
RESEARCH ARTICLE

Why cultural distance can promote – or impede – group-
beneficial outcomes

Bret Alexander Beheim1 and Adrian Viliami Bell2

1Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig,
Germany and 2Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
Corresponding author: Bret Alexander Beheim; Email: bret_beheim@eva.mpg.de

(Received 31 March 2023; revised 16 December 2023; accepted 16 January 2024)

Abstract
Quantifying the distance between cultural groups has received substantial recent interest. A key innov-
ation, borrowed from population genetics, is the calculation of cultural FST (CFST) statistics on datasets
of human culture. Measuring the variance between groups as a fraction of total variance, FST is theoret-
ically important in additive models of cooperation. Consistent with this, recent empirical work has con-
firmed that high values of pairwise CFST (measuring cultural distance) strongly predict unwillingness to
cooperate with strangers in coordination vignettes. As applications for CFST increase, however, there is
greater need to understand its meaning in naturalistic situations beyond additive cooperation. Focusing
on games with both positive and negative frequency dependence and high-diversity, mixed equilibria,
we derive a simple relationship between FST and the evolution of group-beneficial traits across a broad
spectrum of social interactions. Contrary to standard assumptions, this model shows why FST can have
both positive and negative marginal effects on the spread of group-beneficial traits under certain realistic
conditions. These results provide broader theoretical direction for empirical applications of CFST in the
evolutionary study of culture.

Keywords: Cultural diversity; cultural similarity; CFST; coordination; synergy

Social media summary: When should cultural distance between groups correlate – or not correlate –
with parochial altruism and warfare?

1. Introduction

Wright (1949) introduced FST as a measure of genetic population structure to assess how genotype
frequencies for each subpopulation differ from expectations assuming random mating. Also called
the inbreeding coefficient, FST responds to the relative influence of selection, migration, mutation
and drift operating between and within groups (Holsinger & Weir, 2009). Like the well-known R2

or the ICC calculation in generalised linear modelling, the FST index is a ratio of between-group to
total variance, and measures the extent to which group structure ‘explains’ variation across a popula-
tion on some discrete or continuous trait or set of traits. The popularity of such variance ratios is due
in part to their ready interpretation – values near 0 indicate that traits within any specific group are
about as variable as within the population as a whole, while values near 1 indicate that almost all vari-
ance exists between (mostly homogeneous) groups (Fig. 1).

Variance measures can similarly provide insights into cultural processes in group-structured popu-
lations. While the modes of cultural inheritance are more varied than in genetic evolution, cultural FST,
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or CFST (Bell et al., 2009), indicates the relative amount of segregation or self-assortment taking place
on cultural traits, and can measure the between-group cultural distance caused by cultural selection,
migration, social learning and other forces (Boyd & Richerson, 1985; Cavalli-Sforza & Feldman, 1981).
The uses of cultural FST have greatly multiplied in recent years, with study systems ranging from chim-
panzee tool use (Boesch et al., 2020) to musical diversity (Rzeszutek et al., 2012), folk tales (Ross et al.,
2013), the evolution of cooperation (Handley & Mathew, 2020; Smith et al., 2018) and cultural dis-
tances between religions (White et al., 2021) and nations (Muthukrishna et al., 2018). By answering
what fraction of the total variance is found between groups, cultural measures of FST mirror its broader
use in genetics in understanding both the origins and implications of population structure.

In practice, CFST is thought to positively predict the cooperativeness of groups. Smith et al. (2018)
write that ‘if FST is large enough, then individually deleterious but group-beneficial traits can evolve’
and Zefferman and Mathew (2015) argue that ‘a high cultural FST promotes cultural predisposition for
warfare because, as cultural norms and institutions are concentrated in specific groups, they will
spread disproportionately as these groups win resources’.

In light of the recent popularity of CFST, it is essential to strengthen the connection between CFST
and specific causal models of social evolution. To state that a CFST estimate of 0.01, 0.1 or 0.6 is ‘large’
or ‘small’ is not provided by the Law of Total Variance, nor is the meaning of a comparison of CFST
values calculated on different traits or between two populations. Currently, the main justification for
the use of FST is its importance in mathematical models of cooperation, such as the Prisoner’s
Dilemma and the Public Goods Game, in which altruistic individuals pay some fixed cost to produce
a fixed benefit within their group. In such additive models of the evolution of altruism, FST becomes a
concise measure of the relative scope for between-group and within-group selection (Hamilton, 1975),

Figure 1. Six diversity scenarios for a metapopulation of nine groups (circles) characterised by a global mean �x and FST. For some
discrete individual trait with two types, A (green) and B (yellow), we compare metapopulation mean frequencies of A at two levels,
�x ∈{0.1,0.5} and three between-total variance ratios, FST ∈{0.1,0.5,0.9}. Theoretical models of the evolution of cooperation indicate
that metapopulations with equal FST are equally likely to evolve altruistic behaviour, and altruism is most likely to evolve in meta-
populations with higher FST (rightmost column), regardless of �x (Hamilton, 1975). The simulation code to reproduce this figure is in
the Supporting Information.
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and serves as a quantitative threshold for the spread of altruistic behaviour, e.g. eq. (5) in Bowles
(2006) and eq. (1) in both Bell et al. (2009) and Richerson et al. (2016) (see Supporting
Information, SI, Section 1).

Yet, many features of social life are beyond the ability of such additive models of cooperation to
articulate (Skyrms, 2004). In particular, the consequences for choosing a cooperative or non-
cooperative behaviour are often not fixed, but rather depend on the current prevalence of behaviours
within one’s group; the interactions have frequency-dependent or synergistic payoffs (Grafen, 1979;
Queller, 1985) and so lack dominant strategies. Many culturally transmitted norms have this property,
and in such systems, the interests of the individual and the group are often not necessarily in oppos-
ition. For example, groups residing on opposite sides of an ecological or ethnic frontier often have
institutions and cultural norms that are highly differentiated (McElreath et al., 2003), and so will
have high pairwise CFST. If social interactions in this meta-population resemble cooperative dilemmas,
it is reasonable to expect the emergence of parochial altruism with culturally similar neighbours
(Handley & Mathew, 2020) and even organised raiding and warfare against outgroups (Turchin,
2009; Zefferman & Mathew, 2015). Yet if social interactions were more accurately characterised by eco-
nomic exchange, one might instead expect that potential access to non-local resources (Pisor &
Gurven, 2016) or possible risk-buffering against local shocks (Liu & Mostafavi, 2023) would select
for norms of generosity towards the out-group and greater cross-cultural competence (Bunce,
2020). Depending on the causal model of the social interaction, i.e. the ‘rules of the game’, the
CFST statistic may plausibly hold very different meanings. As with additive altruism, though, confirm-
ing such a hypothesis requires the careful reasoning provided by formal mathematical theory.

We here seek to develop the analytical connection between FST, both cultural and genetic, and the
evolution of group-beneficial traits (GBTs) across a variety of frequency-dependent social interactions.
Our approach proceeds in three steps. First, we review the properties of various coordination and
anti-coordination games to build a general frequency-dependent model of social interaction, from
which games like Stag Hunt and Hawk–Dove can be viewed as specific cases. Our synthetic model
of linear synergy builds on recent work by Allen and Nowak (2015) and Van Cleve (2017), and
can describe a continuous spectrum of non-additive games via a single parameter, θ. Following the
classic derivation of the evolution of altruism using the FST variance ratio (Hamilton, 1975), we analyse
our general frequency-dependent system to identify the conditions under which group-beneficial out-
comes can evolve, focusing in particular on the role of within- and between-group variance. This
extends classic results on FST and assortment in mathematical biology (Gardner et al., 2011;
Queller, 1985) into two regions of the synergistic spectrum not previously considered: simple coord-
ination and complementarity. Based on these findings, we re-evaluate the existing body of empirical
work on cultural FST in light of some testable predictions from the model. By doing so we hope to pair
the growing programme of quantifying cultural variation with a suite of models of social interaction
framed in the language of evolutionary game theory.

2. The spectrum of social games

The field of evolutionary game theory has contributed substantially to our understanding of human
and non-human societies over the last half-century (Gintis, 2000). In this approach, individual agents
within a population are treated as expressing behavioural strategies which change in frequency through
an evolutionary process, either the survival and reproduction of genetic alleles (Maynard Smith, 1982)
or the social transmission of behaviours from demonstrators to learners (Smaldino, 2023). Fitness
expressions that define the payoffs of specific strategies, both at the individual level and at the
group level, are passed through an evolutionary replicator model. Behavioural options can themselves
be treated as dichotomous choices (e.g. ‘cooperate’ or ‘defect’) or quantitative measures that fall on
some continuum, e.g. allocations of resources between self and other. Interactions are commonly
described as either pairwise, as a group of players forms dyads who each play the same two-player
game together, or as a single N-person game in which all players contribute to shared payoffs. In
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all cases, a substantial amount of information about a social system can be encapsulated by asking
whether a particular equilibrium state can be disrupted by intermittent or persistent shocks, and
how different mechanisms of assortment and social structure affect the diffusion of cooperative traits,
e.g. through reciprocity (Lehmann, Powers, & Schaik, 2022), punishment (Marlowe et al., 2008) or
positive assortment via metapopulation segmentation (Taylor & Nowak, 2007). We here focus on
games involving this latter mechanism, reviewing first the standard model of additive cooperation
and then the different kinds of synergistic interactions which have been studied by game theorists.

