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ABSTRACT. The rotation of the earth is variable at a number of time scales, from a 
few days to thousands of years and longer. Variations occur in the rotation rate, in the 
geographical position of the rotation axis (referred to as polar motion), and in the posi-
tion of the axis relative to inertial space (referred to as nutation and precession). The 
interpretations of the various observations have implications for the dynamical behavior 
and structure of the earth's deep interior, and for various aspects of meteorology and 
oceanography. These are reviewed below. Also included is an Appendix describing a 
model of the diurnal resonance in nutation for a non-hydrostatically pre-stressed earth. 

1. INTRODUCTION 

The earth's rotation is not constant. Instead, there are variations both in the rate of 
rotation and in the position of the rotation axis. Variations in the rate of rotation affect 
the length of a day (lod), where "a day" is defined in terms of the overhead transits of 
celestial objects. The time integral of the lod variability is proportional to perturbations 
in Universal Time. 

To describe motion of the rotation axis, it is useful to differentiate between ( l ) geo-
graphical motion: motion with respect to fixed points on the earth's surface; and (2) iner-
tial space motion: motion with respect to celestial objects. Geographical motion of the 
axis is referred to as polar motion or, sometimes, wobble. Inertial space motion is called 
nutation or, in a special case, precession. In a sense, this differentiation is artificial 
because there cannot be inertial space motion without geographical motion, and vice 
versa. Still, the distinction is useful because most disturbances of the pole can be 
characterized as either predominately nutation or predominately polar motion, depend-
ing on the frequency of the disturbance. 

For example, any perturbation of the axis with a period much longer than one day 

as seen from space, will produce motion which is mostly nutation with very little polar 

motion: the rotation axis and fixed terrestrial points move almost together at long 

periods. This means that the external gravitational torques on the earth from the sun 

and moon will cause motion which is predominately nutation, since those torques vary 

with the various orbital periods characterizing the lunar and solar orbits, and those 
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periods are all much longer than one day. Note that to an observer fixed to the rotating 
earth, the periods of those torques, and so of the corresponding axis motion, will be close 
to one day. On the other hand, disturbances which perturb the pole at periods much 
longer than one day as seen from the rotating earth, cause mostly polar motion with very 
little nutation: the rotation axis doesn't move much in inertial space, but fixed terres-
trial points do. This means that processes which originate within the earth and which 
have time scales much longer than a day, cause mostly polar motion. 

I will discuss, below, the observed variability in the lod, in polar motion, and in 
nutation, together with the potential geophysical implications. I will concentrate on the 
shorter period variability (periods of a few years and less), with the rationale that 
because of the relatively short data span of high quality VLBI observations, those obser-
vations through the near future will mostly impact our understanding of the short period 
variability. More detailed discussions can be found in Münk and MacDonald (1975), 
Lambeck (1980), and Rochester (1984). 

2. LENGTH OF DAY 

Let the unperturbed rotation vector of the earth be in the ζ direction, with amplitude Ω 
equal to one cycle per sidereal day. Suppose the rotation rate of the mantle is perturbed, 
so that its time-dependent amplitude is n ( l+m 3 ( t ) ) . Suppose we apply an external 
torque, L 3 ( t ) , to the mantle along the ζ axis. Let C be the unperturbed value of the 
earth's principal moment of inertia along the ζ axis. Suppose we perturb the moment of 
inertia, so that its value at time t is C-fAc(t). Then the angular momentum equation 
for the mantle reduces to 

d ^ 3 1 d A / 1 λ 

As equation (1) demonstrates, the earth's rotation rate can be perturbed either by apply-
ing an external torque to the earth, or by changing the earth's inertia tensor. 

