
The Journal of Symbolic Logic

Volume 89, Number 2, June 2024

FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI
THEOREM

YIJIA CHEN AND JÖRG FLUM

Abstract. Let C be a class of finite and infinite graphs that is closed under induced subgraphs. The
well-known Łoś–Tarski Theorem from classical model theory implies that C is definable in first-order
logic by a sentence ϕ if and only if C has a finite set of forbidden induced finite subgraphs. This result
provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded
tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by
the Completeness Theorem, we can compute from ϕ the corresponding forbidden induced subgraphs. This
machinery fails on finite graphs as shown by our results:

– There is a class C of finite graphs that is definable in first-order logic and closed under induced
subgraphs but has no finite set of forbidden induced subgraphs.

– Even if we only consider classes C of finite graphs that can be characterized by a finite set of forbidden
induced subgraphs, such a characterization cannot be computed from a first-order sentence ϕ that
defines C and the size of the characterization cannot be bounded by f(|ϕ|) for any computable
function f.

Besides their importance in graph theory, the above results also significantly strengthen similar known
theorems for arbitrary structures.

§1. Introduction. Many classes of graphs can be defined by a finite set of forbidden
induced finite subgraphs. One of the simplest examples is the class of graphs of
bounded degree. Let d ≥ 1 and let the set Fd consist of all graphs with vertex set
{1, ... , d + 2} and maximum degree d + 1. Then a graph G has degree at most d if
and only if no graph in Fd is isomorphic to an induced subgraph of G. Less trivial
examples include classes of graphs of small vertex cover (attributed to Lovász [12]),
of bounded tree-depth [7], and of bounded shrub-depth [16]. As a matter of fact,
understanding forbidden induced subgraphs for those graph classes is an important
question in structural graph theory [10, 14, 15, 28]. However, a straightforward
adaptation of a result in [13] shows that it is in general impossible to compute the
forbidden induced subgraphs from a description of classes of finite graphs by Turing
machines.

Łoś [19] and Tarski [26] proved the first so-called preservation theorem of classical
model theory. In its simplest form it says for classes of graphs that the class Graph(ϕ)
of finite and infinite graphs that are models of a sentenceϕ of first-order logic (FO) is
closed under induced subgraphs (or, thatϕ is preserved under induced subgraphs) if
and only if there is a universal FO-sentence � with Graph(ϕ) = Graph(�). Recall

Received November 20, 2021.
2020 Mathematics Subject Classification. Primary 03B70, 03C13.
Key words and phrases. preservation theorem for graphs, finite model theory.

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.
0022-4812/24/8902-0004
DOI:10.1017/jsl.2023.99

516

https://doi.org/10.1017/jsl.2023.99 Published online by Cambridge University Press

www.doi.org/10.1017/jsl.2023.99
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.99&domain=pdf
https://doi.org/10.1017/jsl.2023.99


FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI THEOREM 517

that a universal sentence � is a sentence of the form ∀x1 ...∀xk �0, where �0 is
quantifier-free.

For a class F of graphs let Forb(F ) consist of all graphs that do not contain
an induced subgraph isomorphic to a graph in F . For any class C of graphs closed
under isomorphism and under induced subgraphs we have C = Forb(F ) where F
consists of all graphs not in C. Observe that F is an infinite class that contains
infinite graphs if C is not the class of all graphs (later on we only will consider
Forb(F ) for sets F ).

It is folklore (see, e.g., [20]) that for a class C of graphs its definability by a
universal sentence of first-order logic is equivalent to its characterization by finitely
many forbidden induced finite subgraphs, i.e., equivalent to C = Forb(F ) for some
finite set F of finite graphs. In fact, for a universal sentence � := ∀x1 ... ∀xk �0 with
quantifier-free �0 we have (see Proposition 2.2)

Graph(�) = Forb

(
Fk(�)

)
. (1)

Here for any FO-sentence ϕ and k ≥ 1 by Fk(ϕ) we denote the class of graphs
that are models of ¬ϕ and whose universe is {1, ... , �} for some � with 1 ≤ � ≤ k.
Clearly, Fk(ϕ) is finite.

We say that a class C of finite and infinite graphs is definable by a finite set of
forbidden induced finite subgraphs if there is a finite set F of finite graphs such
that C = Forb(F ). Hence the Łoś–Tarski Theorem (for classes of graphs) can be
restated in the form:

For a class C of finite and infinite graphs the following are equivalent:

(i) C is closed under induced subgraphs and FO-axiomatizable.
(ii) C is axiomatizable by a universal sentence.

(iii) C is definable by a finite set of forbidden induced finite subgraphs.