2.1. Additive cooperation

In evolutionary biology, altruism refers to any behaviour that comes at a personal cost to the actor
while benefiting others in a population. Much theoretical work on social evolution over the last half-
century has focused on the conditions for the emergence of altruism, and has led to fruitful discoveries
such as Hamilton’s concept of inclusive fitness (Hamilton, 1964) and the gene’s-eye perspective.
Altruism is also important to the study of population genetics, because it is perhaps the simplest pos-
sible representation of a conflict between group and individual interests, and so provides an extreme
test of the properties of specific population structures (Rogers, 1990). In both of these contexts, FST
plays a central role.

In an additive model of altruism in group-structured populations, we imagine that the ith individ-
ual in the jth group has a phenotype xij between 0 and 1, representing their propensity towards cooper-
ation. If xij = 1, then this individual pays a fitness cost c to create a collective benefit b for all members
of their group (including themselves). Individuals in the group who are not altruistic (xij = 0) pay no
such cost, but experience the group benefits from other altruists. Formally, we can represent the fitness
payoff for an individual as

wij = w0 + bxj − cxij, (1)

where c and b are the cost and benefits of altruism, and xj is the mean frequency of altruism within
group j. Note that Eq. (1) does not require that interactions be dyadic, and applies to both pairwise
Prisoner’s Dilemma-type interactions and N-player Public Goods Games (SI Section 1).

Extending the original concept of relatedness by shared ancestry in his famous rule, Hamilton
(1975) found that the strength of selection for altruistic behaviours in such a system is directly pro-
portional to the fraction of behavioural variance that exists between groups, such that altruism can
evolve under the condition

FST .
c
b
. (2)

This result is a general feature of linear, additive interactions in structured populations, because the FST
statistic serves as a complete summary of the extent to which altruists positively assort with one
another (Taylor & Nowak, 2007), as genetic relatedness does in systems of interacting kin. This selec-
tion threshold is empirically useful, because it suggests that observed FST values in additive interactions
will be strongly correlated with the prevalence of cooperative behaviour. Consistent with this, Handley
and Mathew (2020) have shown that Kenyan pastoralists are more willing to cooperate with hypothet-
ical strangers who are more culturally similar to them, as measured by CFST between the respective
ethnic groups, and Smith et al. (2018) find high CFST across Hadza camps in contributions to multi-
person Public Goods Game experiments. As many mechanisms of human cultural transmission can
maintain relatively high between-group variation (Boyd & Richerson, 1985), and observed FST ratios
for human groups are generally much larger for cultural than genetic traits (Bell et al., 2009), the high
degree of parochial altruism observed in human societies is plausibly understood via the transmission
of cooperative norms structured by human cultural groups (Richerson et al., 2016; Zefferman &
Mathew, 2015).
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2.2. Four categories of non-additive games

The use of CFST as a quantitative measure of cultural diversity is motivated by its prominence in evo-
lutionary models of altruism, so its significance depends on the extent that real-world social interac-
tions resemble the underlying assumptions of Eq. (1). Yet this model has been criticised for being
unrepresentative of most social interactions (Alvard & Nolin, 2002; Skyrms, 2004). While theories
of altruism posit a fundamental opposition between the interests of a group and of individuals within
the group, many real-world institutions function to align individual and group incentives by adjusting
reward structures, e.g. through punishment (Marlowe et al., 2008; Molleman et al., 2019) or reciprocity
(Lehmann et al., 2022; Panchanathan & Boyd, 2004).

Further, models of cooperation such as the Prisoner’s Dilemma usually assume an additive payoff
structure, such that the marginal cost to an individual of switching their behaviour to altruism is the
same whether one is in a group entirely of altruists or in a group entirely of defectors, or any mixture
of the two. In many naturalistic contexts, though, a social behaviour’s consequences are a function of
how common it is within the population. Cutting a queue may bring angry, immediate sanctioning in
a group where it is rare, but, where common, be a self-reinforcing way to organise turn-taking, or even
a social norm. Conversely, an unusual strategy in a competition, or novel product in a marketplace,
may derive its success primarily by its rarity vs. commonplace alternatives. As a result, the best
response in each situation is always dependent on the behaviours of others, and so there is no dom-
inant strategy. Many kinds of social interaction are non-additive, and linguistic variation, music, sar-
torial traits and other domains of culture are better described by other game-theoretic models, e.g. Stag
Hunt, Snowdrift, Chicken or Hawk–Dove (Camerer, 2003; Gintis, 2000; Maynard Smith, 1982;
Skyrms, 2004; Smaldino, 2023). These games can all be characterised by the presence of frequency-
dependent or synergistic payoffs, and can be divided broadly into four categories.

2.2.1. Simple coordination
Individuals benefit from coordinating on the same behaviour in many kinds of social interaction. The
success of a rowing team in a race, a troupe of dancers, the flow of a traffic system or the functioning of
a code of laws often depends on participants all doing exactly the same thing, possibly in the presence
of a coordinating authority. In coordination games, the worst outcomes are generally experienced by
mixed groups in which different participants act with incompatible behaviours, i.e. groups with high
behavioural diversity. The origins of norm psychology (House et al., 2020), economic agglomeration
(Krugman, 1991), by-product mutualisms (Hauert et al., 2006) and positive network externalities
(Katz & Shapiro, 1985; Liebowitz & Margolis, 1994; Schelling, 1973) are fundamentally rooted in
coordination.

In such interactions, a marginal increase in a norm, behaviour or strategy (generically, a ‘trait’)
within a group will increase the payoffs of individuals using that trait, and reduce the payoffs of
those not using that trait. To distinguish this class of interactions from coordination dilemmas
(described below), we refer to these as simple coordination games, although they have also been called
‘correlative coordination’ (Smaldino, 2023), ‘relaxed’ social dilemmas (Allen & Nowak, 2015) or just
‘coordination’ (Cooney, 2022).

In many cases of simple coordination, the choice between alternatives is functionally arbitrary, such
as the decision to drive on the left or right side of the road, or to adopt purely symbolic markers of
group identity (McElreath et al., 2003). These can be described by the Pure Coordination game, repre-
sented by the 2 × 2 payoff matrix:

A B

A 5 3

B 2 5
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Here, the payoffs are given for the ‘row-player’, who receives this amount given their trait and the
trait of their partner, the ‘column-player’ (whose payoffs are symmetrical). Although the usual framing
involves two players making a simultaneous choice following this payoff matrix, Pure
Coordination-type interactions can just as easily apply to large groups or entire societies (SI Section
2.3). Regardless of the framing scenario, the essential detail in Pure Coordination is that all players
receive the same high payoff if they can successfully coordinate on one of the two equivalent
alternatives.

In other kinds of coordination, the two options instead have a clear difference in performance
which has consequences for between-group competition. A common example is differing norms
about acceptable marriage partners, which may impact the size and cohesion of political alliances
(Schulz et al., 2018). Following Boyd and Richerson (2002), we refer to these better-performing traits
as group-beneficial traits (GBTs), because the group receives a higher payoff at one pure-strategy equi-
librium vs. the other. Group-beneficial traits exists in most synergistic interactions (with exceptions
such as Pure Coordination), but the GBT pure-strategy equilibrium is not always the group-optimum
trait distribution. The existence of GBT’s is important in a structured metapopulation, as groups that
coordinate on different equilibria can compete with one another through equilibrium selection
(Bowles, 2006; Richerson et al., 2016).