2.1. Long Period Variability 

Historic eclipse records indicate that the lod has been increasing by about 2 msec per 
century over at least the last 2500 years. This linear increase is mostly due to lunar and 
solar torques (L 3 in (1)) on the earth which tend to slow the earth's rotation and which 
arise because of dissipation of tidal energy in the oceans. However, these tidal torques 
are about 25% larger than those implied by the eclipse data. The discrepancy is due to 
the effects of post-glacial rebound. Mass continues to flow laterally into the region of the 
mantle beneath Hudson's Bay as the earth adjusts to the melting of the Canadian ice 
load at the end of the last ice age. As a result, the earth's polar moment of inertia, Ac , 
is decreasing and this tends to decrease the lod, partially offsetting the effects of tidal dis-
sipation. 

Telescope data over the last few hundred years demonstrate that there are also 
irregular fluctuations in the lod with periods of a few decades and amplitudes of up to 4-
5 msec. These are presumably caused by the exchange of angular momentum between 
the earth's mantle and fluid core. The torques responsible for the exchange of angular 
momentum could be due either to electromagnetic or to topographic coupling. As the 
VLBI data span becomes longer so that VLBI is able to resolve the long period 
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variability, the results may help increase our understanding of the dynamical processes 
and the material and structural properties of the core and lower mantle. 

2.2. Short-Period Variability 

There are two important excitation sources which cause variations in the lod at periods 
of a few years and less: tides, particularly in the solid earth; and the exchange of angular 
momentum between the earth's mantle and the atmosphere. 

Tidal deformation in the earth causes the principal polar moment of inertia, and so 
the lod, to vary at the periods of the long period tides. Particularly important perturba-
tions occur at periods of 1 year, 6 months, 1 month, and 2 weeks. The amplitudes of 
these lod variations depend on how easily the earth deforms at these periods. The defor-
mation can be calculated by solving a set of partial differential equations which represent 
the dynamical response of the earth to tidal forcing. Any such model requires, as input, 
a set of numerical parameters describing the earth's material properties. The parameters 
which describe the elastic behavior of the earth are well known from seismology. But, 
the parameters which describe the departure of the earth from perfect elasticity are not 
well constrained. Seismic observations are sensitive to anelastic effects, but those effects 
are apt to be substantially different at the long tidal periods than at the much shorter 
periods (seconds to minutes) characteristic of seismic phenomena. In fact, one of the 
important problems in geophysics is to understand more fully the physical processes 
responsible for the earth's anelasticity. Tidal lod observations can help in this regard, 
since they offer information on anelasticity in a unique frequency regime. 

The 1 month and 2 week tidal variations in the lod have amplitudes of about .2 
msec and .4 msec, respectively. The effects of anelasticity on the amplitudes are prob-
ably l%-5% of these numbers (Wahr and Bergen, 1986), so they perturb the lod at the 
.01 msec level. Merriam (1985) used BIH optical results for the tidal variations to con-
strain the anelasticity. Results based on VLBI observations should give improved esti-
mates within the near future, although the interpretation of any data is limited by the 
accuracy with which the effects on the lod of ocean tides and atmospheric fluctuations at 
these periods can be removed from the data. In fact, this is why the observed 6 month 
and 1 year amplitudes can not be used to constrain mantle anelasticity: the seasonal 
effects of the atmosphere are large, comparable to the tidal effect at 6 months and about 
10 times larger at 1 year. 

Atmospheric effects occur both at seasonal and at more irregular periods. One of 
the impressive results obtained from the improved lod data of the last decade is excellent 
agreement between the short period rotation results after subtraction of the tidal effects, 
and the atmospheric excitation estimated from meteorological data (see, for example, 
D.A. Salstein, this volume). The atmospheric effects are estimated from global atmos-
pheric wind and pressure data. These data are integrated over the globe to find the 
total atmospheric angular momentum as a function of time. The negative time deriva-
tives of these integrated results should be equal to the torque on the mantle, L 3 in (1), 
and so can be used to find m 3 . 

Most of the variability in the atmospheric angular momentum is due to changes in 
zonal winds. The effects of the redistribution of atmospheric mass on the moment of 
inertia, as inferred from surface pressure observations, are only about 10% of the effects 
of winds. There are also likely to be effects due to seasonal variations in the circum-polar 
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ocean current around Antarctica. Those effects are probably smaller than the effects of 
atmospheric pressure, although the estimates are reasonably uncertain. 

