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We consider nonlinear dynamical systems driven by stochastic forcing. It has been largely
evidenced in the literature that the linear response of non-normal systems (e.g. fluid
flows) may exhibit a large variance amplification, even in a linearly stable regime. This
linear response, however, is relevant only in the limit of vanishing forcing intensity. As
the intensity increases, the frequency distribution and the variance of the response may
be strongly modified due to nonlinear effects. To go beyond this limitation, we propose
a theoretical approach to derive an amplitude equation governing the weakly nonlinear
evolution of these systems. This approach does not rely on the presence of an eigenvalue
close to the neutral axis, applying instead to any sufficiently non-normal operator, and
the Fourier components of the response are allowed to be arbitrarily different from any
eigenmode. The methodology is outlined for a generic nonlinear dynamical system, and
the application case highlights a common non-normal mechanism in hydrodynamics:
convective non-normal amplification in the flow past a backward-facing step.
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1. Introduction

Some flows experience transition from laminar to turbulent far below the threshold
predicted by linear stability theory, which relies on the eigenvalues of the linearised
Navier—Stokes operator. In addition, the value of the bifurcation parameter at the transition
strongly depends on the level of external noise. Among them are the canonical Couette and
Poiseuille parallel shear flows, as detailed in Schmid & Henningson (2001). Non-parallel
flows such as jets and the backward-facing step (BFS) flow, studied for instance in Garnaud
et al. (2013) and Blackburn, Barkley & Sherwin (2008), should also be mentioned.
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The transition scenario advanced in Trefethen et al. (1993) relies on the non-normality
property of the linearised Navier—Stokes operator. The latter implies that a linearly stable
flow can nevertheless strongly amplify a small initial structure or a sustained forcing term
through non-modal mechanisms (see Schmid (2007) for a review). Thereby, the response
may be carried into a regime where nonlinearities set in and the flow escapes from its
linearly stable solution.

In this perspective, numerous studies have computed the small-amplitude structures
that are the most amplified by the flow: initial conditions, harmonic forcing or stochastic
forcing, resulting, respectively, in optimal transient growth, harmonic gain and stochastic
gain. Formally, such studies generally consist in finding the singular mode of a specific
linear operator, which can be very different from the eigenmodes of the linearised
Navier—Stokes operator. For the harmonic forcing problem, one could for instance refer
to the work of Schmid & Henningson (2001) and Jovanovi¢ & Bamieh (2005) on the
parallel plane Couette and Poiseuille flows. The problem of the flow response to a
stochastic forcing, studied in the rest of this paper, mimics more realistic situations. Indeed,
unpredictable noise may arise from different sources in Nature, such as residual turbulence,
variation of atmospheric conditions, acoustic disturbances, geometrical defects and many
others. The response to white noise has, for instance, been considered for the plane Couette
and Poiseuille flows in Farrell & Ioannou (1993), and in Dergham, Sipp & Robinet (2013)
for the BFS flow. Owing to the non-normality of the linearised operator, all these flows
can sustain a large variance even if the noise intensity is comparatively weak.

In the linear paradigm, however, amplifications do not depend on the amplitude of the
initial condition or forcing. The latter are assumed arbitrarily small, such that nonlinear
terms are negligible. Therefore, the nonlinear interactions involved in the subcritical
transition or in the saturation process cannot be captured by definition. For this reason,
more elaborate models accounting for a nonlinear coupling between the mean flow
and the linear perturbation have been proposed. For instance, Marston, Conover &
Schneider (2008) considered a barotropic flow on a rotating sphere, and performed a
cumulant expansion of the vorticity statistics that was closed by neglecting the third
and higher cumulants; this amounts to neglecting the fluctuation—fluctuation interactions
while retaining the fluctuation—mean flow interactions. By comparison with statistics
accumulated directly in direct numerical simulations (DNS), Marston et al. (2008) showed
that this truncation was well justified in certain regimes (see their figures 5 and 6),
for instance when the relaxation time towards a zonal jet was short, in which case the
fluctuations were suppressed by the strong coupling to the jet.

Instead of being neglected, the fluctuation—fluctuation interactions are sometimes
replaced by a stochastic parametrisation, for instance white noise, as originally done in
Farrell & Ioannou (2003). This led to the stochastic structural stability theory (S3T or
SSST), which was, for instance, able to describe sustained coherent structures appearing
during the transition to turbulence in two-dimensional atmospheric flows, as well as in
three-dimensional parallel Couette flow (Farrell & Ioannou 2012). In these shear flows,
the success of the SSST theory, despite the fact that modelling the fluctuation—fluctuation
interactions as white noise seems to be an oversimplification, is explained as follows in
Farrel & Ioannou (2019):

In the case of homogeneous isotropic turbulence the stochastic excitation must be very carefully
fashioned in order to obtain approximately valid statistics using a stochastic closure [...] while in
shear flow the form of the stochastic excitation is not crucial. The reason is that in shear flow the
[Navier—Stokes] operator [linearized around the mean flow] is non-normal and a restricted set of
perturbations participate strongly in the interaction with the mean flow. As a result the statistical
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state of the turbulence is primarily determined by the quasilinear interaction between the mean
and these perturbations rather than by nonlinear interaction among the perturbations.