2.2.2. Coordination dilemmas
In contrast to simple coordination, a coordination dilemma exists when all individuals experience a
coordination dynamic but, regardless of their own behaviour, benefit from the increased prevalence
of the GBT. This could be because one of the two options produces some kind of public good
which all individuals in a group benefit from (Boyd & Richerson, 2002), or, alternatively, the other
trait produces some kind of ‘public bad’ which is costly to all individuals. Within game theory, the
most famous coordination dilemma is the Stag Hunt, initially described by Jean-Jacques Rousseau
(Skyrms, 2004), usually defined by a 2 × 2 payoff matrix such as

Stag Hare

Stag 5 0

Hare 2 2

As Rousseau put it, hunters are better off coordinating to hunt a stag to earn the highest payoff, but
may be tempted to hunt hare instead, abandoning their stag-hunting partners who earn nothing as a
result. In this classic formulation, a Hare player receives the same mediocre payoff regardless of their
partner’s behaviour, so technically the Stag Hunt represents a boundary between simple coordination
and a coordination dilemma. Like cooperative dilemmas, much research has focused on circumstances
under which group-beneficial traits spread within coordination dilemmas. Although individuals are
incentivised to choose the GBT, risk-averse players may require assurance that their partner will
also, and for this reason coordination dilemmas are also called ‘assurance games’ (Sen, 1967).
Coordination dilemmas as a group are also often referred to generically as ‘stag hunts’ (Cooney,
2022; Taylor & Nowak, 2007; Van Cleve, 2017), although different games have different characteristics
with respect to equilibrium selection (Boyd & Richerson, 2002). Here, we reserve the term ‘Stag Hunt’
to refer exclusively to the algebraic form of the specific game structure above (SI Section 3), rather than
coordination dilemmas as a category.

2.2.3. Anti-coordination dilemmas
Another important class of games involves a negative frequency dependence between strategies. As in
coordination dilemmas, an anti-coordination dilemma requires that all individuals benefit from the
increased prevalence of the GBT. However, unlike coordination dilemmas, each trait can realise higher
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payoffs within a group composed of the other trait, so individuals are always incentivised to play the
rare strategy. Since neither strategy is stable against invasions by the other, evolutionary systems
involving anti-coordination dilemmas tend to approach a stable mixture of strategies, but this
mixed equilibrium always realises lower benefits than those of the group-optimum configuration of
strategies.

Anti-coordination dilemmas are often described in terms of negative externalities or congestion
games (Peña & Nöldeke, 2023), and a popular anti-coordination dilemma is Snowdrift (Doebeli &
Hauert, 2005). Here, two individuals are trying to accomplish a group project that produces a shared
benefit (e.g. a village well, a road clear of snow or a co-authored manuscript) but each has the temp-
tation to shirk their part in the labour. This game is described algebraically by benefit b and cost 0 < c
< b, such that the row-player’s payoff table is

Work Shirk

Work b− c/2 b− c

Shirk b 0

As is generally the case in anti-coordination dilemmas, payoff-maximising individuals would prefer
to live in a group in which all other players are Workers, but can realise a higher payoff by individually
defecting to ‘Shirk’. However, this negative frequency dependence works in both directions: a group of
Shirkers pays a very large cost (producing no group project), so the cooperative Work strategy is also
able to invade.

Another important example of an anti-coordination dilemma is Maynard Smith’s (1982) Hawk–
Dove game, defined by payoff matrix

Dove Hawk

Dove V/2 0

Hawk V (V− C )/2

for resource V and cost of fighting C > V. If both agents employ the Dove strategy, each has an equal
chance of getting the resource. If one plays Hawk and the other Dove, the Hawk gets all the resources
without a fight, and the Dove nothing. If both play Hawk, though, a fight begins in which one gains
the resource at a large cost to the other, again with equal chance to each participant. Overt conflict is
the worst outcome, both for groups and for individuals, and as a result each strategy can invade the
other when it is rare.

Although derived independently in very different contexts, Hawk–Dove and Snowdrift have essen-
tially identical evolutionary dynamics. Anti-coordination dilemmas as a whole are often referred to in
this literature as ‘hawk–doves’ (Cooney, 2022; Taylor & Nowak, 2007; Van Cleve, 2017) or ‘snowdrifts’
(Allen & Nowak, 2015). As above, though, we reserve the terms Snowdrift and Hawk–Dove to refer
specifically to the original payoff matrices defined above, distinguishing them from other games in
the larger, heterogeneous class of anti-coordination interactions.

2.2.4. Complementarity
Not all forms of anti-coordination are antagonistic. In Lamaleran whale hunting, success depends on
the coordinated actions of not only a harpooner, a bailer and a helmsman, but also a sailmaker, a car-
penter and a blacksmith (Alvard & Nolin, 2002). Likewise, the specialised roles within an ant colony,
an orchestra, a sports team or a sailing crew, or the production and flow of goods and services within a
marketplace, depend on behavioural diversity. Because each behaviour experiences a higher payoff
when rare, this is essentially an anti-coordination dynamic, but unlike anti-coordination dilemmas
above, neither trait benefits from a marginal increase in itself within the group; an increase in the

Evolutionary Human Sciences 7

https://doi.org/10.1017/ehs.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.8


abundance of each trait is always beneficial to individuals choosing the alternative. For this reason, we
refer to this category of interaction as complementarity.

Following Adam Smith’s famous metaphor, we define the Invisible Hand game as the complemen-
tary interaction in which the group-optimal frequency of behaviours is also the mixed equilibrium
itself (see SI Section 3.3). An example payoff matrix for this game might be

A B

A 5 6

B 6 2

As a kind of mirror-image of simple coordination, players here can realise the highest payoffs by
individually specialising in one or the other trait to generate a synergistic payoff. In economics, com-
plementarity is most famously associated with the principles of ‘gains from trade’ and Ricardian com-
parative advantage, and in sociology and evolutionary biology, with divisions of labour (Cooper et al.,
2021). Confusingly, the phrase ‘strategic complements’ is also used in game theory to describe coord-
ination games, in the sense that two players both using the same trait may generate positive synergies
when interacting. Here, we use the concept of complementarity strictly to refer to different behaviours,
traits or strategies ‘complementing’ each other.

Some kinds of complementarity may give the same outcome to all participants regardless of who
does what, and as with coordination, which behaviour is chosen by which participant may be totally
arbitrary. Depending on their role in the interaction, however, each participant may earn different pay-
offs, which allows complementarity to serve as a model for studying the origins of inequality and
unfairness (O’Connor, 2019).

3. A model of linear synergy with mixed equilibria

Although the categories of interaction described above have different characteristics, and the games
within those categories are derived from different scenarios, they are all connected by synergistic or
frequency-dependent payoffs and (with notable exceptions like the Pure Coordination game) by the
presence of GBTs. Unlike additive cooperation, there is no dominant strategy in any such games,
as each player’s best option always depends on what their partners do. As a result, it is valuable to
consider all these interactions simultaneously in the context of a general model. To abstract away
from specific framing scenarios such as ‘cooperation’, ‘defection’, ‘hunt stag’ and ‘hunt hare’, etc.,
we instead define two generic behavioural strategies, A and B, and interpret each phenotype xij as a
propensity toward trait A, taking any real value between 0 and 1, inclusive (which strategy to track
is arbitrary). As before, we define a structured population with group-average phenotype xj for each
group j and individual phenotype xij for each individual i in group j.

To derive a tractable model that incorporates the above phenomena, we make two assumptions.
As in the metapopulation model in Eq. (1), we assume that payoffs to all individuals are linear
with respect to the group frequency of A, xj. Define parameter m as the marginal effect of a
within-group increase in trait A on the fitness of a focal individual with A, and n as the marginal
effect of such an increase for a focal individual with trait B. For individuals with mixed strategies
the marginal effect of an increase in A is xijm + (1− xij)n, the weighted average of m and n. We
assume that m and n are both constant over possible distributions of behaviour within a group,
but make no assumption about their signs or relative magnitudes. The assumption of linearity is
critical, as non-linear fitness functions require higher-order moments to evaluate the covariance
between individual and group phenotype, and FST will no longer be sufficient to describe group
structure (Schonmann & Boyd, 2016). One limitation of our approach, however, is that by treating
group fitness as a simple average of over individual (linear) fitness, it ignores the concept of vis-
cosity or local competition (Hamilton, 1964).
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Second, in order to incorporate the concept of frequency dependence, we assume non-additivity or
synergy with respect to individual frequency of behaviour, such that a marginal change in xij has a
different impact on individual payoff as a function of group frequency xj. This is distinct from the con-
cept of linearity, by which we mean that a change in xj has a constant marginal effect on those in the
group, regardless of the group frequency xj. Thus, a model can be both linear and non-additive.
Synergistic effects imply that an individual increasing their use of behaviour A can sometimes
decrease, and sometimes increase their personal fitness depending on how common A is in the
group, so there must be some group frequency k at which this individual effect is zero. Together,
these assumptions produce the fitness expression

wij = w̃+ (xj − k)(xijm+ (1− xij)n), (3)

for real numbers m, n and w̃ (see Table 2 for a complete list of symbols). This fitness expression
describes pairwise interactions whose payoffs depend on the group frequency of traits, but also
N-player interactions in which users of each strategy experience constant per capita returns to scale
(Peña et al. (2015), detailed in SI Section 2.3).