The most important implication of the good agreement between the lod and atmos-
pheric data is that it suggests existing atmospheric data adequately reflect real global dis-
turbances in the atmosphere. For example, Langley, et al. (1981) found that the inferred 
atmospheric angular momentum data and the observed lod have a well-correlated 50 day 
oscillation in common. This has led to atmospheric modelling efforts to understand the 
source of the oscillation. 

3. POLAR MOTION 

The most pronounced features of the observed polar motion are oscillations at 12 months 
and 14 months, called the annual wobble and Chandler wobble, respectively. The 
annual wobble is due to seasonal forcing of the earth by the atmosphere, particularly by 
the large seasonal pressure variations over central Asia. Since the earth is elliptical 
rather than spherical, those pressure variations cause a seasonal torque on the earth 
about an equatorial axis, and that tips the earth causing polar motion. There is also siz-
able seasonal excitation due to similar torques caused by global changes in ground water 
storage (Van Hylckama, 1970). The agreement between the observed annual wobble 
amplitude and the equatorial torques inferred from global pressure and ground water 
data is good (see Merriam, 1982; Wahr, 1983). 

The Chandler wobble is a rotational normal mode of the earth, equivalent to the 
free nutation of a top. For a rigid earth, the period would be roughly 10 months. The 
increase of the period to 14 months is due to the ability of the earth to deform : solid 
earth deformation adds 4 months, oceanic displacements add 1 month, the earth's fluid 
core subtracts 1 month. Observations of the period have been used to constrain mantle 
anelasticity at a period of 14 months (see, for example, Smith and Dahlen, 1981). The 
observed damping time (several decades) has also been used to constrain anelasticity. 

The primary excitation source for the Chandler wobble is, however, not well under-
stood. Although there is some disagreement, it appears as though neither earthquakes 
(through induced changes in the earth's inertia tensor; see eg. Dahlen, 1973) nor the 
atmosphere and oceans (Wilson and Haubrich, 1976; Wahr, 1983) were the primary exci-
tation source during this century. It may be that the excitation is due to fluid pressure 
in the core against the core-mantle boundary, as proposed by Le Mouel, et al. (1985). 
Or, perhaps it is due to irregular fluctuations in global ground water storage. Future 
VLBI data may help resolve this problem through accurate observations of individual 
excitation events. 

4. NUTATIONS 

The earth's nutational motion is caused by the gravitational attraction of the sun and 
moon. The motion can be separated into a discrete sum of periodic terms with frequen-
cies, as seen from the diurnally rotating earth, of one cycle per day modulated by the 
lunar and solar orbital frequencies. 

The earth is believed to have a rotational normal mode, called the free core nuta-
tion (FCN), with an eigenfrequency within the diurnal band of nutation frequencies. To 
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understand the dynamics of the FCN, suppose the fluid core and solid mantle were 
tipped about an equatorial axis in opposite directions, and then released. If both the 
core's internal density distribution and the core-mantle boundary were spherical, there 
would be no restoring torque, and the core and mantle would remain tipped relative to 
each other. But, because the real core/mantle boundary is elliptical and the earth is 
elliptically stratified, there are, instead, restoring pressure and gravitational torques 
between the core and mantle. As a result, the core and mantle execute periodic twisting 
motion with respect to each other. This motion is the FCN, and its frequency is one 
cycle per day plus a factor dependent on the strength of the restoring torque. 

In the Appendix, it is shown that under very general conditions (including the pos-
sibility that the mantle is not hydrostatically pre-stressed, but not including the effects of 
a solid inner core) the FCN eigenfrequency is 

(2) 

where A and A m are the equatorial principal moments of inertia for the entire earth and 
the mantle alone; e f — (C f—Af)/A f is the dynamical ellipticity of the core, where C f and 
Af are the principal moments of the fluid core about the polar and equatorial axes, 
respectively; and β is a numerical factor which represents the effects of deformation and 
is effectively independent of any aspherical stratification within the earth. The quantity 
e f depends on the Υ£ spherical harmonic term of the core internal density field and on 
the Υ ζ component of the shape of the core-mantle boundary. It does not depend on any 
other spherical harmonic component of the structure. For a hydrostatically prestressed 
earth, β is about 25% of e f (Sasao, et al, 1980), and ω ο =(1+1/460) cycles/day (Wahr, 
1981). 