This ‘quasi-linear’ approach, which consists in allowing fluctuation—-mean flow
interactions and either neglecting or modelling other interactions, has been extended
to a resolvent-based approach applied to a turbulent pipe flow in McKeon & Sharma
(2010). The Navier—Stokes equations (NSE) were reformulated as a nonlinear equation
for the mean velocity, and an input—output equation for the fluctuation, where the latter is
the linear response to a forcing term modelling the nonlinear fluctuating term through
the resolvent operator around the mean velocity. The closure problem for the mean
flow equation is avoided by knowing a priori the mean profile from experimental data.
Following an argument essentially similar to the one quoted above from Farrel & Ioannou
(2019), when the resolvent operator is low-rank, in the sense that there exists a small set of
forcing—response pairs of modes associated with gains much larger than all the others, the
fluctuation can be well approximated as a combination of these leading response modes.

This type of mean flow—resolvent analysis has been performed by numerous authors
since then, and has often proven successful in reproducing the main features of
self-sustained turbulence. This was the case for the turbulent jet studied in Pickering et al.
(2020), where the resolvent mode around a mean-flow eddy-viscosity model projected
well on the spectral proper orthogonal decomposition (SPOD) modes that optimally
describe the turbulent flow statistics from large-eddy simulation (LES) data. Note that,
because of the non-normality of the resolvent operator, strong amplification may occur
even in the absence of a dominant eigenvalue in the (eigen)spectrum of the linearised
Navier—Stokes operator around the mean flow; for this reason the question of the relevance
of a stability analysis around the mean flow is discussed in Symon et al. (2018). Recently,
a resolvent-based approach was also adopted in Rosenberg & McKeon (2019) to compute
travelling waves in Couette and Poiseuille flow. Instead of assuming the mean flow to be
known a priori, the coupled system was solved iteratively, requiring only the knowledge
of the travelling wave speed and amplitude.

The quasi-linear assumption that the dominant nonlinear mechanism is the Reynolds
stress feedback onto the mean flow excludes, for instance, systems with strong harmonic
generation and subharmonic excitation, as illustrated in Meliga (2017). It has also proven
to be in default in Tobias & Marston (2013) in the case of turbulent zonal jets that are
driven too far from equilibrium (for which the rates of forcing and dissipation go to zero).
A generalisation has been proposed in Marston, Chini & Tobias (2016), leading to a system
constituted of a nonlinear equation for the slowly varying part of the velocity field (instead
of just the mean flow), and a linear equation for the rapidly varying part (instead of the
entire fluctuations); in this manner, the small scales can exchange energy with each other,
through their interaction with the large scales. With a sufficiently large number of modes
included in the slowly varying part, this generalised model converges and improves the
predictions, at increased numerical cost.

Amplitude equations for the response of nonlinear systems to stochastic forcing
constitute another class of modelling techniques, in principle restricted to the weakly
nonlinear regime, but much cheaper to implement. The technique was developed for
instance in Rajan & Davies (1988) and Nayfeh & Serhan (1990) using the method
of multiple scales and/or stochastic averaging on the Duffing and Duffing—Rayleigh
oscillators, respectively. Similar to their deterministic counterparts, however, the
possibility to construct these simplified equations relies on the existence of a resonant
frequency, as they describe the slowly varying modulation of the associated eigenmode.
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In our previous work (Ducimetiere, Boujo & Gallaire 2022), we derived an amplitude
equation to prolong the linear harmonic gain (and transient growth) curve in a weakly
nonlinear regime by increasing the forcing amplitude. The method does not rely on modal
quantities, in contrast to classical techniques, and the present paper aims at generalising
this method to the response to stochastic forcing. Namely, we derive an equation for
the weakly nonlinear evolution of the optimal linear response. Here, no assumptions are
made on the dominant nonlinear interaction mechanisms, and the Fourier (frequency)
components of the linear response can be arbitrarily different from eigenmodes as long as
the linear operator is sufficiently non-normal. The amplitude equation is written directly
in the Fourier domain, and depends solely on the frequency. Thereby, the weakly nonlinear
evolution of the flow response to stochastic forcing can be determined at a numerical cost
considerably lower than that of a DNS, since (i) it is independent of the number of spatial
degrees of freedom, and (ii) it does not require a long simulated time to reach statistical
convergence.