This version of the Łoś–Tarski Theorem is already contained, at least implicitly, in
the article [27] of Vaught published in 1954.

Clearly (1) implies Graphfin(�) = Forbfin
(
Fk(�)

)
where Graphfin(�) and

Forbfin
(
Fk(�)

)
denote the class of finite graphs in Graph(�) and in Forb

(
Fk(�)

)
,

respectively. Hence the equivalence between (ii) and (iii) holds too if we only
consider classes of finite graphs.

Note that we have repeatedly mentioned that in the Łoś–Tarski Theorem graphs
are allowed to be infinite. This is not merely a technicality. In [3], to obtain the
forbidden induced subgraph characterization of graphs of bounded shrub-depth
using the Łoś–Tarski Theorem, one simple but vital step is to extend the notion
of shrub-depth to infinite graphs. Indeed, Tait [25] exhibited a class C of finite
structures (which might be understood as colored directed graphs) that is closed
under induced substructures and FO-axiomatizable. Yet, C is not definable by any
universal sentence, thus cannot be characterized by a finite set of forbidden induced
finite substructures. In [1] the authors present a class C of finite directed graphs with
loops with the same properties, i.e., C is closed under induced substructures and
FO-axiomatizable (even by a sentence without equality) but not axiomatizable by
a universal sentence. Of course, the class C′ of graphs in C is closed under induced
subgraphs but C′ is axiomatizable by a universal sentence (as C′ is empty).
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The first result of this paper strengthens the preceding “negative results” to graphs;
more precisely we show the following theorem:

Theorem 1.1. There is a class C of finite graphs that is closed under induced
subgraphs and FO-axiomatizable but not definable by a finite set of forbidden induced
finite subgraphs (i.e., there is no finite set F of finite graphs such that C = Forbfin(F )).

Even though we are interested in structural and algorithmic results for classes of
finite graphs, we see that in order to apply the Łoś–Tarski Theorem for such purposes
we have to consider classes of finite and infinite graphs. Hence, in this paper “graph”
means finite or infinite graph. As in the preceding result we mention it explicitly if
we only consider finite graphs.

Complementing Theorem 1.1 we show that it is even undecidable whether a given
FO-definable class of finite graphs that is closed under induced subgraphs can be
characterized by a finite set of forbidden induced finite subgraphs. More precisely,
we prove:

Theorem 1.2. There is no algorithm that for any FO-sentence ϕ such that
Graphfin(ϕ) is closed under induced subgraphs decides whether ϕ is equivalent to
a universal sentence on finite graphs.

For a first-order definable class of graphs closed under induced subgraphs, often
it is preferable to have an explicit construction of a finite set of forbidden induced
finite subgraphs. This however turns out to be difficult for many natural classes of
graphs. Let us consider the k-vertex cover problem for a constant k ≥ 1. It asks
whether a given graph has a vertex cover (i.e., a set of vertices that contains at
least one endpoint of every edge) of size at most k. The class of all yes-instances
of this problem, finite and infinite, is closed under induced subgraphs and FO-
axiomatizable by the FO-sentence

ϕkVC := ϕGraph ∧ ∃x1 ... ∃xk∀y∀z
(
Eyz →

∨
1≤�≤k

(x� = y ∨ x� = z)
)
,

where ϕGraph axiomatizes the class of graphs. Hence, by the Łoś–Tarski Theorem
there is a universal sentence � equivalent to ϕkVC. As the reader will notice, it is by no
means trivial to find such a �. On the other hand, using the Completeness Theorem,
we eventually will get such a�. Then we can extract corresponding forbidden induced
subgraphs from � as in (1). For the reader familiar with parameterized complexity
[8], to get a � we can alternatively use that a graph with vertex cover of size at most
k admits a kernel with at most k2 edges. Observe that this approach involves the
co-NP-hard problem of deciding whether an input graph does not contain a vertex
cover of size at most k.

By [7], also the class of finite graphs of tree-depth at most k is definable by a finite
set of forbidden induced finite subgraphs. However, forbidden induced subgraphs
are only known for k ≤ 3 [10].

We prove two “negative” results that explain the hardness of constructing
forbidden induced subgraphs.
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Theorem 1.3. There is no algorithm that for any FO-sentenceϕ which is equivalent
to a universal sentence � on finite graphs computes such a �. Or equivalently, there is
no algorithm that for any FO-sentence ϕ such that

Graphfin(ϕ) = Forbfin(F )

for a finite set F of finite graphs computes such an F .

Theorem 1.4. Let f : N → N be a computable function. Then there is a class C of
finite graphs and an FO-sentence ϕ such that:

(i) C = Graphfin(ϕ).
(ii) C = Graphfin(�) for some universal sentence �, in particular C is closed under

induced subgraphs.
(iii) For every universal sentence � with C = Graphfin(�) we have |�| ≥ f(|ϕ|).