The free nutational motion at the period ω0 has never been unambiguously 
observed. Evidently, it is not excited sufficiently by any interior process. But, because 
ωα is so close to the frequencies of the luni-solar nutations, the amplitudes of those nuta-
tions are affected by the presence of the mode by up to 20 or 30 milli-arcseconds, a per-
turbation which can be readily detected even by conventional optical observations of 
nutation. These effects of the FCN are included in the standard forced nutation model 
adopted by the IAU, which is based on rigid earth values of Kinoshita (1977) and correc-
tions for non-rigidity from Wahr (1981), the latter assuming a hydrostatically pre-stressed 
earth. 

Because VLBI is tied directly to an inertial reference system, it is superior to 
any of the other new techniques in resolving the forced nutations. As discussed by T.A. 
Herring in this volume, the VLBI results disagree with the IAU adopted theory by 
almost 2 mas, particularly at the annual frequency: ω=Ω(1+1/365.25) cycles/day. This 
is the forcing frequency closest to ω0> and it suggests that the FCN frequency may be 
somewhat larger than expected, close to ω 0 =Ω(1+1/435) cycles/day (Gwinn, et al, 1986). 

Equation (2) suggests that ω0 can be modified by changing either β or e f. Wahr 
and Bergen (1987) (see, also, Dehant, 1987) considered the effects of mantle anelasticity 
on β, and concluded that the corresponding perturbation of ω0 is too small and, more 
importantly, has the wrong sign. Although the effects of anelasticity are, in principle, 

Ω l+-A-(ef-/?) 
A m 
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observable using the current VLBI observations, the larger discrepancy between observa-
tion and theory must first be resolved before the VLBI results can be used to learn about 
diurnal anelasticity. 

Probably the most likely explanation for the discrepancy is, instead, uncertainty in 
e f, as postulated by Gwinn, et al. (1986). Recent results based on seismic tomography ( 
eg. Richards and Hager, 1984; Creager and Jordan, 1986; Morelli and Dziewonski, 1987) 
suggest that the shape of the core-mantle boundary may diverge appreciably from 
hydrostatic equilibrium. It is not straightforward to compute the effects on e f given only 
the shape of the core-mantle boundary. A perturbed boundary and an aspherical den-
sity distribution in the mantle will cause perturbations in the internal density surfaces in 
the core, and these will affect e f. But, current models of the boundary based on seismic 
data suggest values for the non-hydrostatic portion of e f which are as large or larger than 
the result inferred from the nutation observations. In fact, the VLBI nutation observa-
tions are proving to be a valuable independent constraint on the seismic models. 
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APPENDIX: FCN FREQUENCY FOR A NON-HYDROSTATICALLY 
PRESTRESSED EARTH 

All existing nutation models assume the earth is hydrostatically pre-stressed. 
Among the implications of this assumption which could be important for nutation calcu-
lations are that, in the unperturbed state, the core-mantle boundary is a surface of con-
stant potential, and that the core-mantle boundary and all internal density surfaces in 
the core and mantle are elliptical: ie. their departure from spherical symmetry can be 
described with the single spherical harmonic Υ ^ Λ ) , where θ and λ are co-latitude and 
eastward longitude, respectively. 

Recent results based on seismic tomography suggest that surfaces of constant den-
sity in the mantle and surfaces of discontinuity, such as the core-mantle boundary, have 
shapes which are not consistent with the hydrostatic pre-stress assumption. The Yj 
components of these surfaces differ from the hydrostatic values, and there are large com-
ponents with other Y™ angular dependence. Since the FCN is critically dependent on 
pressure coupling acting across the core-mantle boundary (and, to a lesser extent, gravi-
tational coupling between the core and mantle), the FCN eigenfrequency is apt to be 
sensitive to this sort of detail about the surface shapes. 

