from l to l + 1, we write =G = =M + =(G − M) and we
continue from (80) and (81) and estimates that

‖D‖p 6p,ε N ε

(√
‖=M‖

Nη
+

√
Ψl

Nη

)

6p,ε N ε

(√
‖=M‖

Nη
+

1
〈z〉

N σ

Nη
+ 〈z〉 N−σΨl

)
.

Thus we also have, for any normalized x, y,

‖D‖∗ = ‖D‖
K ,x,y
∗
≺

√
‖=M‖

Nη
+

1
〈z〉

N σ

Nη
+ 〈z〉 N−σΨl
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and from (74) we conclude

‖G − M‖∗ ≺
N 1/(2K )

〈z〉

(√
‖=M‖

Nη
+

1
〈z〉

N σ

Nη

)
+ N 1/(2K )−σΨl

provided K > 7/γ (cf. the bound on ‖D‖∗ from (80) and the definition of ε-
neighbourhoods in (68)). In particular, since K can be chosen arbitrarily large,
we find, for any normalized x, y that

∣∣(G − M)xy
∣∣ ≺ 1
〈z〉

(√
‖=M‖

Nη
+

1
〈z〉

N σ

Nη

)
+ N−σΨl 6 2N−σΨl,

where we used l < L and (82) in the last step. By the definition of Ψl+1 we infer

‖G − M‖p 6p,ε N εΨl+1,

completing the induction step, and thereby the proof of (79).
Finally, in order to obtain (5a) from (79), we recall

‖=M‖ 6 ‖M‖ 6ε N ε (83)

from Proposition 5.1(vi) and (5a) follows.

Step 3: Averaged bound. First, it follows from (1) and (2) or equivalently from
J̃ [G − M, D] = 0 that G − M satisfies the following quadratic relation

G − M = (1− CMS)−1[
−M D + MS[G − M](G − M)

]
and therefore

‖〈B(G − M)〉‖p 6
∥∥〈B(1− CMS)−1

[M D]
〉∥∥

p

+
∥∥〈B(1− CMS)−1[MS[G − M](G − M)

]〉∥∥
p .

By geometric expansion, as in (72), it follows that∥∥(1− CMS)−1
∥∥
‖·‖→‖·‖

6 1+ ‖M‖2
|||S|||

+ ‖M‖4
|||S|||2

∥∥(1− CMS)−1
∥∥

hs→hs

and thus that
∥∥((1− CM S)−1

)∗
[B∗]

∥∥ 6ε N ε ‖B‖ by (67). Using (23b), where(
(1−CM S)−1

)∗
[B∗] plays the role of B, and writing ‖=G‖q 6 ‖=M‖+‖G − M‖q
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and using (79) we can conclude that

‖〈B(G − M)〉‖p 6p,ε,γ
‖B‖ N ε

〈z〉

[
‖=M‖

Nη
+

√
‖=M‖

Nη
1

Nη
+

1
(Nη)2

]
(84)

from Lemma D.2. Now (5b) follows directly from (84) and (83).
The proof of Theorem 2.2 is now complete. For the proof of Theorem 2.1 the

first three steps are identical except that we only work in the restricted domains
Dδ
γ ∩ Dδ

out. Due to (67) and (74), it then follows that in Dδ
out the only place where

the above proof used Assumption (E) is (83). In the absence of Assumption (E)
we replace (83) by the bound ‖=M‖ 6 η dist(z, suppµ)−2 from Proposition 5.1
in (79) and (84), which only adds another negligible N ε factor. This proves

‖G − M‖p 6p,ε
N ε

〈z〉

(√
1
N
+

1
〈z〉

1
Nη

)
,

‖〈B(G − M)〉‖p 6p,ε,γ
‖B‖ N ε

〈z〉

[
1
N
+

√
1
N

1
Nη
+

1
(Nη)2

] (85)

in the restricted domain Dδ
γ ∩ Dδ

out. We now need two additional steps to prove
Theorem 2.1 in all of Dδ

out.