Like additive altruism in Eq. (1), groups of individuals playing synergistic games experience two
pure-strategy equilibria, but each of the games described above are distinguished by the presence of
a third, mixed equilibrium k at which different strategies co-exist with the same payoffs within a
group. Depending on the interaction structure, this mixed-strategy equilibrium may be stable or
unstable. In coordination games, k separates the two basins of attraction for each pure-strategy equi-
librium. Harsanyi and Selten (1988) define the risk-dominant equilibrium as having the larger basin,
which is more likely to be reached by stochastic evolutionary dynamics (Kandori et al., 1993; Young,
1993). In anti-coordination games, in contrast, k represents the stable equilibrium whose basin of
attraction covers xj ∈ (0, 1), and in complementarity games, groups at k have higher payoffs than
at either of the two pure-strategy equilibria (SI Section 3.3).

In general, we do not require k to be between 0 and 1, and synergistic games can exist without a
third, mixed equilibrium. We can also express Eq. (3) as

wij = w0 + bxj − cxij + dxijxj (4)

which extends Eq. (1) with a synergistic coefficient d ∈ R. In the above notation, m = b + d while n = b,
and all members of a group experience the same fitness payoff at group frequency k = c/d. Assuming
further that b > 0, c > 0, and c− b < d < c, this formulation describes the ‘Prisoner’s Dilemma with syn-
ergy’ (Ohtsuki, 2012; Van Cleve, 2017).

We do not use this parameterisation in this analysis, because we want to be as vague as possible
about the causal mechanics of traits A and B in order to more easily interpret different synergistic
dynamics that might resemble Eq. (3). Our model covers games in which A is GBT, in the sense
that a group of A will have a higher average fitness than a group of B (−nk < m(1− k)), but also
games in which B is GBT (−nk > m(1− k)) and interactions like Pure Coordination, in which neither
trait is GBT (−nk =m(1− k)). The specific details of different interactions may indeed resemble a
Prisoner’s Dilemma, such as the choice between conserving or over-harvesting a local marine resource,
which benefits one individual at the expense of others. However, there are many synergistic interac-
tions in which the concepts of ‘cooperation’ and ‘defection’ do not make sense, such as the choice
between using LaTeX or Microsoft Word to write co-authored articles. Here, payoffs are influenced
by the ambient number of users within one’s collaboration networks, and each alternative works
well when commonplace.
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3.1. Mapping the four categories of interaction

The general model of linear synergy described by Eq. (3) can define the four categories of synergistic
interaction simply by whether the marginal effects m and n are, respectively, either positive or nega-
tive. Simple coordination interactions require that an increase in trait A benefits those with A (m> 0)
and harms those with trait B (n < 0), while in complementarity the reverse is true (m< 0, n > 0). A
coordination dilemma occurs when an increase in the GBT has a positive effect on all, but the mar-
ginal benefit is larger for those with the GBT (that is, m> n > 0 if A is GBT). Anti-coordination dilem-
mas, in contrast, require that the benefit of increasing the GBT is larger for those without the GBT,
and vice versa, as each trait has a higher payoff when rare.

We are hardly the first to map this space of interactions, or to recognise that different games can be
related to each other by transformation through a continuous spectrum. Modelling groups within a
cultural metapopulation, Boyd and Richerson (2002) use a similar approach to differentiate coordin-
ation dilemmas by the strength of selection and size of the relative basins of attraction. Hauert et al.
(2006) and Taylor and Nowak (2007) show how the Prisoner’s Dilemma can be transformed algebra-
ically into other games, defining anti-coordination and coordination dilemmas using inequalities
between absolute payoffs. This approach is further developed by Van Cleve (2017) to incorporate
the concepts of synergy and reciprocity, while Allen and Nowak (2015) and Cooney (2022) extend
this notation to cover complementarity and simple coordination interactions.

We see our approach here as complementary with existing methods. For the broad group of games
with mixed equilibria (0 < k < 1), one advantage of our parameterisation is the ability to articulate the
differences between games with the same k with only two terms, m and n. The (m, n) space then forms
a kind of map for all possible interactions in this model (Fig. 2, right). This is because the specific value
of parameter k is not important for the properties of the interactions relevant to our analysis (provided
it remains between 0 and 1); a Hawk–Dove game with k = 0.1, k = 0.5, or k = 0.9 is still a Hawk–Dove
game per its definition above (Maynard Smith, 1982). By interpreting trait A as ‘Dove’ and trait B as
‘Hawk’, the Hawk–Dove dynamic is captured in this model when m =V/2 and n = (V + C)/2. At Dove
frequency k = (C−V )/C, all individuals have the same average fitness, so it holds that

k = n− 2m
n−m

meaning that, in (m, n) space, Hawk–Dove-like interactions exist for any game in which

n = m
2− k
1− k

( )

where n > 0 and m> 0 and where 0 < k < 1.
We can supply a similar analysis for any coordination or anti-coordination game with a defined pay-

off structure, and derive a characteristic relationship between m, n, and k in the general model above
(Table 1, examples). As a result, for a given k, specific games will appear as vectors within the (m, n)
space (Fig. 2, right), and all vectors with the same slope are effectively the ‘same’ game. This means
that to differentiate games with the same equilibrium frequency k, we only need one parameter, the
polar angle θ, where tanθ= n/m. This gives us the ability to articular all linear synergistic interactions
with the same mixed equilibrium along a single numerical scale. Doing so identifies that several canon-
ical games exist at critical locations within this space marking transitions between regions (Fig. 3).

4. The role of FST in the spread of group-beneficial traits

Having defined the model of linear synergy, we now seek an expression similar to that of Hamilton
(1975) that illuminates the role of FST in the spread of group-beneficial traits. In a metapopulation
model, group interactions structure payoffs to individuals through frequency-dependent feedback,
so one reasonable method to analyse such a model is by the multi-level version of the Price equation,
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which partitions covariance dynamics within and between groups as

�wD�x = cov(wj, xj)+ E(cov(wij, xij)) (5)

Although initially developed to describe genetic evolution, the Price equation can be equally applied to
the decomposition of distinct processes of cultural transmission (Beheim & Baldini, 2012; El Mouden
et al., 2014), including group-level traits (Smaldino, 2014) and gene–culture coevolutionary systems

Figure 2. (left) Payoffs for frequency-dependent interactions, for individuals who only employ trait A (xij = 1, green) and only
employ trait B (xij = 0, yellow) following Eq. (3). In this particular interaction, n =−mk/(1 − k), which defines the Invisible Hand
game with k = 0.6. (right) Phase space of all possible games described by Eq. (3), with well-known game structures defined by spe-
cific ratios (slopes) of n to m. Here k = 0.6. Coordination dilemmas in which A is GBT (light blue) are defined by m > n > 0, and simple
coordination by m > 0, n < 0 (dark blue). Complementarity games exist whenever m < 0, n > 0 (red) and anti-coordination
dilemmas in which A is GBT by n >m > 0 (yellow). The space is symmetrical about the line n =−m(1− k)/k so only the top half
of the space is annotated (the bottom half is much the same, except B is now the GBT). The non-synergistic Prisoner’s
Dilemma exists at the degenerate case in which m = n (see SI Section 2)

Table 1. Categories of linear synergy in terms of the marginal effect m of an increase in the frequency of A on individuals
with trait A and marginal effect n on individuals with trait B, with specific examples of each category defined in terms of m,
n and equilibrium frequency k. The conditions given for both coordination dilemmas and anti-coordination dilemmas
assume that trait A is a group-beneficial trait (GBT), and equivalent conditions exist if instead B is a GBT. Pure
Coordination, in contrast, requires that neither trait is a GBT. Note the example games assume also the mixed
equilibrium is attainable, i.e. 0 < k < 1. See SI Section 3 for complete derivations of each game condition.

Interaction category Model conditions

Simple coordination m > 0, n < 0

e.g. Pure Coordination n =−m(1− k)/k

Coordination dilemmas m > n ≥ 0

e.g. Stag Hunt m > 0, n = 0

Anti-coordination dilemmas n > m ≥ 0

e.g. Hawk–Dove n =m(2− k)/(1− k)

Complementarity m < 0, n > 0

e.g. Invisible Hand n =−mk/(1− k)
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(Aguilar & Akçay, 2018). Supplying our model of frequency dependence and assuming dichotomous
phenotypes, we show in the Appendix that this expression becomes

�wD�x = (m− n)�x(1− �x)((�x − k)− FST(�x − ℓ)) (6)

where payoff ratio ℓ =m/(m− n). The critical variance ratio at which the group-beneficial trait neither
spreads or declines (D�x = 0) is then

FST = �x − k
�x − ℓ

(7)

This threshold separates FST values that cause an increase in group-beneficial traits from those that
cause a decrease, but the specific causal details of the system (defined by payoff ratio ℓ and equilibrium
location k) determine both the size and direction of evolutionary change. We now also require the
metapopulation prevalence of A, �x, which was not present in the additive condition of Eq. (2).