2. Linear regime

A generic nonlinear dynamical system is considered,
U =N(U) + F, (2.1)

where N(-) is a nonlinear operator and F a forcing term. The first step of our
analysis is to linearise (2.1) around an unforced equilibrium U, solution of N(U,) = 0.
Small-amplitude forcing and perturbations, € f and €u (¢ < 1), are considered around U,.
An asymptotic expansion of (2.1) in terms of € can thus be performed. At order €, the fields
u and f are linked through the linear relation

du=Lu+f, 2.2)

where L results from the linearisation of N around U.,.

For fluid flows governed by the incompressible NSE, Lu = —(U, - V)u — (u - V) U,
+Re~'Au — Vp(u), where Re is the Reynolds number, and where the pressure field p is
such that the velocity field u is divergence-free. Note that both fields are linked through
a linear Poisson equation. In practice, p is included in the state variable, resulting in a
singular mass matrix, omitted here for the sake of clarity.

The specific form f(x, f) = f,(x)&(¥) is chosen for the stochastic forcing, where f (x)
is the forcing spatial structure and &(¢) is a §-correlated white noise process with zero
mean, i.e.

EM) =0, (EOEE—D))=580), (2.3a,b)

where ( - ) denotes ensemble averaging and the superscript * denotes complex conjugation.
The process £(¢) is the only source of randomness of the system. We introduce the Fourier
transform F - ] of a temporal signal of length [0, T'] with T — o0, and its inverse F 1]
as

T o0
i(w) = Flu®)] = % /0 ue N dr,  wt) = F iw)] = *2/—3 / f(w)e” dw.
(2.4a,b)

We verity that u(t) = F N Flu@®)]] using the definition of a Dirac impulse 21 (¢) =
22 el dw, and its property fOT u(s)8(¢) ds = u(?).

—00®

951 R34


https://doi.org/10.1017/jfm.2022.902

https://doi.org/10.1017/jfm.2022.902 Published online by Cambridge University Press

Weakly nonlinear stochastic non-normal systems

In the statistically steady regime, (2.2) can be solved in the Fourier domain as &(w) =

&(w)R(w) f,, where

R(w) = (iwl — L)~! (2.5)
is the resolvent operator. It follows from (2.3a,b) that (é(a))é(a) + b)*) = fOT el dt/T =
28(b)/T; in addition, using that [£(w)? = [ 7= [T ()&t — b) dre P db and that
&(?) is a stationary and ergodic process, it turns out that |§ (a))|2 = 1. Namely, é (w) has
random phases uniformly distributed between 0 and 27, but a deterministic unit amplitude
for all frequencies.

As considered in Farrell & Ioannou (1993) a relevant measure of input—output gain of
the system (2.2) is the ratio of the statistically steady variance maintained by the stochastic
forcing, (||u(?)] 12), over the energy spectral density of the forcing 1|| f| |2. The variance
of the response is not compared with the variance of the stochastic forcing, as (£(r)%)

diverges by definition (2.3a,b) of the white noise. Optimising over the forcing structure,
the maximum attainable gain is

2
t 1
G = max M = - (2.6)
Lo ISl €
In the following, we choose for || - || the L2 norm induced by the Hermitian inner

product {i,, ip} = [, @iy, d$2 (the superscript H denotes the Hermitian transpose).
The operator R(w)" denotes the adjoint of R(w) under this scalar product, such that
{R(w)tg, tip} = {f1a, R(w) &t} for any a1, and &,. Using the inverse Fourier transform of
u(1r), we can write (Farrell & Ioannou 1996)

(lu®]1? sz?B"" sd2 = {f, B®f,}, with B* = %foo R(w)'R(w) dw.
2 —00
Q2.7)

The operator B> is a positive definite Hermitian with positive and real eigenvalues
associated with mutually orthogonal eigenvectors. The maximum gain (2.6) is the
largest eigenvalue of B>. The associated eigenvector, denoted f, and normalised as
(fo- fod=1lf 0||2 = 1, is the optimal forcing structure (hence the subscript ‘0’), i.e the
forcing structure that leads to the largest stochastically maintained variance. If in addition
the largest eigenvalue of B is much larger than all the others, which correspond to
suboptimal gains, and if the actual (unknown) forcing of the system does not trigger a
particular suboptimal eigenvector of B> but projects comparably on all the eigenvectors,
then the response to the actual forcing is expected to be dominated by the response to the
optimal forcing f,, regardless of the specific shape of the actual forcing.