Step 4: Absence of eigenvalues outside of the support. For B = 1 it follows
from (85) and a spectral decomposition of H that with very high probability in the
sense of Corollary 2.3 there are no eigenvalues outside the support of µ. Indeed,
if there is an eigenvalue λ with dist(λ, suppµ) > N−δ, then |〈G(λ+ iη)〉| >
|〈=G(λ+ iη)〉| > 1/Nη. From (85) with ε = 1/4 and γ = 1/2 we have

P
(
∃λ, dist(λ, suppµ) > N−δ

)
6 P

(
|〈G − M〉| > c/Nη in Dδ

out ∩ D
δ
1/2

)
. inf

η>N−1/2

(
N ε

[
η +

1
√

N
+

1
Nη

])p

. N−p/4.

Now Corollary 2.3 follows from the remark about the dependence of δ on ε in
Theorem 2.1.

Step 5: Improved bounds outside of the support. Now we fix z such that dist(z,
supp ρ) > N−δ and η > N−1+γ . Then we have ‖=G‖ ≺ η 〈z〉−2 and ‖G‖ ≺
〈z〉−1 and also ‖=G‖p 6p,ε N εη 〈z〉−2 and ‖G‖p 6p,ε N ε 〈z〉−1 and we infer from
Theorem 4.1 that

‖D‖p 6p,ε
N ε

〈z〉
√

N
and therefore ‖D‖∗ ≺

1

〈z〉
√

N
.
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Again using stability in the form of (74) we find

‖G − M‖∗ ≺
N 1/(2K )

〈z〉2
√

N

and since K was arbitrary we also have

‖G − M‖p 6p,ε
N ε

〈z〉2
√

N
.

By Lipschitz continuity of G and M with Lipschitz constant of order one we
can extend the regime of validity of this bound from η > N−1+γ to η > 0
to conclude (4a). The improvement on the averaged law outside of the support
of the ρ then follows immediately from the improved isotropic law and the
fact that with very high probability there are no eigenvalues outside of the
support of ρ.

6. Delocalization, rigidity and universality

In this section we infer eigenvector delocalization, eigenvalue rigidity and
universality in the bulk from the local law in Theorem 2.2. These proofs
are largely independent of the correlation structure of the random matrix, so
arguments that have been developed for Wigner matrices over the last few years
can be applied with minimal modifications. Especially the three-step strategy for
proving bulk universality (see [20] for a short summary) has been streamlined
recently [17, 31, 32] so that the only model-dependent input is the local law. The
small modifications required for the correlated setup have been presented in detail
in [3] and we will not repeat them. Here we only explain why the proofs in [3]
work under the more general conditions imposed in the current paper. In fact,
the proof of the eigenvector delocalization and eigenvector rigidity from [3] holds
verbatim in the current setup as well. The proof of the bulk universality in [3] used
that the correlation length was N ε at a technical step that can be easily modified
for our weaker assumptions. In the following we highlight which arguments of [3]
have to be modified in the current, more general, setup.

Proof of Corollary 2.4 on bulk eigenvector delocalization. As usual, delocaliza-
tion of eigenvectors corresponding to eigenvalues in the bulk is an immediate
corollary of the local law since for the eigenvectors uk =

(
uk(i)

)
i∈J and

eigenvalues λk of H and i ∈ J we find from the spectral decomposition

C & =G i i = η
∑

k

|uk(i)|2

(E − λk)2 + η2
>
|uk(i)|2

η
for z = E + iη,
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where the first inequality is meant in a high-probability sense and follows from the
boundedness of M and Theorem 2.2, and the last inequality followed assuming
that E is η-close to λk .

Proof of Corollary 2.5 on bulk eigenvalue rigidity. Rigidity of bulk eigenvalues
follows, verbatim as in [3, Corollary 2.9], from the improved local law away from
the spectrum and [2, Lemma 5.1].

Proof of Corollary 2.6 on bulk universality. Bulk universality follows from the
three-step strategy, out of which only the third step requires a minor modification,
compared to [3]. Since in [3] arbitrarily high polynomial decay outside of N ε

neighbourhoods was assumed, we have to replace to three term Taylor expansion
in [3, Lemma 7.5] by an 2/µ-term cumulant expansion to accommodate for
neighbourhoods of sizes N 1/2−µ.