We can assess the effect of a marginal increase in FST on selection for A by taking the derivative of
Eq. (6) with respect to FST,

d�wD�x
dFST

= �x(1− �x)(�xn+ (1− �x)m) (8)

When A is the GBT (–nk < m(1 – k)), positive values of this selection gradient indicate stronger selec-
tion for the GBT as FST increases, while negative values imply greater selection against the GBT. If trait
B is instead the GBT (-nk > m(1− k)), the reverse is true. Because �x(1− �x) is necessarily positive, this
phenomenon is thus mediated entirely by the signs and relative magnitudes of m and n, with the selec-
tion gradient reversing direction at �x = ℓ. We can see the behaviour of Eq. (8) graphically over the four
categories of interaction in Fig. 3 by graphing the arctan θ of m and n.

Figure 3. Marginal effects of an increase in FST on the spread of A across the spectrum of linear game structures following Eq. (8)
with k = 0.6 and three values of �x. Effect units are given by dwΔx/dFST × var(xj)

−1. Named games are located at specific points on the
spectrum, with colours corresponding to the four regions described in Fig. 2, right. Trait A is a GBT over the left half of the spectrum
(until θ* = atan2((1− k), −k)), and B is a GBT in the lighter right half. No GBT exists at Pure Coordination and θ*.
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In coordination or anti-coordination dilemmas, FST must have a positive marginal effect on selec-
tion for group-beneficial trait, for the same reason Hamilton (1975) described: at high levels of FST,
behaviours that raise average group payoffs can positively assort with one another, thereby avoiding
some costs from free riding. For example, in a Stag Hunt, a high FST enables groups at different pure-
strategy equilibria to compete with one another through direct conflict (Bowles, 2006), differential dis-
persion (Rogers, 1990) or social influence (Boyd & Richerson, 2002) (Fig. 4, Stag Hunt). Consistent
with this, Kenyan pastoralists who frequently engage in intergroup conflict show a strong association
between pairwise FST and willingness to engage with partners in coordination vignettes (Handley &
Mathew, 2020). In anti-coordination dilemmas such as Hawk–Dove, high FST indicates the ability
for group-beneficial traits like Dove to avoid interacting with group-harmful behaviours like Hawk.
If FST is high enough, this positive assortment on like-type can prevent Hawk from invading a popu-
lation altogether (Fig. 4, Hawk–Dove). This positive selection gradient is also present in coordination
dilemmas and anti-coordination dilemmas without a third, mixed equilibrium (k < 0 or k > 1) such as
the ‘Prisoner’s Dilemma with synergy’ (SI Section 2.1).

Figure 4. Contour levels (colouration) showing the strength of selection on a generic trait A in four frequency-dependent games
with k = 0.6 per Eq. (6). Trait A can increase at any frequency, �x, provided that metapopulation FST exceeds the critical value set by
Eq. (7). Stag Hunt and Hawk–Dove both show increasing selection for the GBT as FST increases (a positive marginal effect). Pure
Coordination, on the other hand, shows a uniformly negative marginal effect, and Invisible Hand has a negative marginal effect of
FST below, and positive marginal effect above, the frequency �x = ℓ (white dashed line) per Eq. (8). See SI Section 3 for detailed
descriptions of each game. A simple coordination game with a similar pattern to Invisible Hand is described in SI Section 3.4, fol-
lowing Allen and Nowak (2015).
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Outside of coordination and anti-coordination dilemmas, however, we can see in Fig. 3 how FST
can both facilitate or hinder the spread of a group-beneficial trait depending on �x. Because the reversal
of the selection gradient with respect to FST lies at frequency ℓ, it can only occur in complementarity
and simple coordination interactions if 0 < k < 1, because only they allow 0 < ℓ < 1. In these regions,
d�wD�x/dFST will be positive for some �x and negative for others. When the two coordination alterna-
tives are essentially arbitrary, FST slows movement through each basin of attraction towards a pure-
strategy equilibrium, as some groups will coordinate on the minority norm even as it declines in
the population overall (Fig. 4, Pure Coordination). Similarly, complementary strategies spread faster
when FST is low, as they can more quickly find unlike-types, while with high FST each trait can become
stuck inside low-diversity behavioural enclaves that cannot realise the full benefits of complementarity
(Fig. 4, Invisible Hand).

Although directly relevant to the study of cultural FST, this phenomenon has not been clearly iden-
tified in either the cultural or social evolution literature to date. The role of FST in models of linear
synergy was initially described for discrete traits by Queller (1985), and our Eq. (6) is isomorphic
with Eq. (10) in Gardner et al. (2011) and Eq. (A33) in Lehmann et al. (2008). We can also re-express
Eq. (7) in terms of Queller’s (1985) ‘synergy coefficient’ d as

FST = c− d�x
b+ d(1− �x)

In this version, it is clear that if there are no synergistic effects (d = 0), this simplifies back to
Hamilton’s (1975) well-known threshold (Van Cleve & Lehmann, 2013). Because our approach
reduces the essential differences between games with the same k down to a single parameter, θ, we
can more readily connect the role of FST to each of the four regions of interaction via Eq. (8) and
Fig. 3. Allen and Nowak (2015) report that positive assortment between genetic relatives (which is
analogous to FST) can inhibit coordination when m + n < 0, assuming A is GBT, and provide an
example game at k = 1/7, θ =−1.19 (also see SI Fig. A13). Taking a different approach with Eq. (8),
we find that this inhibitory phenomenon is much more general, and appears whenever
�xm+ (1− �x)n , 0 (assuming A is GBT) or �xm+ (1− �x)n . 0 (assuming B is GBT). For games
with mixed equilibria (0 < k < 1), cultural distance can slow the spread of GBTs under certain trait
frequencies throughout both the simple coordination (m> 0, n < 0) and complementarity (m< 0
and n > 0) regions of the interaction spectrum.

5. Discussion

Our results challenge the prevailing view in cultural evolution that cultural distance between groups, as
measured by CFST, should positively associate with the prevalence of parochial altruism, homophily
preferences, between-group warfare and so forth. Although this finding has been empirically validated,
our model results suggest that it should be viewed as valid only within a specific range of a broader
spectrum of interaction. Within certain game structures – complementarity and simple coordination –
we can rather predict the opposite, that group-beneficial traits spread slower, or are prevented from
spreading altogether, when cultural distance between groups is relatively high and within-group
trait diversity is low (i.e. CFST is high). These results suggest that properly designed experimental
or observational studies should be able to show heterophily, a preference for interacting with those dif-
ferent from one’s in-group.

Thus, because the causal details of frequency-dependent interactions (as defined by m, n and k)
determine the effect of FST on the evolution of group-beneficial traits, caution when interpreting
and comparing empirical CFSTs is warranted. Even within a game such as Stag Hunt, in which higher
values of FST promote the spread of group-beneficial Stag behaviours, the presence of synergistic
effects complicates the ability to compare distance measures across different systems. This is funda-
mentally because the population average plays a mediating role in Eq. (7). As a result, paradoxically,
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a large CFST might indicate weaker selection for group-beneficial traits while a small CFST indicates
stronger selection (Fig. 4, Stag Hunt). Meta-analyses cataloging observed cultural FST values would
therefore benefit from contextualising these estimates with both the mean prevalence of the behaviours
they are tracking and from careful descriptions of the causal details of each system under comparison.

By making explicit the relationship between FST and the outcomes of frequency-dependent inter-
actions, we not only better-situate empirical measures of cultural distance, but also motivate new the-
oretical inquiry into questions around synergy, frequency-dependence, network measures, the
complexities of identity, the paradox of diversity and other questions that heavily rely on the structure
of variation across groups. As such, these results can bridge a number of disparate literatures on social
evolution, cultural evolution, graph theory and group identity.

5.1. Dichotomous and continuous traits

Our derivation (Appendix A) generalises Queller’s (1985) original analysis of dichotomous traits over
finite numbers of groups and individuals, allowing us to consider the effects of selection over the full
range of possible values of FST via Eq. (A3). Assuming discrete traits allows us to simplify the system to
Eq. (6), but this imposes combinatoric constraints on the possible values of �x and FST. With M groups

each with N individuals, for example, there are
N +M

M

( )
possible combinations of �x and FST, with

systematic under-representation of corner cases as a function of both M and N (Fig. 5). This indicates
that if FST values are calculated pairwise between two groups (M = 2), high FST values cannot be
reached at low or high values of �x regardless of group size. With even moderate numbers of groups
and individuals, though, most of the possible range of both �x and FST is reachable. Thus, Eq. (6)
and the resulting selection surfaces (Fig. 4) are best understood in the context of a large number of
large groups.