In this Appendix, the FCN eigenfrequency is modelled under only minimal assump-
tions about the state of pre-stress in the earth. The core is assumed to be hydrostatically 
pre-stressed (it is, after all, a fluid even at seismic periods), but the mantle is allowed to 
possess a non-zero deviatoric pre-stress. As a result, the core-mantle boundary and the 
internal density surfaces in the mantle can have arbitrary shape. Constant density sur-
faces in the core are uniquely determined by the shape of the core-mantle boundary and 
by the gravitational potential from the mantle acting on the core. But, the constant 
density surfaces in the core need not coincide with the surfaces expected for an every-
where hydrostatically pre-stressed earth. The derivation, below, extends the semi-
analytical model of Sasao, et al. (1980) to account for an initially non-hydrostatic mantle 
and core-mantle boundary, and to more fully justify a number of the approximations. In 
this derivation, the inner core is assumed to be fluid. 

Consider a reference frame fixed to the mantle and rotating with it. For nutational 

motion at frequency ω0, the rotation vector of the frame is Ωζ -f Qm 0 (x+iy)e l u ; o , where 

the nutational motion of the mantle is described by m 0 , and m 0 « l . For the FCN, 

( ω 0 - Ω ) / Ω is first order in e, where e is some measure of the departure of the earth from 
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spherical symmetry. The equations of motion in the hydro-statically pre-stressed core for 
the case of no external forcing are 

ρ[-ωΪΒ+2ϊωοηχΒ] = - ρ ν ^ 1 - ν Ρ Ε - / ? ι ν Φ - Ω 2 ρ Γ η 0 [ ( χ + ^ ) ζ ( Ω - α ; 0 ) + 

+z(x+iy)(n+a, 0)] (Al) 

V V I = 4nGp1 

where 8 is the displacement field in the core; φΐ9 P E , and p1 are the Eulerian perturba-
tions in gravitational potential energy, pressure, and density, respectively; Ω=Ωζ 
represents the mean rotation of the earth; and ρ and Φ are the initial density and total 
potential energy (gravitational plus centrifugal) and can have arbitrary angular depen-
dence, except that surfaces of constant ρ must be surfaces of constant Φ in the core. 
There are, also, equations relating p1 and P E to derivatives of s, which are not shown 
here. And, there are similar, although more complicated, differential equations describ-
ing displacements in the mantle, which are also omitted here. The mantle equations 
explicitly include the non-hydrostatic pre-stress (see Woodhouse and Dahlen, 1978, for 
both the mantle and core equations). 

For nutational motion, the displacement field in the core has the form 

8 ( r ) = N 0 o ( x + i y ) x r + 8 d ( r ) (A2) 

where θ0 represents the mean nutational motion relative to the mantle, and 8 d , which 
represents the deformation of the core, is first order in e compared with the θ0 term. 
Taking (x—iy)*[rx(eqn.(Al))] and integrating through the core, and using ( A 2 ) for s, 
gives an angular momentum balance equation for the core: 

2 I N 2 A f m 0 + 2uü2Afi0^^ + iuJTlci 

= (χ-iy)· / r x - p V ^ - V P E - ^ ν Φ (A3) 

where A f is the core's principal moment of inertia in the equatorial plane; and 
C - = C 1 3 — i c 2 3 > where the c^ represent the perturbation in the core's inertia tensor due to 
the motion. The terms on the right hand side of (A3) include the pressure and gravita-
tional torques on the core from the mantle. 

All terms in (A3) are second order in e or smaller, given that θ0 is zero order. For 
example, φχ is first order since it is a deformation term, and the integral of ρτχνφί is 0 
no matter what φ1 is, unless either the core shape or the internal density in the core is 
aspherically symmetric. As another example, Ω ω 0 = Ω 2 is a first order quantity (the 
unperturbed centrifugal force is order € times the unperturbed gravitational force) as is 
(Ω—ω0)/Ω. Thus, the θ 0 term in (A3) is second order. As a final example, m 0 is first 
order compared with Ωθ0 (m0 represents motion of the mantle rotation axis as seen from 
the mantle and is of order (Ω—ω0)θ0) so that Ω 2πι 0 is second order. 