The key input for the universality proof through Dyson Brownian motion is the
Ornstein Uhlenbeck (OU) process, which creates a family H(t) of interpolating
matrices between the original matrix H = H(0) and a matrix with sizeable
Gaussian component, for which universality is known from the second step of
the three-step strategy. The OU process is defined via

d H(t) = − 1
2 (H(t)− A) dt +Σ1/2

[d B(t)], where Σ[R] ..= E 〈W ∗R〉W,

where B(t) is a matrix of independent (real, or complex according to the
symmetry class of H ) Brownian motions. It is designed in a way which preserves
mean and covariances along the flow, that is, H(t) = A + N−1/2W (t) and it is
easy to check that EW (t) = 0 and

Cov(wα(t), wβ(t)) = Cov(wα(0), wβ(0)),

where W (t) = (wα(t))α∈I . Furthermore, Assumptions (C), (D) hold also,
uniformly in t , for W (t). Indeed, adding an independent Gaussian vector
g = (gα1, . . . , gαk ) to (wα1, . . . , wαk ) leaves the cumulant invariant by additivity

κ(wα1 + gα1, . . . , wαk + gαk ) = κ(wα1, . . . , wαk )+ κ(gα1, . . . , gαk )

and the fact that cumulants of Gaussian vectors vanish for k > 3 (for k > 2 we
already noticed that, by design, the expectation and the covariance is invariant
under t). We now estimate

E f (N−1/2W (t))− E f (N−1/2W (0))

for smooth functions f . For notational purposes we set vα(t) = N−1/2wα(t) and
V (t) = N−1/2W (t) and will often suppress the t-dependence. It follows from Ito’s
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formula that

2
d
dt

E f (V ) = −E
∑
α

vα(∂α f )(V )+
∑
α,β

Cov(vα, vβ)E(∂α∂β f )(V ).

We now apply Proposition 3.2 to the first term and obtain

2
d
dt

E f = −
∑

26m<R

∑
α

∑
β∈Nm

κ(vα, vβ)

m!
(E∂α∂β f )

−

∑
m<R

∑
α

∑
β∈Nm

E
K (vα; vβ)− κ(vα, vβ)

m!
∂α∂β f

∣∣
WN=0

−

∑
α

Ω(∂α f, α,N )+
∑
α

∑
β∈I\N

κ(vα, vβ)E ∂α∂β f,

where we used a cancellation for the m = 1 term in β ∈ N and the fact that
κ(vα) = Evα = 0 for the m = 0 term. We now estimate the four terms separately.
The sum in the last term is of size N 4, the derivative contributes an N−1 and the
covariance is assumed to be N−3 small, that is, the last term is of order 1. The
first term for fixed m is of size |||κ|||av N 2−(m+1)/2 and therefore altogether of size
|||κ|||av

√
N . Estimating the sums by their size, and the derivative by its prefactor

N−(R+1)/2, we find from (13) that the third term is of size

N 2
|N |R N−(R+1)/2 6 N 3/2−µR,

which can be made smaller than
√

N by choosing R = 2/µ. Finally, the second
term is naively of size N 3/2, but using (8c), the security layers and the pigeon-hole
principle as in (21) or in (44), this can be improved to N−3/2. We can conclude
that∣∣∣∣E d

dt
f (V (t))

∣∣∣∣ . √N and therefore |E f (V (t))− E f (V (0))| . t
√

N .

The remaining argument of [3, Section 7.2] can be, assuming fullness as in
Assumption (F), followed verbatim to conclude bulk universality.
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Appendix A. Cumulants

In this section we provide some results on cumulants which we refer to in the
main part of the proof. The section largely follows the approach of [35, 41], but
our application requires a more quantitative version of the independence property
exhibited by cumulants, which we work out here.

