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ON A 2-KNOT GROUP WITH NONTRIVIAL CENTER

KATSUYUKI YOSHIKAWA

Jonathan A. Hillman asked "Must a 2-knot whose group has non-
trivial center be fibered?"” We will answer this question

negatively.

1. Introduction

+
An n-knot k is a locally flat submanifold of st 2 which is
homeomorphic to $" . The fundamental group of :.’>‘n+2 - ﬁ(k) is called the
. . . Sn+2
group of k , where N(k) is a tubular neighborhood of k in .

In [6], Neuwirth showed that the center of a 1l-knot group is trivial
or infinite cyclic. On the other hand, Hausmann and Kervaire [1] proved
that any finitely generated abelian group is the center of an n-knot group
(n 23). For n =2, the author [8] showed that there are fibered
2-knots whose groups have the centers 1, Z, 2 ® 22 and Z2@® 2

respectively. Moreover, in [2], Hillman investigated centers of 2-knot
groups and obtained some results. In particular, he shows that if a

2-knot is fibered, then the center of its group is 1, Z, Z C)Z2 or

Z@® 72 , and he asks if a 2-knot whose group has nontrivial center must be

fibered. In this paper we will answer his question negatively. That is:

THEOREM.  There exists a 2-knot which is not fibered and whose group
has nontrivial center.
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2. Preliminaries

For an element g of a group H , (H : g) denotes the factor group
of H Dby the normal closure of g in H . The subgroup of H generated
by a subset S of H will be denoted by gp($)

Let Kl be a 2-knot and Vl a tubular neighborhood of Kl . Let V
be a tubular neighborhood of a trivial 2-knot and h : V =+ Vl a
homeomorphism of V onto Vl . Let K2 be a 2-knot contained in the
interior of ¥V . Then we obtain a 2-knot X = h(Kz) (ef. [7D).

We will calculate the group G of KX by the van Kampen theorem. Let
V2 be a tubular neighborhood of K2 in Sh which is contained in the
interior of ¥V and let Gi be the group of Ki (2 =1, 2) ; that is,

L o
Gi = ﬂl S _Vi . From the definition of K , we have the following

commutative diagram of homomorphisms induced by inclusions:

av, )

=‘|T _
(1) ¢ 1] n(v )
h%
l - =
o]
Furthermore, it is easy to see that the inclusion J of V - V2 into
L ° . o
s - V2 induces the isomorphism g, of ﬂl(V—Vg) onto 02 . Therefore,

we get the diagram, (2), of isomorphisms:

o
o (h | V_V2) * ] j*
(2) m V-1 (vy)) = (V) =6, .

[ - -
Put y = il*(g) and e = j,(r | V—Vg)*liz*(y) , where y is a

generator of the infinite cyclic group Wl(BVl) . Then, from diagrams (1)
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and (2), we obtain G = <Gl * 02 : yc_l> .

Let 1 be the order of ¢ in G, (if it is infinite, then put

U =0 ) and let 51 = <Gl : yu> . Then Yy has the order U in Gl .
Thus it follows that G is a free product of &l and 62 with subgroups
gp(y) and gp(e) amalgamated under the mapping y =~ ¢ .

LEMMA, Suppose that 02 is not infinite cyclic. If
e (#1) € [G,, 6] and 51 =2 Z, » then the commutator subgroup [G, Gl s

not finitely generated.

Proof. To complete the proof, we use the subgroup theorem for a free
product with an amalgamated subgroup [3, Theorem 5]. Let generating
systems of Gl and 02 be O- and B-generating systems in [3],
respectively. Let X be an element of G2 mapped on a generator of
G2/[b2, 02] by abelianization. We choose {xs :8=0, *1, ...} as o-

and B-representative systems for a compatible regular extended Schreier
system for G mod [G, G] (see [3]). Then the associated 0~ and
B-double coset representative systems {Da}’ {DB} for G mod ([G, G], Gl)
and G mod ([G, G], 02] are {xs : =0, %1, ...} anda {1}
respectively, and the v-double coset representatives {DBEU} for

G mod ([G, 6], gp(c)) are {xs :8=0, %, ...} . Therefore, in Theorem

5 of [3], there is no t-symbol. Moreover, since

y=c¢[o, 6] <l6, ¢, it follows that 2°G a™°

c [G, G] for each
s . Hence, from Theorem 5, [G, G] is a tree product of an infinite
number of factors {[C2, 02], stlx-s, s =0, %1, ...} with the subgroups

- -8 - -
xsgp(c)x s and xsgp(y)x amalgamated under the mapping zoex™® > xsyx s

(s=0, 1, ...) . Since &l 4 Zu = gp(y) , we have xsalx-s # xsgp(y)x—s

for each s . Hence, by [4, p. 53], [G, G] is not finitely generated.
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3. Proof of theorem

We will give two examples. One has center Z and the other has

center Z2 . We note that the latter can not be realized as a center of

any fibered 2-knot group.

EXAMPLE 1. Let K, and K, be the 2- and 6-twist-spun 2-knots

of the trefoil respectively [9]. Then we have

Gl =(y, d: ydy'l = d_l, d3)

and
G =(x, a, b : zaxl =b, zbxL = a~tb [la, b], a] [[a b] b])
2 ? k4 . > t] 3 * bl ? L]

[&].

Let Vi be a tubular neighborhood of Ki (¢ =1, 2) in Sh . Let

C Dbe a simple closed curve in Sh - V2 which represents an element

e = [a, b] of G, and N a tubular neighborhood of ¢ in Sh such that

N n V2 =@ . Then, since N is homeomorphic to Sl % B3 , the manifold

L

[}
S -N N’Sz X 32 is considered as a tubular neighborhood of a trivial
L . .
2-knot in S . Therefore, in the previous section, we can take

vV = Sh B . Let h V-~ Vl be a homeomorphism of V onto Vl such

that g, (h | V—ﬁz)* i2*(§) = ¢ for a generator j of nl(BVl) with

il*(g) =y . Then, from Section 2, we obtain a 2-knot X = h(K with

o)

~ -1
the group G = <Gl * 02 : ye > .

The element ¢ has infinite order in G Therefore, we have

o -

Gl = Gl . Thus G 1is a free product of Gl and 62 with amalgamated

subgroups gp(y) and gp(e) . Hence, by [5, p. 211], the center of ¢ is
gply) n C(Gl) n C(Gz) , where C(Gi) is the center of G, (it =1, 2) .

Consequently, ¢ has the non-trivial center gp(yQ) =~ 7 because
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6
c(e,) = ep(y®) ana c(6,) = epla®, ) [81.
Furthermore, by virtue of the Jemma, it follows that X 1is not
fibered.
EXAMPLE 2. Let K, and K2 be the 2- and 5-twist-spun 2-knots
of the trefoil, respectively. Then the group 62 of K2 is

{x, a, b : xax ™t = b, abx™t = a_lb, @ = (ab)3 = (aba)z) .

IR

and the center C(Gg) is gpﬂrﬂz, b-l], (aba)z) Z 6)22 [58], [9]. We

choose the element aba of 62 as ¢ . Then, in the same way as above,
we can construct a 2-knot whose group has center Z2 and which is not

fibered.

Note, Recently, T. Kanenobu communicated to the author that he has
obtained another example of such a 2-knot by Fox's hyperplane cross

section method.
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