5.2. Networks, identities and the complexities of population structure

Our result was derived in the context of a purely hierarchical population, in which each individual has
unambiguously one, and only one, group membership. Yet in realistic social settings, individuals often
have multiple overlapping group identities. While we expect that the qualitative features of
anti-coordination, coordination and complementarity described here are quite general, we also believe
that decomposing the multiple memberships may illuminate the relevant variance measures in empir-
ical applications.

Specifically, we may decompose the first covariance in Eq. (5) relating trait value and average group
fitness, by asking how an individual’s trait value covaries with the multiple groups to which they may

Figure 5. For a metapopulation of M groups each of N individuals with binary traits, there are
N+ M
M

( )
unique combinations of �x

and FST. Shown are possible values for groups of N = 3 individuals (black) and N = 10 individuals (blue).
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belong. If the identities or groups are not competing or mutually exclusive, their dynamics may be
treated independently, i.e. a separate Eq. (5) for each group. However, if groups affect each other in
some way, we will require a system of N equations for N identities. In such a case the relevant variance
measures will reflect the properties of a system of equations, such as stationary distributions if an equi-
librium exists, or a cyclical dynamic otherwise. This may be an important theoretical avenue to pursue.

We may also consider a network approach, where we can decompose the first term in Eq. (5) into
conditional covariances. That is, the covariance of a trait value and its fitness is conditional on another
random variable, which in the network context may be the strength of the tie between two individuals
with a certain phenotype. The key statistic – the expectation of conditional covariances across network
ties – in general reflects assortment mechanisms central to the literature around group-beneficial traits,
and the relevant empirical variance measures will be expressed through parameters prescribing assort-
ment according to individual trait value.

5.3. Resolving the paradox of cultural diversity

Our results also provide theoretical focus to a persistent empirical debate about the relationship
between immigration, multiculturalism, assimilation and trust, recently framed as the ‘paradox of
diversity’ (Schimmelpfennig et al., 2021). A substantial literature in sociology and political science
has shown that racial and ethnic diversity at the neighbourhood level is associated with decreased
levels of generalised trust (Dinesen & Sønderskov, 2015) and consequently a decline in civic engage-
ment (Alesina et al., 2001; Putnam, 2007). Yet, at the same time, the integration of marginalised
minorities into a market system is often associated with an increase in expression of pro-social prefer-
ences (Henrich et al., 2010) and willingness to trust advice from co-ethnic strangers (Lightner &
Hagen, 2021), and in urbanising economies local immigration rates have been positively associated
with increases in wages (Ottaviano & Peri, 2006) and rates of innovation (Posch et al., 2023).

Since FST serves as an indicator of cultural homogeneity within groups, our model serves as a sim-
ple demonstration of this paradox. Consistent with sociological findings, low CFST (i.e. high
within-group diversity) erodes the positive assortment necessary to sustain a group-beneficial trait
in anti-coordination dilemmas, e.g. Hawk–Dove, or to bootstrap it in coordination dilemmas, e.g.
Stag Hunt. However, when interactions are complementary, a low CFST more rapidly promotes
socially-optimal outcomes. This mirrors the empirical pattern of higher marginal gains from special-
isation in diverse urban economies (Peri & Sparber, 2009; Posch et al., 2023). Moreover, in simple
coordination interactions, higher within-group diversity moves a population faster towards a social
optimum, as it becomes harder for some subpopulations to become ‘stuck’ within the basin of attrac-
tion of an inferior normative equilibrium. Cultural diversity can have opposite effects in different cau-
sal interaction structures. As with the parable of the blind men describing different parts of an
elephant, we should expect such contradictory findings to make more sense when placed in the larger
context of the spectrum of synergistic interactions (Fig. 3).

5.4. From statics to dynamics

To date much of the theoretical literature has focused on evaluating broad questions, such as when
cooperation will evolve. Therefore, analytical attention has been drawn to assessing the evolutionary
scope of a trait via static analysis, e.g. Bell et al. (2009), which is also the approach used here. As a
result, we do not track the change in FST as we do the change in mean frequency �x. This is unsatis-
factory when wishing to predict trait variation and selection over time, and in future models, special
attention should be made to the relationship between traits and their inheritance, the multilevel
dynamics of selection over time, and how to put them together to estimate the parameters of a par-
ticular case (Keller, 1999).

For cultural traits, understanding the individual-level transmission of a particular trait is key as
many inheritance pathways are possible which may affect the covariance between trait values and
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the ‘next-generation’ learner. Likewise, the transmission of group-level traits may occur through mul-
tiple mechanisms, including selective imitation, migration and natural selection (Richerson et al.,
2016). Given the diverse transmission mechanisms and other evolutionary forces, it is likely that selec-
tion on groups, institutions, individuals or other units may evolve at different time scales. As a result,
CFST will change through time and consequently so will the predicted rate and perhaps direction of
selection. A dynamic approach also requires more detailed consideration of stochasticity and long-run
stability (Foster & Young, 1990). In coordination interactions, Van Cleve and Lehmann (2013) show
that if selection is relatively weak, the relative size of each basin of attraction, random mutation and
positive assortment together determine which trait reaches long-run fixation.

6. Conclusion

We formalise the causal significance of FST across synergistic social interactions through a game the-
oretic frame, better justifying its use in diverse cultural contexts. Our results demonstrate that there is
no single relationship between CFST and the strength of selection for group-beneficial traits. With the
increasing popularity of CFST and similar measures of behavioural diversity between groups, our ana-
lysis strongly motivates increased attention to the ethnographic contexts affecting cultural variation.
Doing so will give greater power to empirical variance measures for inferring or reflecting underlying
causal mechanisms.

Data availability statement. n/a

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/ehs.2024.8

Acknowledgements. We thank Jorge Peña for extensive comments and assistance with derivations. Mitchell Newberry,
Laurel Fogarty, Richard McElreath, Hedvig Skirgård, Jeff Andrews, Elspeth Ready, Cody Ross, Alejandro Pérez Velilla,
Marco Smolla, and members of the Department of Human Behaviour, Ecology and Culture at MPI-EVA and Department
of Anthropology at UC Davis provided valuable feedback. Three anonymous reviewers provided further comments that
resulted in significant improvements.

Author contributions. Both authors contributed equally to conceptualising, analysing, writing, and revising the manuscript.

Financial support. n/a

Competing interest. n/a

Research transparency and reproducibility. No data were directly used in this paper. R code to reproduce all figures and
calculations is available at https://github.com/babeheim/causality-variance-fst.

References
Aguilar, E. G., & Akçay, E. (2018). Gene–culture coinheritance of a behavioral trait. The American Naturalist, 192(3), 311–

320. doi: 10.1086/698872
Alesina, A., Glaeser, E., & Sacerdote, B. (2001). Why doesn’t the US have a European-style welfare system? National Bureau of

Economic Research. doi: 10.3386/w8524
Allen, B., & Nowak, M. A. (2015). Games among relatives revisited. Journal of Theoretical Biology, 378, 103–116. doi: 10.1016/

j.jtbi.2015.04.031
Alvard, M., & Nolin, D. (2002). Rousseau’s whale hunt? Coordination among big-game hunters. Current Anthropology, 43(4),

533–559. doi: 10.1086/341653
Beheim, B. A., & Baldini, R. (2012). Evolutionary decomposition and the mechanisms of cultural change. Cliodynamics, 3, 18.
Bell, A. V., Richerson, P. J., & McElreath, R. (2009). Culture rather than genes provides greater scope for the evolution of

large-scale human prosociality. Proceedings of the National Academy of Sciences, 106(42), 17671–17674. doi: 10.1073/
pnas.0903232106

Boesch, C., Kalan, A. K., Mundry, R., Arandjelovic, M., Pika, S., Dieguez, P., …, Kuhl, H. S. (2020). Chimpanzee ethnography
reveals unexpected cultural diversity. Nature Human Behaviour, 4(9), 910–916. doi: 10.1038/s41562-020-0890-1

Bowles, S. (2006). Group competition, reproductive leveling, and the evolution of human altruism. Science, 314(5805), 1569–
1572. doi: 10.1126/science.1134829

Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago, IL: University of Chicago Press.