Cumulants κm of a random vector w = (w1, . . . , wl) are traditionally defined
as the coefficients of log-characteristic function

log Eei t·w
=

∑
m

κm
(i t)m

m!
,

while the (mixed) moments of w are the coefficients of the characteristic function

Eei t·w
=

∑
m

(Ewm)
(i t)m

m!
,

where
∑

m is the sum over all multi-indices m = (m1, . . . ,ml). Thus

exp
(∑

m

κm
(i t)m

m!

)
=

∑
m

(Ewm)
(i t)m

m!
. (A.1)

It is easy to check that for a set A ⊂ [l] the coefficient of
∏

a∈A ta in (A.1) is given
by

EΠwA =

(∏
a∈A

∂ta

)
exp

(∑
m

κm
tm

m!

) ∣∣∣∣
t=0

=

∑
P`A

κP ,

where P ` A indicates the summation over all partitions of the (multi)set A, and
where for partitions P = {P1, . . . ,Pb} of A we defined κP =

∏b
k=1 κχ(Pk ) with

χ(Pk) being the characteristic multi-index of the set Pk . Thus for a partition Q of
[l] it follows that

MQ ..=

∏
Qi∈Q

EΠwQi
=

∏
Qi∈Q

∑
P`Qi

κP =
∑
P6Q

κP , (A.2)

where P 6 Q indicates that P is a finer partition than Q.
Now we establish the inverse of the relation (A.2), that is, express cumulants in

terms of products of moments. To do so, we notice that the set of partitions P on
[l] (or, in fact, any finite set) is a partially ordered set with respect to the relation 6.
It is, in fact, also a lattice, as any two partitions P,Q have both a unique greatest
lower bound P ∧ Q and a unique least upper bound P ∨ Q. One then defines
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the incidence algebra as the algebra of scalar functions f mapping intervals
[P,Q] = {R | P 6 R 6 Q} to scalars f (P,Q) equipped with point-wise
addition and scalar multiplication and the product ∗

( f ∗ g)(P,Q) =
∑

P6R6Q

f (P,R)g(R,Q).

There are three special elements in the incidence algebra; the δ function mapping
[P,Q] to δ(P,Q) = 1 if P = Q and δ(P,Q) = 0 otherwise, the ζ function
mapping all intervals [P,Q] to ζ(P,Q) = 1, and finally the Möbius function
defined inductively via

µ(P,Q) =
{

1 if P = Q,
−
∑

P6R<Q µ(P,R) if P < Q.

The δ function is the unit element of the incidence algebra. It is well known (and
easy to check) that the multiplicative inverse of the zeta function is the Möbius
function, and vice versa, that is, that µ ∗ ζ = ζ ∗ µ = δ. Thus it follows that for
any functions F and G on the partitions, we have

F(P) =
∑
Q6P

G(Q) if and only if G(Q) =
∑
P6Q

µ(P,Q)F(P).

Applying this equivalence to (A.2) yields

κP =
∑
Q6P

µ(Q,P)MQ (A.3)

and thus it only remains to identify µ. One can check that for P 6 Q, µ(P,Q)
is given by

µ(P,Q) = (−1)n−r 0!r1 1!r2 · · · (n − 1)!rn ,

where n is the number of blocks of P , r is the number of blocks of Q and ri is
the number of blocks of Q which contain exactly i blocks of P . For the particular
choice of the trivial partition {[l]} of [l] it follows that

κ(w1, . . . , wl)
..= κ(1,...,1) = κ

{[l]}
=

∑
P

(−1)|P |−1(|P| − 1)!MP

=

∑
P

(−1)|P |−1(|P| − 1)!
∏
Pi∈P

EΠwPi
, (A.4)

providing an alternative (purely combinatorial) definition of cumulants.
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LEMMA A.1. If for a partition of the index set [n] = At B with |A| , |B| > 0 the
random variables wA and wB are independent, then κ(w

[n]) = κ(wA, wB) = 0.
If, instead of independence, we merely assume that

Cov( f (wi | i ∈ A), g(w j | j ∈ B)) 6 ε ‖ f ‖2 ‖g‖2 (A.5)

for all f, g, and that the random variables wi have finite 2nth moments
maxi E |wi |

2n 6 µ2n , then we still have∣∣κ(w
[n])
∣∣ 6 ε C(n, µ2n).