This low-rank approximation is commonly done and well justified for strongly
non-normal operators (Symon et al. 2018), and explains why we restrict our analysis to
the response to £(¢) f, and do not include additional forcing modes. By linearity, forcing
the system (2.2) with f = €,£(?) f,,, where we define eg = 1/G, leads to a response /(#) of
unit variance, (||I(7)||?) = eg{fo, B> f,} =1, and zero mean, (I(r)) = 0. In the Fourier

domain, ?(a)) = eoé (W)R()f, = g(a))&(a)), where we have introduced the deterministic
field g(w) = €,R(w) f,,, Or
R(w) " 'q() = ef ,. (2.8)

Since L is strongly non-normal, as assumed in the rest of the present study, neither of €, or
f, are immediately determined from its spectral (modal) properties; furthermore, strong
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non-normality implies €, < 1 (Farrell & Ioannou 1993). It follows from (2.8) that we can
perturb the inverse resolvent as

llg(@)|1?”

i.e. the linear operator P(w) is such that P(w)g(w) = f,{q(w), g()}||q(w)||~2, for any
field g(w). This leads to @ (w)g(w) = 0, for all w, such that @ (w) is a singular operator
for each frequency and g(w) its non-trivial kernel.

Expansion (2.9) is justified a priori only over the range of frequencies for which
IR(@) ™1 3> €olIP(@)]] = [IR(@) f,||~", where we have used that ||P(w)]] = ||§(w)||~".
Since [|R(w)~!|] is equal to the inverse of the smallest singular value of R(w)~ !, the latter
inequality can be re-expressed as ||R(w) f,|| > min)| =1 [|R(w) f]|. In other words, the
expansion is justified for all frequencies that amplify the optimal forcing structure f, much
more than the least amplified structure, which can be seen as a condition of large ‘spectral’
gap in the singular values. Note that both P(w) and @ (w) are deterministic operators.

Using that P(w)' = g f, - }/1g(@)] |2, we can show that the non-trivial kernel of the
adjoint operator @ (w)" is a(w) = R(w) §(w), i.e. ®(w) a(w) = 0.

D(w) = R(a))_1 —€,P(w), where P(w) =f, 2.9)

3. Weakly nonlinear regime

We now develop a method to derive an amplitude equation for the weakly nonlinear
amplification of a stochastic forcing.

3.1. Generic nonlinear system and application to a toy model

The method is based on a multiple-scale asymptotic expansion, for which the gain inverse
€, < 1 constitutes a natural choice of small parameter. The system (2.1) is weakly forced
by F = ¢e§ S1&(®). In general, the spatial forcing structure f, need not be chosen as the

optimal one f',. We impose || £/, |2 = 1 such that the prefactor ¢ = O(1) sets the forcing

amplitude F = ||¢eg full = qbeg. A separation of time scales is assumed for the response,
with the slow time scale 71 = €, aiming at capturing slow variations of the response
Ut,11) = Ue + €oui (1, T1) + €uua(t, 1) + O(€) 3.1

around the statistically steady regime.
Introducing the expansion (3.1) into (2.1), isolating the Fourier component at @ and

perturbing R(w) ™! according to (2.9) yields
o[ @iy] + €2[ @iy + dpy ity — FIN2(u1)] — ¢f 4€ + Ping] + O(€)) = 0, (3.2)

where N(U) = N(U,) + €,Luy + €2[Luy + Na(up)] + O(e2), and &; = i(ty; w) for
i =1, 2. At order O(¢,) of the expansion (3.2), we obtain @ (w)u;(t1; w) = 0. Since by
construction g(w) is the non-trivial kernel of @ (w), the general solution is

it (11; ©) = B(11; 0)§(0), (3.3)

with B a slowly varying complex scalar amplitude to be determined. At order O(e2), we
obtain

Pity = —4du, B+ &,[B1 + ¢f 1€ — B, (3.4)
for which we have used that Pf?@ =B f, and defined g, [B] = F[N2(F! [Bf]])].
951 R3-6
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Note that because the slow time scales as ¢,, the term &d,lfg and the term g, [f?], which
compute the nonlinear interaction of the O(e,) solution with itself, appear at the same
order in (3.4). Therefore, the slow time scale can be physically interpreted as the time
scale at which the (weak) nonlinearities are influential. The operator @ being singular,
the only way for (3.4) to yield a non-diverging solution and thus preserve the asymptotic
hierarchy is if the right-hand side is orthogonal to @, the kernel of & . This solvability

condition (or Fredholm alternative) yields an amplitude equation for d, B,
(@, §)de, B = 20B] + (a.£4)9§ — (a.f,)B. (3.5)

where we have defined the functional gQ[E] ={a, g, [B]).