Evolutionary Human Sciences 17

https://doi.org/10.1017/ehs.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.8
https://doi.org/10.1017/ehs.2024.8
https://github.com/babeheim/causality-variance-fst
https://github.com/babeheim/causality-variance-fst
https://github.com/babeheim/causality-variance-fst
https://doi.org/10.1017/ehs.2024.8


Boyd, R., & Richerson, P. J. (2002). Group beneficial norms can spread rapidly in a structured population. Journal of
Theoretical Biology, 215(3), 287–296. doi: 10.1006/jtbi.2001.2515

Bunce, J. A. (2020). Field evidence for two paths to cross-cultural competence: Implications for cultural dynamics.
Evolutionary Human Sciences, 2, e3. doi: 10.1017/ehs.2020.1

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton, NJ: Princeton University Press.
Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton

University Press.
Cooney, D. B. (2022). Assortment and reciprocity mechanisms for promotion of cooperation in a model of multilevel selec-

tion. Bulletin of Mathematical Biology, 84(11), 126. doi: 10.1007/s11538-022-01082-8
Cooper, G. A., Frost, H., Liu, M., & West, S. A. (2021). The evolution of division of labour in structured and unstructured

groups. eLife, 10, e71968. doi: 10.7554/eLife.71968
Dinesen, P. T., & Sønderskov, K. M. (2015). Ethnic diversity and social trust: Evidence from the micro-context. American

Sociological Review, 80(3), 550–573. doi: 10.1177/0003122415577989
Doebeli, M., & Hauert, C. (2005). Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game:

Prisoner’s dilemma and the snowdrift game. Ecology Letters, 8(7), 748–766. doi: 10.1111/j.1461-0248.2005.00773.x
El Mouden, C., Andre, J.-B., Morin, O., & Nettle, D. (2014). Cultural transmission and the evolution of human behaviour: A

general approach based on the Price equation. Journal of Evolutionary Biology, 27(2), 231–241. doi: 10.1111/jeb.12296
Foster, D., & Young, P. (1990). Stochastic evolutionary game dynamics. Theoretical Population Biology, 38(2), 219–232. doi:

10.1016/0040-5809(90)90011-J
Gardner, A., West, S. A., & Wild, G. (2011). The genetical theory of kin selection. Journal of Evolutionary Biology, 24(5),

1020–1043. doi: 10.1111/j.1420-9101.2011.02236.x
Gintis, H. (2000). Game theory evolving. Princeton, NJ: Princeton University Press.
Grafen, A. (1979). The hawk–dove game played between relatives. Animal Behaviour, 27, 905–907. doi: 10.1016/0003-3472

(79)90028-9
Hamilton, W. D. (1964). The genetical evolution of social behavior, I & II. Journal of Theoretical Biology, 7, 1–52.
Hamilton, W. D. (1975). Innate social aptitudes of man: An approach from evolutionary genetics. In R. Fox (Ed.), Biosocial

anthropology (pp. 133–155). London: Malaby Press.
Handley, C., & Mathew, S. (2020). Human large-scale cooperation as a product of competition between cultural groups.

Nature Communications, 11(1), 702. doi: 10.1038/s41467-020-14416-8
Harsanyi, J. C., & Selten, R. (1988). A general theory of equilibrium selection in games. Cambridge, MA: MIT Press.
Hauert, C., Michor, F., Nowak, M. A., & Doebeli, M. (2006). Synergy and discounting of cooperation in social dilemmas.

Journal of Theoretical Biology, 239(2), 195–202. doi: 10.1016/j.jtbi.2005.08.040
Henrich, J., Ensminger, J., McElreath, R., Barr, A., Barrett, C., Bolyanatz, A., …, Ziker, J. (2010). Markets, religion, commu-

nity size, and the evolution of fairness and punishment. Science, 327(5972), 1480–1484. doi: 10.1126/science.1182238
Holsinger, K. E., & Weir, B. S. (2009). Genetics in geographically structured populations: Defining, estimating and interpret-

ing FST. Nature Reviews Genetics, 10(9), 639–650. doi: 10.1038/nrg2611
House, B. R., Kanngiesser, P., Barrett, H. C., Broesch, T., Cebioglu, S., Crittenden, A. N.,…, Silk, J. B. (2020). Universal norm

psychology leads to societal diversity in prosocial behaviour and development. Nature Human Behaviour, 4(1), 36–44. doi:
10.1038/s41562-019-0734-z

Kandori, M., Mailath, G. J., & Rob, R. (1993). Learning, mutation, and long run equilibria in games. Econometrica, 61(1), 29–
56. doi: 10.2307/2951777

Katz, M. L., & Shapiro, C. (1985). Network Externalities, Competition, and Compatibility. The American Economic Review, 75
(3), 424–440.

Keller, L. (1999). Levels of selection in evolution. Princeton, NJ: Princeton University Press.
Krugman, P. (1991). Increasing returns and economic geography. The Journal of Political Economy, 99(3), 483–499.
Lehmann, L., Feldman, M., & Foster, K. (2008). Cultural transmission can inhibit the evolution of altruistic helping. The

American Naturalist, 172(1), 12–24. doi: 10.1086/587851
Lehmann, L., Powers, S. T., & Schaik, C. P. v. (2022). Four levers of reciprocity across human societies: Concepts, analysis and

predictions. Evolutionary Human Sciences, 4. doi: 10.1017/ehs.2022.7
Liebowitz, S. J., & Margolis, S. E. (1994). Network externality: An uncommon tragedy. Journal of Economic Perspectives, 8(2),

133–150. doi: 10.1257/jep.8.2.133
Lightner, A. D., & Hagen, E. H. (2021). Acculturation and market integration are associated with greater trust among

Tanzanian Maasai pastoralists. Evolutionary Human Sciences, 3. doi: 10.1017/ehs.2021.10
Liu, C.-F., & Mostafavi, A. (2023). Revealing hazard-exposure heterophily as a latent characteristic of community resilience in

social-spatial networks. Scientific Reports, 13(1), 4817. doi: 10.1038/s41598-023-31702-9
Marlowe, F. W., Berbesque, J. C., Barr, A., Barrett, C., Bolyanatz, A., Cardenas, J. C.,…, Tracer, D. (2008). More ‘altruistic’ punish-

ment in larger societies. Proceedings of the Royal Society B: Biological Sciences, 275(1634), 587–592. doi: 10.1098/rspb.2007.1517
Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press. doi: 10.1017/

CBO9780511806292

18 Bret Alexander Beheim and Adrian Viliami Bell

https://doi.org/10.1017/ehs.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.8


McElreath, R., Boyd, R., & Richerson, P. (2003). Shared norms and the evolution of ethnic markers. Current Anthropology, 44
(1), 122–130. doi: 10.1086/345689

Molleman, L., Kolle, F., Starmer, C., & Gächter, S. (2019). People prefer coordinated punishment in cooperative interactions.
Nature Human Behaviour, 3(11), 1145–1153. doi: 10.1038/s41562-019-0707-2

Muthukrishna, M., Bell, A., Henrich, J., Curtin, C., Gedranovich, A., McInerney, J., & Thue, B. (2018). Beyond WEIRD
psychology: Measuring and mapping scales of cultural and psychological distance. SSRN Electronic Journal. doi:
10.2139/ssrn.3259613

O’Connor, C. (2019). The origins of unfairness: Social categories and cultural evolution. Oxford: Oxford University Press.
Ohtsuki, H. (2012). Does synergy rescue the evolution of cooperation? An analysis for homogeneous populations with non-

overlapping generations. Journal of Theoretical Biology, 307, 20–28. doi: 10.1016/j.jtbi.2012.04.030
Ottaviano, G. I., & Peri, G. (2006). The economic value of cultural diversity: Evidence from US cities. Journal of Economic

Geography, 6(1), 9–44. doi: 10.1093/jeg/lbi002
Panchanathan, K., & Boyd, R. (2004). Indirect reciprocity can stabilize cooperation without the second-order free rider prob-

lem. Nature, 432(7016). doi: 10.1038/nature02978
Peña, J.,&Nöldeke,G. (2023).Cooperative dilemmaswithbinaryactions andmultiple players.OSFPreprints. doi: 10.31219/osf.io/8y2z5
Peña, J., Nöldeke, G., & Lehmann, L. (2015). Evolutionary dynamics of collective action in spatially structured populations.

Journal of Theoretical Biology, 382, 122–136. doi: 10.1016/j.jtbi.2015.06.039
Peri, G., & Sparber, C. (2009). Task specialization, immigration, and wages. American Economic Journal: Applied Economics,

1(3), 135–169. doi: 10.1257/app.1.3.135
Pisor, A. C., & Gurven, M. (2016). Risk buffering and resource access shape valuation of out-group strangers. Scientific

Reports, 6(1), 30435. doi: 10.1038/srep30435
Posch, M., Schulz, J., & Henrich, J. (2023). Surname diversity, social ties and innovation. SSRN Scholarly Paper, Rochester,

NY. doi: 10.2139/ssrn.4531209
Putnam, R. D. (2007). Diversity and community in the twenty-first century. Scandinavian Political Studies, 30(2), 38.
Queller, D. C. (1985). Kinship, reciprocity and synergism in the evolution of social behaviour. Nature, 318(6044), 366–367.

doi: 10.1038/318366a0
Richerson, P., Baldini, R., Bell, A. V., Demps, K., Frost, K., Hillis, V., …, Zefferman, M. (2016). Cultural group selection plays

an essential role in explaining human cooperation: A sketch of the evidence. Behavioral and Brain Sciences, 39, e30. doi:
10.1017/S0140525X1400106X

Rogers, A. R. (1990). Group selection by selective emigration: The effects of migration and kin structure. American Naturalist,
135, 398–413.