Proof. We first recall the well known proof, based on the relations in (A.2)–(A.3),
that the cumulant of independent wA, wB vanishes. Let P be a partition on [n], Q
a partition on A and R a partition on B. P naturally induces partitions P ∩ A and
P ∩ B on A and B; conversely Q and R naturally induce a partition Q ∪R on
[n]. We observe that Q 6 P ∩ A and R 6 P ∩ B if and only if Q ∪R 6 P . We
then compute

κ(w
[n]) =

∑
P

µ(P, {[n]})MP
=

∑
P

µ(P, {[n]})MP∩A MP∩B

=

∑
P

µ(P, {[n]})
( ∑

Q6P∩A

κQ
)( ∑

R6P∩B

κR
)

=

∑
Q`A

∑
R`B

∑
P`[n]

ζ(Q ∪R,P)µ(P, {[n]})κQκR

=

∑
Q`A

∑
R`B

δ(Q ∪R, {[n]})κQκR = 0,

where the first equality followed from (A.3), the second equality from
independence, the third equality from (A.2), the fourth equality from the previous
observation, the fifth equality from δ = ζ ∗ µ and the ultimate equality from the
fact that the trivial partition cannot be decomposed into two partitions on smaller
sets, using that |A| , |B| > 0.

If wA and wB are not independent but merely (A.5) holds, then there is an
additional covariance term in the second step in the above equation. We write

MP
=

∏
Pi∈P

EΠwPi

=

∏
Pi∈P

[
(EΠwPi∩A)(EΠwPi∩B)+ Cov(ΠwPi∩A,ΠwPi∩B)

]
and thus the claim follows from (A.5).
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Appendix B. Precumulants and Wick polynomials

The precumulants defined in Section 3 are structurally similar to the well
known Wick polynomials (which are also known as Appell polynomials). We first
recall some basic definitions and facts about Wick polynomials from [23]. For a
random vector X of length |X| we can define the Wick polynomial : X : as the
derivative

: X : ..= ∂t1 · · · ∂t|X|
et·X

Eet·X

∣∣∣∣
t=0

.

Alternatively, we can define : X : combinatorially as

: X : =
∑
X ′⊂X

(ΠX ′)
∑

P`X\X ′
(−1)|P|

∏
Pi∈P

κ(Pi)

or indirectly via

ΠX =
∑
X ′⊂X

: X ′:
(
EΠ(X \ X ′)

)
. (B.1)

One useful property of Wick polynomials is that for any random variable Y we
have

EY : X1 t X2: = 0 whenever X1 ⊥ {X2, Y } (B.2)

and X1 is not empty, where A ⊥ B means indicates that A is independent of
B. Eq. (B.2) follows, for example, immediately from the analytical definition
since

EY : X1 t X2: = ∂t
EY et1·X1+t2·X2

Eet1·X1+t2·X2

∣∣∣∣
t=0

= ∂t
EY et2·X2

Eet2·X2

∣∣∣∣
t=0

by independence and the remaining derivative vanishes as the function is constant
with respect to t1.

Our precumulants K (X;Y) and their centred versions K (X;Y) − κ(X,Y)
are inherently nonsymmetric functions due to the special role of X . After
symmetrization, however, we can express them through Wick polynomials as∑

X∈X

[
K (X; X \ {X})− κ(X)

]
= |X|ΠX −

∑
X ′⊂X

∣∣X ′∣∣ (EΠX ′
)
: X \ X ′: . (B.3)
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In order to prove (B.3) we start from (8b) and compute∑
X∈X

[
K (X; X \ {X})− κ(X)

]
= |X|ΠX −

∑
X ′⊂X

∣∣X \ X ′
∣∣ (ΠX ′)κ(X \ X ′)

= |X|ΠX −
∑

X ′′⊂X ′⊂X

∣∣X \ X ′
∣∣ : X ′′: (EΠ(X ′ \ X ′′)

