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0. Introduction

A semigroup S is said to be normal if aS = Sa for each a in §. Thus the
class of normal semigroups includes the class of groups and the class of Abelian
semigroups. Given a compact semigroup S we write P(S) for the convolution
semigroup of probability regular Borel measures on S. In (3), Theorem 7, Lin
asserts that a compact semigroup S is normal if and only if P(S) is normal.
We show in this paper that Lin’s result is false. In fact, if S is the union of
subsemigroups each of which has an identity element, we show that P(S) is
normal if and only if S is Abelian. Thus any compact non-Abelian group
contradicts Lin’s result. What Lin’s argument does establish is that if P(S) is
normal then S is normal, and if S is normal then uP(S) = P(S)u for each point
mass measure M.

In Section 1 we present some simple facts about normal semigroups. Most
of the results here are probably well known but we do not know any suitable
reference for them. In Section 2 we prove the result stated above about compact
semigroups for which P(S) is normal. We also introduce a class of semigroups,
called completely normal semigroups, for which P(S) is normal and give an
example of a non-Abelian completely normal finite semigroup.

Lin’s aim in Section 5 of (3) was to generalize some results of Glicksberg (2)
to the class of compact normal semigroups. We show in Section 3 that some
results can be obtained in this direction. In particular if S is a compact normal
semigroup we show that each idempotent measure p in P(S) is supported on a
group. Thus each idempotent measure in P(S) is simply the canonical extension
of the Haar measure on a compact subgroup of S. We show also that the kernel
of P(S) is simply the Haar measure m on the kernel of S, i.e. m is the zero
element of P(S).

The first author acknowledges the financial support of an Aberdeen Univer-
sity Studentship.

1. Preliminaries on normal semigroups

Let S be any semigroup and let N be a subset of S. Then N is said to be
normal in S if aN = Na for each ae S. In particular S is said to be a normal
semigroup if it is normal in itself. An element ¢ of S is said to be central if
ac = caforeachae S.

Proposition 1.1. Every idempotent of a normal semigroup is central.

Proof. Let S be a normal semigroup and let je S with j2 = j. Given
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ae S there is be § with aj = jb. Then jaj = jb = aj. A similar argument
gives jaj = ja, so that j is central.
An element a of a semigroup S is said to be regular if there is b € S such that

aba = a. In general a regular element of S need not belong to a subgroup
of S.

Proposition 1.2. Every regular element of a normal semigroup belongs to
some subgroup of the semigroup.

Proof. Let S be a normal semigroup and let @, b € S with aba = a. Let
e =ab,f= basothate’ = e, f2 =f Wehaveea = aba = a, af = aba = a.
Since e, f are central we now have

ba = bea = eba = ef = fe = fab = afb = ab = e.

Thus the subsemigroup generated by a and b is a group with identity e in which
b is the inverse of a.

Let S be a normal semigroup and let T be a subsemigroup of S. Then T
need not be a normal semigroup. For example in the free group on two genera-

tors a, b the subsemigroup generated by a and b is not normal. The next result
gives a sufficient condition for 7" to be a normal semigroup.

Proposition 1.3. Let S be a normal semigroup and let T be a subsemigroup
of S such that T is the union of groups. Then T is a normal semigroup.

Proof. Given a € T we shall show that Ta = TrnSa and similarly aT = TraS.
Since Sa = aS we then conclude that 7a = aT and T is normal. It is thus
sufficient to show that TnSacTaforaeT. Suppose ye S and yaeT. Since
T is the union of groups there are e, b€ T with ab = e, ea = a. Then

ya = yea = yaba € ThacTa

and the proof is complete.

If S is a compact semigroup the kernel K of S is the (unique) minimal closed
two-sided ideal of S.

Proposition 1.4. If K is the kernel of a compact normal semigroup S then

(1)) K is a compact subgroup of S,

(ii) if e is the identity of K then ej = e for every idempotent j of S.

Proof. (i) Certainly K is compact. Given a € K we have that aK is a closed
right ideal and

SaK = aSKcak,

so that aK is two-sided. Since K is the kernel we have aK = K, and similarly
Ka = K. Tt is well known that K is then a compact group.

(ii) Let je S with j2 = j. Since e is central ej is an idempotent and it is in
K. Thusej = e,

We remark that it is easy to construct examples of compact normal semi-
groups that are neither groups nor Abelian. In fact let G be any non-Abelian
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compact group and let T be any compact Abelian semigroup that is not a
group. Then the direct product semigroup G x T is such a compact normal
semigroup.

2. Compact semigroups .S with P(S) normal

Let S be a compact semigroup and let P(S) be the convolution semigroup
of probability measures on S. For convenience of notation we shall identify
the elements of S with the point mass measures. Given pe P(S) we write
supp u for the support of p, i.e. the unique minimal closed subset H of S with
u(H) = 1. TItis well known that, if g, ve P(S) and O<t<1, then

SUPp v = Supp p supp v
supp (tu+(1—£)v) = supp pusupp v.

The theorem below shows that for a large class of compact semigroups S, P(S)
is normal if and only if S is Abelian.

Theorem 2.1. Let S be a compact semigroup with P(S) normal. Let ye S
with ey = y for some idempotent e of S. Then y is central in S.

Proof. It follows from Lin’s argument that S is a normal semigroup and so
e is central in S. Suppose there is x € S with xy # yx. Let u = te+(1—0)x
where 0<t¢<1, t # 4. Since P(S) is normal there is p € P(S) with uy = pu,
ie.

ty+(1—txy = tpe+(1—0Hpx.