If f” » designates the right-hand side of (3.4), the solvability condition 0 = {j h,al =
{Rf 5, q} implies &, = Rf » to be directly the particular solution; by defining uy(f) =
F~Har], one can easily show that the solvability condition also implies that

(), 1t — 1)} = % / E{fy. a)e ™ dw =0, forallt. (3.6)

In words, a physical implication of the solvability condition is that, on average in the
temporal domain, the second-order field must not project on the optimal response (which
exhibits the largest possible maintained variance) or on any of its time-shifted versions.
This preserves the asymptotic hierarchy, thereby guaranteeing that the expansion is
well-posed.

We will refer to (3.5) as the Weakly Nonlinear Non-normal stochastic (WNNs) model.
Depending, for instance, on the nature of the nonlinearity, it may already capture dominant
weakly nonlinear effects, without the need for higher-order correction. This will be the
case of our first application case, and in this scenario an equilibrium solution is found by
solving (3.5) for a statistically steady regime dné = 0. In any case, and by definition, an
equilibrium solution f?(w) does not depend on the slow time scale(s) and is associated
with the weakly nonlinear stochastic gain Gyyys = {||€ou1 (1)||?)/F 2 where the overline
denotes the temporal average it = T~ fOT u dr. We can show that this is equivalent to

o0

1 R .
Gwnns = g / (1B(@)*)1§(»)|]* do. (3.7)

—00

The property e—®) =2n§(s —w)/T has been used in (3.7) to express the
gain as a simple integral over the frequencies. Note that, by construction,
@m~! [25 1§(@)]]? do = 1.

Note that, in the time-independent case dtlé = 0, the method presented in this paper is
in a certain sense more general than the method of harmonic balance, but in another sense
more restricted. More general because the nonlinear evolution captured by the amplitude
equation does not rely on the assumption that the dominant nonlinear mechanism is the
Reynolds stress feedback onto the mean flow, thus does not neglect the nonlinearity arising
from the cross-coupling between different frequencies. These cross-couplings are fully
embedded in the term g [B]. More restricted, however, because our method explicitly relies
on an asymptotic expansion, which makes it simpler to implement but in principle also
limits its validity to weak forcing. This is not the case for the harmonic balance technique,
which has been shown to work also in the strongly nonlinear regime, where the spatial
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structure of the saturated response differs considerably from that of the linear regime
(Mantic-Lugo & Gallaire 2016). Specifically, the harmonic balance technique typically
retains the spatial degrees of freedom, whereas the space-independent amplitude equation
condemns the response to be structurally close to the linear one.

In the linear regime ¢ — 0, the equilibrium solution of (3.5) is simply B=
q&é{&,fh}/{&, fo,}. We can show that this implies ({u;(2),()}) = qbeg{fh,Boofo}
= ¢{ f), f,}; therefore, if the applied forcing is orthogonal to f,, the response to the
former will be on average orthogonal to the response of the latter, which is consistent.

Conversely, if the optimal forcing is applied, the linear solution is B = ¢& and leads to
the expected gain G = 1/ 63. In the rest of this paper, we choose f;, = f, for the sake of
simplicity.

The weakly nonlinear gain defined in (3.7) will be compared with the fully nonlinear
gain extracted from a DNS of (2.1), and defined hereafter as

- Allupd112) 1 < 2 . -
Gpns = 72 =5 /_oo [lup(@)||”dw, withu,(t) =U@) —-U. (3.8)
In contrast to the WNNs approach, the DNS are performed in the time domain for ¢ €
[0, T].

We first discuss the performance of the WNNs model on a toy model, for which our
results should be easily reproducible. We consider the 2 x 2 system

dU . —1/Re 1 0o -1
& = LU+IIUIMU + FE(0f,. w1thL_|: 0 —2/Rei|’ M_|:_l 0]

(3.9

thus the nonlinear operator in (2.1) is N(U) = LU + ||U||MU. This system is a slightly
modified version of that in Trefethen et al. (1993) (where Mp; = 1), such that its only stable
equilibrium solution is U, = 0 (two other equilibria exist but are unstable).

Provided Re > 1, the matrix L is strongly non-normal and amplifies energy transiently,
although its two eigenvalues —1/Re and —2/Re are strictly stable. For Re = 160 we
compute £, = [0.0125, 0.9999]T associated with the gain 1/€2 = 3.4143 x 10°. We solve

the WNNs model numerically, with the amplitude equation (3.5) for d,lﬁ = 0 uniformly
discretised with N frequencies w € [0, w.], where w. = 0.625. More details are provided
in the supplementary material § 1 available at https://doi.org/10.1017/jfm.2022.902.