)
κ(X \ X ′),

where the second inequality followed from (B.1). We now relabel the summation
indices to obtain∑

X∈X

[
K (X; X \ {X})− κ(X)

]
= |X|ΠX −

∑
X ′′⊂X ′⊂X

∣∣X ′′∣∣ : X \ X ′:
(
EΠ(X ′ \ X ′′)

)
κ(X ′′),

from which (B.3) follows using the well known cumulant identity∣∣X ′∣∣EΠX ′ =
∑

X ′′⊂X ′

∣∣X ′′∣∣ (EΠ(X ′ \ X ′′)
)
κ(X ′′). (B.4)

In order to prove (B.4), we use (A.2) on the rhs. to obtain∑
X ′′⊂X ′

∣∣X ′′∣∣ (EΠ(X ′ \ X ′′)
)
κ(X ′′)

=

∑
X ′′⊂X ′

∣∣X ′′∣∣ κ(X ′′) ∑
P`X ′\X ′′

κP =
∑
P`X ′

κP
∑

X ′′⊂X ′
X ′′∈P

∣∣X ′′∣∣ = ∣∣X ′∣∣ ∑
P`X ′

κP ,

from which (B.4) follows by another application of (A.2).
Finally we remark that a quantitative variant of (B.2) for the precumulants was

centrally used in our proof in Section 4.2. Qualitatively the analogue of (B.2) for
precumulants reads

EY
[
K (X; X1, X2)− κ(X, X1, X2)

]
= 0 if {X, X1} ⊥ {X2, Y }

and X2 is nonempty. Indeed, from the precumulant decoupling identity (8c) we
have that

EY
[
K (X; X1, X2)− κ(X, X1, X2)

]
= EY (ΠX2)

[
K (X; X1)− κ(X, X1)

]
−

∑
X ′1⊂X1
X ′2(X2

EY (ΠX ′1)(ΠX ′2)κ(X, X1 \ X ′1, X2 \ X ′2)
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and the first term vanishes due to independence and (8c), and the second term
vanishes due to Lemma A.1 because the argument of κ splits into two independent
groups.

Appendix C. Modifications for complex Hermitian W

Our main arguments were carried out for the real symmetric case. We now
explain how to modify our proofs if W is complex Hermitian. A quick inspection
of the proofs shows that the only modification concerns Proposition 3.2 where
we have to replace the cumulant expansion by its complex variant. We reduce the
problem to the real case by considering real and imaginary parts of each variable
separately. Another option would have been to consider w and w independent
variables, but our choice seems to require the least modifications. In order to
compute Ewi0 f (w) for a random vector w ∈ CI , wi0 ∈ C and a function
f : CI

→ C, we can define f̃ : RItI
→ C by mapping (w<,w=) 7→ f (w<+iw=),

where the new index set I t I should be understood as two copies of I in the
sense that I t I = {(i,<), (i,=) | i ∈ I}. If we want to expand wi0 f (w) in the
variables of some fixed index set N ⊂ I , we separately apply Proposition 3.2 to
Ew̃(i0,<) f̃ (w̃) and Ew̃(i0,=) f̃ (w̃) in N t N , where w̃ = (<w,=w) and w̃(i,<) =
<wi , w̃(i,=) = =wi . It follows that

Ewi0 f̃ (w̃)

=

∑
l>0

∑
ĩ∈(NtN )l

κ(w̃(i0,<), w̃ĩ)+ κ(iw̃(i0,=), w̃ĩ)

l!
∂̃i(E f̃ )+ Ω̃1

+ Ω̃2, (C.1)

where the error terms are those from two applications of (12a). We note that we
can make sense of κ with complex arguments directly through Definition (A.4).
We now want to go back to a summation over our initial index set N and therefore
regroup the terms in (C.1) according to the first indices of ĩ . To formulate the
result compactly we introduce the tensors