Ross, R. M., Greenhill, S. J., & Atkinson, Q. D. (2013). Population structure and cultural geography of a folktale in Europe.
Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20123065. doi: 10.1098/rspb.2012.3065

Rzeszutek, T., Savage, P. E., & Brown, S. (2012). The structure of cross-cultural musical diversity. Proceedings of the Royal
Society B: Biological Sciences, 279(1733), 1606–1612. doi: 10.1098/rspb.2011.1750

Schelling, T. C. (1973). Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities.
Journal of Conflict Resolution, 17(3), 381–428. doi: 10.1177/002200277301700302

Schimmelpfennig, R., Razek, L., Schnell, E., & Muthukrishna, M. (2021). Paradox of diversity in the collective brain.
Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1843), 20200316. doi: 10.1098/rstb.2020.0316

Schonmann, R. H., & Boyd, R. (2016). A simple rule for the evolution of contingent cooperation in large groups.
Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1687), 20150099. doi: 10.1098/rstb.2015.0099

Schulz, J., Bahrami-Rad, D., Beauchamp, J., & Henrich, J. (2018). The origins of WEIRD psychology. SSRN Scholarly Paper,
Rochester, NY. doi: 10.2139/ssrn.3201031

Sen, A. K. (1967). Isolation, assurance and the social rate of discount. The Quarterly Journal of Economics, 81(1), 112–124.
doi: 10.2307/1879675

Skyrms, B. (2004). The stag hunt and the evolution of social structure. Cambridge: Cambridge University Press.
Smaldino, P. E. (2014). The cultural evolution of emergent group-level traits. Behavioral and Brain Sciences, 37(3), 243–254.

doi: 10.1017/S0140525X13001544
Smaldino, P. E. (2023). Modeling social behavior: Mathematical and agent-based models of social dynamics and cultural evo-

lution. Princeton, NJ: Princeton University Press.
Smith, K. M., Larroucau, T., Mabulla, I. A., & Apicella, C. L. (2018). Hunter–gatherers maintain assortativity in cooperation

despite high levels of residential change and mixing. Current Biology, 28(19), 3152–3157.e4. doi: 10.1016/j.cub.2018.07.064
Taylor, C., &Nowak,M. A. (2007). Transforming the dilemma. Evolution, 61(10), 2281–2292.doi: 10.1111/j.1558-5646.2007.00196.x
Turchin, P. (2009). A theory for formation of large empires. Journal of Global History, 4(2), 191–217. doi: 10.1017/

S174002280900312X
Van Cleve, J. (2017). Stags, hawks, and doves: Social evolution theory and individual variation in cooperation. Integrative and

Comparative Biology, 57(3), 566–579. doi:10.1093/icb/icx071
Van Cleve, J., & Lehmann, L. (2013). Stochastic stability and the evolution of coordination in spatially structured populations.

Theoretical Population Biology, 89, 75–87. doi:10.1016/j.tpb.2013.08.006

Evolutionary Human Sciences 19

https://doi.org/10.1017/ehs.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.8


White, C. J. M., Muthukrishna, M., & Norenzayan, A. (2021). Cultural similarity among coreligionists within and between
countries. Proceedings of the National Academy of Sciences, 118(37). doi: 10.1073/pnas.2109650118

Wright, S. (1949). The genetical structure of populations. Annals of Eugenics, 15(1), 323–354. doi: 10.1111/
j.1469-1809.1949.tb02451.x

Young, H. P. (1993). The evolution of conventions. Econometrica, 61(1), 57–84. doi:10.2307/2951778
Zefferman, M. R., & Mathew, S. (2015). An evolutionary theory of large-scale human warfare: Group-structured cultural

selection. Evolutionary Anthropology: Issues, News, and Reviews, 24(2), 50–61. doi: 10.1002/evan.21439

Appendix: Evolutionary Decomposition
In a metapopulation in which individual i in group j has phenotype xij and experiences fitness payoff wij, behaviour A will
increase according to

�wD�x = cov(xj , wj)+ E(cov(xij, wij))

where wj and xj are the mean fitness and average phenotypic frequency within group j. Note that these are empirical covar-
iances and expectations calculated over a finite number of groups. A full glossary of mathematical symbols is found in
Table 2. Define w = n/(n−m), so that from Eq. (3) individual fitness becomes

wij = w̃− (n−m)(xij − w)(xj − k).

Within any particular group, the covariance between individual fitness and phenotype can be written as

cov(wij, xij) = (m− n)(xj − k)cov((xij − w), xij)

which, because cov(w, xij) = 0, becomes

= (m− n)(xj − k)cov(xij, xij)

Table 2. Glossary of variables used

Variable Description

xij Quantitative phenotype of individual i in group j

wij Fitness of individual i in group j

xj Average phenotype in group j

wj Average fitness in group j

�x Average phenotype in the population

�w Average fitness in the population

FST = var(xj)/var(x), between-group to total phenotypic variance

CFST FST calculated on cultural traits, variants, or beliefs

b Group benefit from cooperative individual phenotype

c Individual cost from cooperative individual phenotype

d Synergistic effect from cooperative individual phenotype

m Marginal effect of a group increase in A, xj, on an individual with trait A

n Marginal effect of a group increase in A, xj, on an individual with trait B

ℓ = m/(m− n), group frequency of trait A where the selection gradient reverses

w = n/(n−m) = 1− ℓ

θ = atan2(n, m), the polar angle of a line segment with slope n/m

k Group frequency of trait A at which all individual fitnesses are equal

w̃ Fitness for all individuals in group j at xj = k
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= (m− n)(xj − k)var(xij)

Substituting this into the second term of Eq. (5) gives

E(cov(wij, xij)) = (m− n)E((xj − k)var(xij))

= (m− n)(E(xjvar(xij))− kE(var(xij)))

= (m− n)(E(xj(E(x
2
ij)− x2j ))− kE(E(x2ij)− x2j ))

= (m− n)(E(xj(E(x
2
ij)))− E(x3j )− kE(E(x2ij))+ kE(x2j ))

(A1)

On the group level, the mean fitness can be written as

wj = w̃+ (m− n)(xj − w)(xj − k)

so the covariance between group fitness and group phenotype simplifies to

cov(xj, wj) = (m− n)(cov(x2j , xj)− (k+ w)var(xj))

= (m− n)(E(x3j )− E(x2j )E(xj)− (k+ w)(E(x2j )− �x2))

= (m− n)(E(x3j )− E(x2j )�x − kE(x2j )− wE(x2j )+ k�x2 + w�x2)

(A2)

Combining Eq. (A1) and Eq. (A2), the full expression for evolutionary change in mean phenotype is

�wD�x = (m− n)(−E(x2j )�x − wE(x2j )+ k�x2 + w�x2 + E(xj(E(x
2
ij)))− kE(E(x2ij)))

= (m− n)(E(xj(E(x
2
ij)))− E(x2j )�x − w(E(x2j )− �x2)− k(E(E(x2ij)− �x2)))

= (m− n)(�xE(var(xij))+ cov(xj, E(x
2
ij))− wvar(xj)− kvar(x))

= (m− n)var(x)(�x(1− FST )+ cov(xj , E(x
2
ij))var(x)

−1 − wFST − k)

= (m− n)var(x)((�x − k)− FST (�x + w)+ cov(xj, E(x
2
ij))var(x)

−1)

Define ℓ = 1− w and write b = cov(xj, E(x2ij))var(x)
−1 as the regression coefficient of E(x2ij) on xj, then evolutionary change

in our frequency-dependent model is given as

�wD�x = (m− n)var(x)((�x − k)− FST (�x − ℓ)+ FST (b− 1)) (A3)

Equation (A3) holds for continuous phenotypes (xij∈ [0, 1]) as a frequency-dependent extension of Hamilton’s Eq. (2).
Previous work generally assumes that traits are discrete 0/1 variables, e.g. Eq. (10) in Gardner et al. (2011), Eq. (A33) in
Lehmann et al. (2008) and Appendix D in Allen and Nowak (2015). In this special case in which individual phenotypes
have dichotomous traits (xij∈ {0, 1}), then E(x2ij) = E(xij), cov(xj, E(x2ij)) = var(xj) and β = 1. Equation (A3) thus simplifies to

�wD�x = (m− n)�x(1− �x)((�x − k)− FST (�x − ℓ)) ,

which is Eq. (6) in the main text. If −nk <m(1− k), then positive values of this expression indicate that the GBT (trait A) will be
selected for, and negative values indicate that the GBT will be selected against. If −nk >m(1− k), then B is the GBT and the
reverse is true.
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