In figure 1, predictions from the WNNs model are compared with fully nonlinear
gains, where U(¢) is extracted from a DNS of (3.9), for ¢ € [0, T], with T = 6.6 x 103
simulated and sampled at At = 7t/w, =~ 5. For both the WNNs and the DNS approaches,
the results have been ensemble-averaged over 10* realisations of the white noise. The
agreement is remarkable for all the considered forcing amplitudes; thus we need not

correct the amplitude equation with O(e.)) terms. The WNNs model correctly predicts the
monotonic decrease of the gain with the forcing amplitude (figure 1a) and the modification
of the frequency distribution (figure 1), in particular the significant increase of the most
amplified frequency. We propose a tentative explanation for the shift of the response peak
to higher frequencies in Appendix A. We have also verified that the predictions for the
stochastic gain (see inset in figure 1a) and the Fourier spectra (not shown) remain very
good for different values of the small parameter €,, namely for Re = 20 and Re = 1280.
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Figure 1. (a) Weakly and fully nonlinear stochastic gains (defined respectively in (3.7) and (3.8)) for the toy
model (3.9), Re = 160. Inset: same for Re = 20 (continuous blue line) and Re = 1280 (dash-dotted red line),
but in log-log scale and with the x-axis rescaled by the linear gain. (b) For the case Re = 160, associated

-« Linear —s— WNN5s

ensemble-averaged Fourier spectra of the response i (where €,ii; = €,B4 in the WNNs approach and i1, in the

DNS), normalised such that G is twice the area under the curve. Insets: single realisations of egl [up (1) \Z/F2 as
a function of time in the statistically steady regime (red solid line), and ensemble average in the linear regime
(black dashed line).

3.2. Bilinear system and application to the backward-facing step flow

The weakly nonlinear evolution of the stochastic gain is now sought for the incompressible
NSE. The nonlinear term C(U, U), where C(a,b) = ((b - V)a+ (a - V)b)/2, is
bilinear. Therefore, we expect essential nonlinear interactions to arise at third order in the
expansion parameter, which we want to account for in the amplitude equation. Although
it is certainly possible to correct (3.5) at order 0(62) after introducing a slower time scale
7o, it is simpler to rescale the forcing and the linear term such that they appear directly at
the third order. In this manner, we avoid a response at second order, which would interact
at the next order and obscure the amplitude equation unnecessarily.
We propose the rescaled multiple-scale expansion

Ut, 11, 12) = U, + Jeoui (t, 11, 1) + €1, 1, 1) + /e u3(t, 71, 12) + O(€2),
(3.10)

where 71 = /€.t and 72 = €,t. The flow is weakly forced by F = ¢¢?03 f,&(@ (asecond
advantage of the rescaling is that the forcing amplitude F = <;5\/§3 is larger than that
previously defined by a factor 1/,/€,). Following the method outlined in the previous
section, we introduce (3.10) in the NSE, take the Fourier component at w and perturb
the inverse resolvent according to (2.9). The solution at O(,/€,) is again @1 (71, 72; ) =

B(ty, m; w)q(w). At order O(¢,) we obtain
@iy = —§d-, B+ &, Bl (3.11)

with §2[§] = -—F[C(F _1[l§¢}], F _I[E(}])]. Imposing the Fredholm alternative such that
the right-hand side (= f,) of (3.11) is orthogonal to a yields {a, §}d;, B = {a, g,[B]} =
22[B). The field &y = Rf, is such that {iiy, §} = {f,. @} = 0; thus @ity = R~'&y and
l’lzl constitutes the particular solution of (3.11). The general solution can be wrltten as
u = fQL + B»g, with an arbitrary component B,g on the kernel. We set By = 0 in the
following, such that the component on g of the overall response is fully embedded in B,
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Figure 2. (a) Streamwise component of the optimal stochastic forcing f, in the BES flow, Re = 500.
(b) DNS snapshot of the associated streamwise velocity response (around the base flow) for F = 0.00025.

which can be corrected at higher order thanks to its dependence on slower time scales.
Consequently,

in[B] = iy [B] = R@[B] —{a, §) ' 20B19). (3.12)
Collecting terms at 0(«/63 ), injecting the expressions for #; and &, and using the
Fredholm alternative leads to an expression for 8le§,

{a,3)0,B = {a,f,) (& — B) — {a, 8, in[B]} + &3[BI, (3.13)

with the functional g3[B]= —{a, FI2C(F'[Bg], F '[i[BI])]}. The rotal slow
temporal evolution of B for a given frequency is found by combining partial derivatives
with respect to the slow time scales (Orchini, Rigas & Juniper 2016) as dTlB = Btlé +
(0¢,/ 8,2)812]} = 8“3 + \/68723. Eventually, it leads to leads to an ordinary differential
equation for B (remember that fn=1r):

{a, 3}y, B = 22[B] + e lla. £} (¢& — B) + §3[B] — 3., {a, in[B1}]. (3.14)

An equilibrium solution B(w) of (3.14) is sought for given choices of ¢ and phase
distribution for &£. It is associated with the statistically steady stochastic gain (3.7). In
the linear regime, ¢ — 0 and B — ¢£&, so the gain reduces to G = 1 /63 as expected.