κ̃(wi0, . . . , wil )
..= κ

[(
<wi0

i=wi0

)
⊗ · · · ⊗

(
<wil
i=wil

)]
∈ (R× iR)⊗(l+1)

and

∂̃i
..=

(
∂<wi1

∂=wi1

)
⊗ · · · ⊗

(
∂<wil

∂=wil

)
,

where the application of κ is understood in an entrywise sense and the derivative
tensor has dimension (C2)⊗l . By saying that κ is understood in an entrywise sense,
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we mean, by slight abuse of notation that, for example,

κ

((
v1

v2

)
⊗

(
w1

w2

))
= κ

( 2∑
i, j=1

viw j ei ⊗ e j

)
..=

2∑
i, j=1

κ(vi , w j) ei ⊗ e j ,

where e1, e2 is the standard basis of R × iR. Due to the special nature of the
index i0 we see from (C.1) that <wi0 and i=wi0 always occur in a sum of two
and the rhs. of (C.1) can be expressed in terms of the partial trace Tr1 κ̃(wi0, . . . ,

wil ) ∈ (R × iR)⊗l along the first dimension, which corresponds to i0. Thus we
can compactly write (C.1) as

Ewi0 f (w) =
∑

06l<R

∑
i∈N l

〈
Tr1 κ̃(wi0,w i),E(̃∂i f )

〉
l!

+ Ω̃1
+ Ω̃2, (C.2)

where the scalar product is taken between two tensors of size 2l . For example, the
l = 1 term from (C.2) reads∑

i1∈N

(
κ(<wi0,<wi1)+ κ(i=wi0,<wi1)

1!
(E∂<wi1

f )

+
κ(<wi0, i=wi1)+ κ(i=wi0, i=wi1)

1!
(E∂=wi1

f )
)
.

The rest of the argument in Section 4 can be carried out verbatim for any specific
choice of distribution of <, = to the entries of κ . We only have to replace the
norms |||κ|||av and |||κ|||iso in Assumption (C) by applying them entrywise to κ̃ , that
is, ∣∣∣∣∣∣̃κ(wα1, . . . , wαk )

∣∣∣∣∣∣av ..=

∑
X1,...,Xk∈{<,=}

∣∣∣∣∣∣κ(X1wα1, . . . ,Xkwαk )
∣∣∣∣∣∣av

,

∣∣∣∣∣∣̃κ(wα1, . . . , wαk )
∣∣∣∣∣∣iso ..=

∑
X1,...,Xk∈{<,=}

∣∣∣∣∣∣κ(X1wα1, . . . ,Xkwαk )
∣∣∣∣∣∣iso

.

ASSUMPTION (C)’ (Hermitian κ-correlation decay). We assume that for all R ∈
N and ε > 0

|||̃κ|||av 6ε,R N ε and |||̃κ|||iso 6ε,R N ε .

Since there are at most 2R such choices this change has no impact on any of the
claimed bounds which always implicitly allow for an R-dependent constant.
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Appendix D. Proofs of auxiliary results

LEMMA D.1 (Quadratic implicit function theorem). Let ‖·‖ be a norm on Cd ,
A, B ∈ Cd and Q : Cd

× Cd
→ Cd a bounded Cd-valued quadratic form, that is,

‖Q‖ = sup
x,y

‖Q(x, y)‖
‖x‖ ‖y‖

<∞.

Suppose that A is invertible. Then for ε2
..=

[
2
∥∥A−1

∥∥ ‖Q‖ ]−1
and ε1

..=

ε2
[
2
∥∥A−1

∥∥ ‖B‖ ]−1
there is a unique function X : Bε1 → Bε2 such that

AX (d)+ Q(X (d), X (d)) = Bd,

where Bε denotes the open ε-ball around 0. Moreover, the function X is analytic
and satisfies

‖X (d1)− X (d2)‖ 6 2
∥∥A−1

∥∥ ‖B‖ ‖d1 − d2‖ for all d1, d2 ∈ Bε1/2.

Proof. A simple application of the Banach fixed point theorem.

LEMMA D.2. For random matrices R, T and p > 1 it holds that ‖S[V ]T ‖p 6
|||S||| ‖V ‖2p ‖T ‖2p.