A comparable angular momentum equation for the entire earth, after dropping all 
terms third order or smaller, is 

2iAm 0 = 2(« e-n)AA (A4) 
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where A is the principal moment of inertia for the entire earth. (This result is consistent 
with the assumption that m 0 is first order.) 

Next, c i and the right hand side of (A3) can be related to θ0. This is done by 
using (A2) in ( A l ) , dropping all terms second order or smaller in e which occur in (Al ) 
and in the corresponding mantle differential equations and in all boundary conditions, 
and then solving the entire system on a computer. In the core, for example, the first 
order (spheroidal) equations for φΐ9 P E , and p1 reduce to 

p 0 V ^ + ν Ρ Ε + Ρ ι ν Φ 0 = [i^n 3v /8VÏ5")poV(r 2Y 2

1) (A5) 

where p0 and Φ0 are the spherically symmetric parts of ρ and Φ. No m 0 terms are 
included in (A5), because those terms are second order. 

The corresponding first order differential equations in the mantle are the usual set 
of equations describing deformation of a spherical, non-rotating, static, and hydrostati-
cally pre-stressed mantle (see, for example, Alterman, et al., 1959), with no first order 
apparent force corresponding to the 90 term in (A5). Although there is an apparent 
force in the mantle which depends on m 0 , that force is second order. All first order 
boundary conditions within the core and the mantle and at the outer surface are also 
equivalent to the boundary conditions for a spherical, non-rotating, hydrostatically pre-
stressed earth. 

In effect, then, all deformation-related quantities can be computed by solving the 
static equations of motion for a spherical, non-rotating, hydrostatically pre-stressed earth, 
subject to an apparent force proportional to P Q V ^ Y J 1 ) in the core and equal to 0 in the 
mantle. Note that, as a consequence, neither the non-hydrostatic pre-stress in the man-
tle nor any of the earth's aspherical structure enters explicitly into any of the first order 
deformation equations. Their effects are included only through the integrals on the right 
hand side of (A3). 

Because the apparent force in the core is proportional to / ? 0 V ( r 2 Y 2 ) , and because 
the first order deformation equations are spherically symmetric, pv P E , and φ1 have 
Υ^ί^,λ) angular dependence. Using this angular dependence, (A5) yields directly 

(r,M) = PoW [ (ΐΩ 30 0ν^7Ϊ5"]ι 'Υ^,λ)-^Μ,λ) ] (Αβ) 

Using (A6) in (A3) and doing the integrals gives a result accurate to second order of 

i c f n 2 

2 ί Ω 2 ι η ο + 2 Ω 2 0 ο ( Ω - α ; ο ) + — — = -2Q%e{ (A7) 

where e f is the dynamical ellipticity of the core and is equal to (C f —A f ) /A f , where C f is 
the polar moment of inertia of the core. 

Define the dimensionless, real parameter β so that 

c{_ = ß2Kp,90 (A8) 

Here, β can be determined by solving the deformation equations on a computer. Using 
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(A4) and (A8) in (A7) and solving for the FCN eigenfrequency, ω0, gives 

l+T-(ef-0) 
A m 

(A9) 

where A m is the principal moment of inertia of the mantle. 

Although the result (A9) was derived here without assuming a hydrostatically pre-
stressed mantle, it is identical in form to the hydrostatic result. The dynamical ellipti-
city, e f, depends on the Y j component of the core-mantle boundary shape, and on the 
Y2 terms in the density stratification inside the core. There is no dependence, to this 
order of approximation, on any other Y j m terms in the aspherical structure. The factor β 

represents the effects of deformation and is insensitive, to this order, to aspherical struc-
ture. For a hydrostatically pre-stressed earth, β is about 25% of e f, and ω0—(H—— ) 

460 
cycles per day. 
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