All the nonlinear terms such as ng[é], 23 [B] and o, {a, f1,[B]} are convolution integrals
accounting for the nonlinear interactions between the Fourier modes. They can be
discretised in the frequency domain as quadratic or cubic products of the Fourier
components of B(w). Detailed expressions are given in the supplementary material § 2,
together with an algorithm to solve for the equilibrium solution.

We now consider the weakly nonlinear evolution of the stochastic gain in the
two-dimensional BFS flow at Re = 500. This flow clearly illustrates streamwise
non-normality, as evidenced, for example, in Blackburn et al. (2008). A Poiseuille profile
of unit centreline velocity is imposed at the inlet. The nonlinear and linearised NSE are
solved with the finite element method (see details in the supplementary material § 3).
Figure 2(a) shows the optimal stochastic forcing f',, which is remarkably similar to the
harmonic forcing structure at the optimal frequency w = 0.47 determined via a resolvent
analysis (Mantic-Lugo & Gallaire 2016); the harmonic gain being maximal at w = 0.47,
the associated forcing structure is naturally favoured when maximising the stochastic gain.
Figure 2(b) shows a DNS snapshot of the flow response to F&(¢) f, for F' = 0.00025.

The results of the WNNs model are reported in figure 3, where the amplitude equation
(3.14) for dfllf? = 0 was uniformly discretised with N frequencies w € [0, w.] with o, =
7, and the results were ensemble-averaged over 500 realisations of the white noise.
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Figure 3. Same as figure 1 for the BES flow, Re = 500. Error bars around DNS points show plus or minus
one standard deviation.

Predictions from the DNS are also shown, resulting from simulations of duration 7' =
2049 after the transients fade away, sampled at At = w/w. = 1 and ensemble-averaged
over 10 realisations of the white noise (this lower number of realisations is the consequence
of each one being numerically costly). Unlike the toy model of §3.1, the amplitude
equation built from a forcing introduced at second order and stopped at second order did
not capture significant nonlinear effects (not shown). Introducing instead the forcing at
third order, as described above, the comparison with DNS data is conclusive: the stochastic
gains experience a monotonic decay with increasing F, also associated with a decreasing
standard deviation for the DNS data.

We now emphasise that the fully nonlinear stochastic gain in (3.8) considers perturbation
around the temporal mean flow, and not around the base flow U,. This distinction was
unimportant in the previous application case since the nonlinearity did not generate a
temporal mean. The creation of non-zero temporal mean (U(1) #0) is associated with a
diverging behaviour of the Fourier component at w = 0, as the normalisation in (2.4a,b)
directly implies U0) = U@)VT — oo. Since this divergence is unlikely to be captured
by I§(0), we omitted its contribution in the gain calculation, but noted that this did not
change the gain. However, the WNNs model certainly takes into account the effects of
temporal mean flow corrections on & (w), as such steady corrections are created at the
next order and embedded in u; (7).

For small F close to the linear regime, DNS and WNNs show some discrepancies
(figure 3a) that are believed to be due to an imperfect convergence of the DNS data,
because of the large standard deviation at small F and the limited number of realisations.
The limit of large F is also associated with a slight departure of the (well-converged)
DNS data from the WNNS5s predictions, although it is believed this time to be due solely to
increasingly strong nonlinearities. In figure 3(b), the Fourier spectra reveal that increasing
F conserves the most amplified frequency, which may be due to the fact that the forcing
structure is fixed to f',, extremely similar to the optimal harmonic forcing for w = 0.47.
In the inset, from the temporal evolution of the signal o< ||u(?)| |> we recover that, for this
particular flow, nonlinearities not only saturate the average level of energy of the response,
but also significantly reduce the amplitude of the oscillations (i.e. the standard deviation).