Theorem 1.3 significantly strengthens the aforementioned result of [13]: even if a
class C of finite graphs definable by a finite set of forbidden induced finite subgraphs
is given by an FO-sentence ϕ with C = Graphfin(ϕ), instead of a (much more
powerful) Turing machine deciding C, we still cannot compute an appropriate finite
set of forbidden induced finite subgraphs for C from ϕ. On top of it, Theorem 1.4
implies that the size of forbidden subgraphs for C cannot be bounded by any
computable function in terms of the size of ϕ. There is an important precursor for
Theorem 1.4:

Theorem 1.5 (Gurevich’s Theorem [17]). Let f : N → N be computable. Then
there is an FO-sentence ϕ such that the class Mod(ϕ) of models of ϕ is closed under
induced substructures but for every universal sentence � with Modfin(�) = Modfin(ϕ)
we have |�| ≥ f(|ϕ|).

Hence, Theorem 1.4 can be viewed as the graph-theoretic version of Theorem 1.5.
Besides its importance in graph theory, Theorem 1.4 is also relevant in the context

of algorithmic model theory. For algorithmic applications, the Łoś–Tarski theorem
provides a normal form (i.e., a universal sentence) for any FO-sentence preserved
under induced substructures. In [5, Theorem 6.1], it is shown that on labelled trees
there is no elementary bound on the length of the equivalent universal sentence in
terms of the original one. We should point out that Theorem 1.4 is not comparable
to this result, since our lower bound is uncomputable (and thus, much higher than
non-elementary) while the classes of graphs we construct in the proof are dense
(thus very far from trees).

Our technical contributions. For every vocabulary it is well-known that the class
of structures of this vocabulary is FO-interpretable in the class of graphs (see,
for example, [11]). Hence one might expect that Theorems 1.1 and 1.4 can be
derived easily from Tait’s Theorem and Gurevich’s Theorem using the standard
FO-interpretations. However, an easy analysis shows that those interpretations yield
classes of graphs that are not closed under induced subgraphs. So we introduce the
notion of strongly existential interpretation that translates any class of structures
preserved under induced substructures and relevant to our investigations to a class
of graphs closed under induced subgraphs. A lot of care is needed to construct
strongly existential interpretations.
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Related research. Let us briefly mention some further results related to the Łoś–
Tarski Theorem. Essentially one could divide them into three categories (a), (b),
and (c).

(a) The positive results showing that for certain classes C of finite structures the
analogue of the Łoś–Tarski Theorem holds if we restrict to structures in C.
For example, this is the case if C is the class of all finite structures of tree-width
at most k for some k ∈ N [2] or if C is the class of all finite structures whose
hypergraph satisfies certain properties [9].

(b) Both just mentioned papers contain also negative results, i.e., classes for which
the analogue of the Łoś–Tarski Theorem fails. For example, in [2] this is
shown for the class of finite planar graphs, a class not axiomatizable in FO
(cf. Remark 5.7(b)).

(c) The third category contains generalizations of the Łoś–Tarski Theorem or
of its failure on finite structures. For example, in [24] the authors for every
k ∈ N derive a preservation theorem for Σ2-sentences of the form ∃x1 ...∃xk �
with universal �. For k = 0 it coincides with the Łoś–Tarski Theorem; see
Remark 3.5 for the precise statement. The paper [18] contains a further
extension of the Łoś–Tarski Theorem. In [6] the authors show that for every
n ≥ 1 there is a Π2n+1-sentence whose class of finite models is closed under
induced substructures and that is not equivalent to a Σ2n+1-sentence in the
finite.

Most classical preservation theorems fail in the finite (see [21] for an exception).
The question whether a preservation theorem fails for finite graphs is specially
relevant for the Łoś–Tarski Theorem due to its connection to forbidden induced
subgraphs.

Organization of this paper. In Section 2 we fix some notation and recall or derive
some results about universal sentences we need in this paper. In Section 3 we include a
proof of Tait’s result (essentially as done in [1]). Moreover, we prove a technical result
(Proposition 3.11) that is an important tool in the proof of Gurevich’s Theorem. We
introduce the concept of strongly existential interpretation in Section 4 and show
that the results of the preceding section remain true under such interpretations.
We present an appropriate strongly existential interpretation for graphs (in Section
5). Hence, we get the results of Section 3 for graphs. In Section 6 we first derive
Gurevich’s Theorem and apply our interpretations to get the corresponding results
for graphs. Finally, in Section 7, we prove that various problems related to our results
are undecidable.