If H = supp p, then {y, xy} = HeuHx. If y = xy then for any w e H we have
we = y = xy = wx, and so yx = wex = wxe = xye = xy. This contradiction
shows that y # xy. We now consider various possibilities for the sets He and
Hx.

(i) He = {y} or Hx = {xy}. It follows that there is we H with we =y,

wx = xy. This gives
YX = wex = wxe = xye = XxJ.

(i) He = {xy}, Hx = {y, xyp}. For each we H we have we = xy and so
wxe = wex = xyx. But wx = y or wx = xy and so wxe = y or wxe = xy.
Since both possibilities occur we obtain the contradiction y = xy.

(iii) He = {xy}, Hx = {y}. Then pe = xy, px =y,

ty+(1—-xy = txy+(1—1)y.
Since ¢ # 4 this gives the contradiction y = xy. We are now reduced to case
(iv) below.

(iv) He = {y, xy}. Then Hxe = Hex = {yx, xyx}. If Hx = {y} then
Hx = Hxe and so y = yx = xyx. This gives xy = x{(yx) = y = yx. This
contradiction shows that Hx # {y}. We cannot have Hx = {xy} by part (i),
and therefore Hx = {y, xy} = Hxe. Since yx # xy, we now deduce that

yx = y.
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Using the normality of P(S) again we get v € P(S) with yu = uv and so
y = ty+(1-pyx = tev+(1—1)xv.

Let zesupp v and then ez = y = xz. This gives xy = xz = y = yx. This
final contradiction shows that y must be central in S.

Corollary. If P(S)is normal and S is the union of subsemigroups each of which
has an identity element, then S is Abelian. In particular if P(S) is normal and S
is a group then S is Abelian.

Remark 1. Suppose x, y € S with xy = y. Then x"y = y for each positive
integer n. It is well known that there is an idempotent e that is a closure point
of {x"} and then ey = y.

Remark 2. Let S be any semigroup with the discrete topology and replace
P(S) by co (S). Itis then clear that Theorem 2.1 holds if compact is replaced
by discrete.

Since co (S) is weak* dense in P(S) the result below may be established by a
routine argument; we omit the proof.

Proposition 2.2. Let S be a compact semigroup. Then P(S) is normal if anp
only if for each x € S, yi € co (S) there are p, v € P(S) such that ux = pu, xyu = puv.

The above result leads to a sufficient condition on S that P(S) be normal.
Suppose that u € co (S) so that

=2 ty,420,3t =1
1 1
Given x € S suppose there is z € S such that

yx=2y (r=1..,n). 0

The first condition of Proposition 2.2. will now be satisfied with p = z. If S
is normal then E, = {ze S: yx = zy} is non-empty for each y and is clearly
closed. If condition (1) above holds for any finite set {y,, ..., ¥,} then the closed
sets {E,: y € S} satisfy the finite intersection property. Since S is compact
N{E,: y e S} must be non-empty. We are thus led to the following definition.

A semigroup S is said to be completely normal if for each x € S there are
¢(x), Y(x) € S such that

yx =¢x)y (res)
xy =pp(x) (yeS).
The result below is now clear.

Proposition 2.3. Let S be a completely normal compact semigroup. Then
P(S) is normal.

We give next an example of a completely normal compact semigroup which
is not Abelian.
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Example 2.4. Let S = {a, b, ¢, d, e} with the following multiplication table.

, a b c d e
ald d e d d
bje d d d d
cld e d d d
d\d d dd d
eld d d d d

The multiplication is associative since the product of any three elements is d.
Since ab # ba, S is a finite non-Abelian semigroup. Define ¢: S—S by

d@)=c, ¢B)=a, ¢c)=0b, ¢d)=4d, ¢(e)=e
and define y = ¢~ 1. Itis readily verified that

yx = §(x)y, xy = yY(x) (x,ye€S)

so that S is completely normal.

We remark without proof that the above example is the smallest possible
example of a non-Abelian completely normal semigroup. Also if S is any
completely normal semigroup it is easy to see that S2 is a subset of the centre
of S.

3. The semigroup P(S) with S compact normal

Throughout this section S will be a compact normal semigroup. We
write K for the kernel of S so that K is a compact group by Proposition 1.4.
We write m for the Haar measure on K,

The results below generalize known results for compact groups and compact
Abelian semigroups.

Theorem 3.1. The support of each idempotent measure in P(S) is a group.
Thus the idempotent measures in P(S) are the Haar measures on compact subgroups
of S.

Proof. Let pue P(S) with y?> = pu, and let T = supp . By Collins (1), T
is a simple semigroup and hence is a union of subgroups. By Proposition 1.3
we have that T is a normal semigroup. Since T is simple we deduce that
Tx = xT = T (xeT). Itis now well known that T must be a group. Finally
it is well known that the only idempotent measure supported on a compact
group is the Haar measure of the group.

We write K(P(S)) for the kernel of P(S).

Theorem 3.2. K(P(S)) = {m}.

Proof. It is sufficient to show that m is the zero element of P(S). Given
x € S we have supp (xm)<K. Since m is the zero element in P(K) we have
xm = xm* = m. It follows by the standard density argument that um = m
for each p in P(S) and similarly mu = m.
E.M.5.—X
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