Finally, note that the asymptotic expansions (3.1) and (3.10) have been scaled differently
in order for the linear (o E) and forcing ( ¢§ ) terms to appear at the last considered
order. This raises the question of how to know a priori, and for a given nonlinearity,
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the minimal order that should be considered. Although a ‘trial and error’ process is
always arguably acceptable, we postulate that it is the earliest order where the nonlinear
term generates a component oscillating at w,, in the limit where the linear response g is
monochromatic and oscillating at w,. Indeed, if we impose the solvability condition solely

at the order(s) before, B will conserve its linear value, for the nonlinear term will naturally
yield a null scalar product with the adjoint for all frequencies (both fields being non-zero
at different frequencies). This scenario, which we want to avoid, does not occur in the
opposite limit where the frequency spectrum of g is flat. Of course, the linear optimal
response has generally no reason to be monochromatic, but might still show a maximum
in energy at selective frequencies, as was the case in figures 1(b) and 3(b). If we express
u = Eéei“’"t + c.c., the nonlinearity of the toy system at second order (i.e. ||uy||Mu;)
already generates terms oscillating at w,; therefore it was sufficient to consider only up to
this second order to see an improvement over the linear prediction. For the NSE, however,

one needs to go to the third order to recover terms in w, (specifically 3|f9|2ei“’”t , as well
known for classical weakly nonlinear equations for an eigenmode amplitude).

4. Conclusions

By generalising the method proposed in Ducimetiere et al. (2022), we have derived
an amplitude equation describing the weakly nonlinear, statistically steady response to
stochastic forcing in arbitrarily stable yet non-normal systems. The amplitude depends
solely on the frequency, and is therefore independent of the number of spatial degrees of
freedom of the discretised system. This may save a significant amount of computational
resources compared to fully nonlinear simulations, where long simulated times and/or
many realisations are needed to ensure statistical convergence, which becomes rapidly
impracticable for large systems like fluid flows. The amplitude equation has been
successfully compared to fully nonlinear numerical simulations, and predicts well the
variation of both the stochastic gain and the Fourier spectrum with the forcing amplitude.

Future research may include applying the method to realistic flows (e.g. atmospheric
flows subject to weak forcing, such as zonal jets in barotropic flows (Bouchet, Nardini &
Tangarife 2013)), and developing extensions towards systems with multiple attractors and
noise-induced transition.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.902.
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Appendix A. Toy system: nonlinear upshift of the most amplified frequency

In figure 1(b), the peak of the linear response in w = 0 is due to the presence of both
eigenvalues on the imaginary axis (although their location alone is insufficient to deduce
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Figure 4. Ensemble averages: (a) F = 107 )y F=2x10"".

the stochastic gain, due to the non-normality of the operator). We explain the shift of the
peak to higher frequencies with increasing nonlinearities as follows.

The equilibrium solution (d;, B= 0) of the amplitude equation (3.5) reads

B = €,/1q117%82(B) + ¢, (A1)

where we used that {a, f,} = {§. 4}/€o = |1q1|*/€,. We plot in figure 4 the ensemble
average of the absolute values of: (1) the solution, (|f? [); (2) the nonlinear term,
e(,||¢}||_2(|§2[f5‘]|); (3) the same nonlinear term but replacing B by its solution in the
linear regime ¢§ , l.e. e,,||¢}||—2<|§2[¢§]|); and (4) the linear stochastic forcing term,
(|p€]) = (¢) = ¢. In the linear regime for F = 1071° (¢ — 0) in figure 4(a), B = ¢é
is the solution, for the nonlinear term g5 is virtually zero. However, when we increase the
forcing up to F = 2 x 10~ in figure 4(b), the nonlinear interaction of the linear (optimal)
response d)é?] with itself is no longer negligible and creates a strong response peaked
around w = 0, which projects back on the optimal response (see dash-dotted blue line in
figure 4b). Thereby, B = ¢& cannot be the solution any more, and B must adapt around
w = 0 so as to enforce the solvability condition. In more physical terms, B must adapt
around @ = 0 such that the nonlinear interaction of E?] with itself is less amplified around
w = 0 than that of ¢& q. thus preserving the asymptotic hierarchy.

This is indeed what we observe in figure 4(b), where the red curve (with the bullet
markers) is significantly less amplified than the dashed blue one. Whether this new B must
have a larger or smaller amplitude than its linear value ¢ is given by the phase difference,
which we call y, between the nonlinear and the forcing terms in (Al). It is easy to show

that |B| < ¢ if and only if

—2¢ cos(y) > €1q1|2|22(B]. (A2)

For this reason we show —2¢(cos(y)) in figure 4(b) (see the magenta dotted line). In the
range 0 < w < 0.012, (cos(y)) decreases monotonically from —1 at @ = 0 (the forcing

and the nonlinear terms are in antiphase) to —0.2 at w = 0.012. In addition, the magenta
dotted line is above the red one, thus (|B|) < ¢ and the nonlinearities are saturating in the
sense that the weakly nonlinear response is of lower amplitude than the linear one. On the
contrary, for w > 0.012 the phase difference between the forcing and the nonlinear terms
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is such that (|§|) > ¢ and the nonlinearities are desaturating. Therefore, the maximum of
||I§t}|| is now increased to w = 0.005. This tendency is conserved for all the considered F.
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