Proof. Let κ = κc + κd be an arbitrary partition, which induces a partition of S
since

S[V ] = 1
N

∑
α1,α2

κ(α1, α2)∆
α1 V∆α2 .

For vectors x, y with ‖x‖ , ‖y‖ 6 1 we compute

‖(S[V ]T )xy‖p =

∥∥∥ 1
N

∑
b1,a2,b2

κ(xb1, a2b2)Vb1a2 Tb2y

∥∥∥
p

6
∥∥∥ 1

N

∑
b1,b2

Vb1κc(xb1,·b2)Tb2y

∥∥∥
p
+

∥∥∥ 1
N

∑
b1,a2

Rb1a2 Tκd (xb1,a2·)y

∥∥∥
p

6
‖V ‖2p ‖T ‖2p

N

[∑
b1,b2

‖κd(xb1, ·b2)‖ +
∑
b1,a2

‖κc(xb1, a2·)‖

]
6
[
|||κd |||d + |||κc|||c

]
‖V ‖2p ‖T ‖2p

and the result follows from optimizing over the decompositions of κ and recalling
the definition (24).
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LEMMA D.3. For any t ∈ [0, 1], q > 1 and multiset β ⊂ I we have under
Assumption (A) that∥∥∂βG

∣∣
Ŵ

∥∥
q 6|β| N−|β|/2

(
1+ ‖G‖

|β|+1
6q(|β|+1)

)
(D.1)∥∥∂βD

∣∣
Ŵ

∥∥
q 6|β| N−|β|/2(1+ |||S|||)(1+ |z| ‖G‖3

12q|β|+2)
(

1+ ‖G‖
|β|+2
12q(|β|+2)

)
,

where Ŵα = twα for α ∈ N and Ŵα = wα otherwise for a set N ⊂ I of size
|N | 6 N 1/2.

Proof. We write β = {β1, . . . , βn} and its easy to see inductively that

∂βG
∣∣

Ŵ =
(−1)n

N n/2

∑
σ∈Sn

Ĝ∆βσ(1) Ĝ∆βσ(2) Ĝ · · · Ĝ∆βσ(n) Ĝ,

where Ĝ = G(Ŵ ). From the resolvent identity it follows that

Ĝ − G =
1
√

N
G(W − Ŵ )G +

1
N

G(W − Ŵ )G(W − Ŵ )G

+
1

N 3/2
Ĝ(W − Ŵ )G(W − Ŵ )G(W − Ŵ )G

and therefore by the trivial bound ‖Ĝ‖ 6 1/η and Assumption (B) it follows that∥∥Ĝ − G
∥∥

q 6
|N | ‖G‖2

3q maxα ‖wα‖3q
√

N
+
|N |2 ‖G‖3

5q maxα ‖wα‖2
5q

N

+
|N |3 ‖G‖3

6q maxα ‖wα‖3
6q

N 3/2η
6q (1+ ‖G‖3

6q)

and therefore also ‖Ĝ‖q 6q (1+ ‖G‖3
6q), from which the first inequality in (D.1)

follows immediately.
Similarly, the second inequality in (D.1) follows from the easily verifiable

identity

∂βD
∣∣

Ŵ =
(−1)n

N n/2

∑
σ∈Sn

[
D̂∆βσ(1) Ĝ · · ·∆βσ(n) Ĝ

+

n∑
k=1

S[Ĝ∆βσ(1) Ĝ · · ·∆βσ(k) Ĝ]Ĝ∆βσ(k+1) Ĝ · · ·∆βσ(n) Ĝ
]

and

‖D̂‖q 6 C(1+ |z| ‖G‖3
6q)+ ‖S[Ĝ]Ĝ‖q (D.2)
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together with Lemma D.2. To see why (D.2) holds we write D = (1+ z− A)G+
S[G]G, so that ‖D̂‖q 6 (1+|z| ‖Ĝ‖q)+‖S[Ĝ]Ĝ‖q holds uniformly for η > N−1

for some constant C .
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