This paper is the full version of our conference paper [4].

§2. Preliminaries. We denote by N the set of natural numbers greater or equal
to 0. For n ∈ N let [n] := {1, 2, ... , n}.

2.1. First-order logic FO. A vocabulary � is a finite set of relation symbols. Each
relation symbol has an arity. A structureA of vocabulary �, or �-structure, consists of
a (finite or infinite) nonempty set A, called the universe ofA, and of an interpretation
RA ⊆ Ar of each r-ary relation symbolR ∈ �. If A and B are �-structures, then A is
a substructure of B, denoted by A ⊆ B, ifA ⊆ B andRA ⊆ RB, and A is an induced
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substructure of B, denoted by A ⊆ind B, ifA ⊆ B andRA = RB ∩ Ar , where r is the
arity of R. A substructure A of B is proper if A �= B. By Str[�] (Strfin[�]) we denote
the class of all (of all finite) �-structures.

If we speak of a class of structures, we assume that it is closed under
isomorphism. On the other hand, note that every nonempty set of
structures does not have this closure property.

Formulas ϕ of first-order logic FO of vocabulary � are built up from atomic formulas
x1 = x2 and Rx1 ... xr (where R ∈ � is of arity r and x1, x2, ... , xr are variables)
using the boolean connectives ¬, ∧, and ∨ and the universal ∀ and existential ∃
quantifiers. A relation symbol R is positive (negative) in ϕ if all atomic subformulas
R ... in ϕ appear in the scope of an even (odd) number of negation symbols. By the
notation ϕ(x̄) with x̄ = x1, ... , xe we indicate that the variables free in ϕ are among
x1, ... , xe . If A is a �-structure and a1, ... , ae ∈ A, then A |= ϕ(a1, ... , ae) means that
ϕ(x̄) holds in A if xi is interpreted by ai for i ∈ [e].

A sentence is a formula without free variables. For a sentence ϕ we denote by
Mod(ϕ) the class of models of ϕ and Modfin(ϕ) is its subclass consisting of the
finite models of ϕ. Sentences ϕ and � are equivalent if Mod(ϕ) = Mod(�) and
finitely equivalent if Modfin(ϕ) = Modfin(�).

2.2. Graphs. Let �E := {E} with binary E. For all �E -structures we use the
notation G = (V (G), E(G)) common in graph theory. Here V (G), the universe
of G, is the set of vertices, and E(G), the interpretation of the relation symbol E, is
the set of edges. The �E -structureG = (V (G), E(G)) is a directed graph ifE(G) does
not contain loops, i.e., (v, v) /∈ E(G) for all v ∈ V (G). If moreover (u, v) ∈ E(G)
implies (v, u) ∈ E(G) for all pairs (u, v), then G is an (undirected) graph. We denote
by Graph and Graphfin the class of graphs and the class of finite graphs, respectively.
Furthermore, for an FO[�E ]-sentence ϕ by Graph(ϕ) and (Graphfin(ϕ)) we denote
the class of graphs (and the class of finite graphs) that are models of ϕ.

2.3. Universal sentences and forbidden induced substructures. An FO-formula is
universal if it is built up from atomic and negated atomic formulas by means of the
connectives ∧ and ∨ and the universal quantifier ∀. Often we say that a formula
containing, for example, the connective → is universal if by replacing ϕ → � by
¬ϕ ∨ � (and “simple manipulations”) we get an equivalent universal formula. Every
universal sentence � is equivalent to a sentence �′ of the form ∀x1 ... ∀xk �′0 for some
k ≥ 1 and some quantifier-free �′0; moreover the length |�′| of �′ is at most |�|. If
in the definition of universal formula we replace the universal quantifier by the
existential one, we get the definition of an existential formula.

One easily verifies that the class of models of a set of universal sentence is closed
under induced substructures. As already mentioned in the Introduction for classes
of graphs, Łoś [19] and Tarski [26] proved the following theorem:

Theorem 2.1 (Łoś–Tarski Theorem). Let � be a vocabulary and ϕ an FO[�]-
sentence. Then Mod(ϕ) is closed under induced substructures if and only if ϕ is
equivalent to a universal sentence.

We first recall the relationship between the axiomatizability of a class of structures
by a universal sentence and its definability by a finite set of forbidden finite induced
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substructures. We fix a vocabulary �. Let F be a set of �-structures and denote by
Forb(F ) and (Forbfin(F )) the class of structures (of finite structures) that do not
contain an induced substructure isomorphic to a structure in F . Clearly for sets F
and F ′ of �-structures we have

if F ⊆ F ′, then Forb(F ′) ⊆ Forb(F ). (2)

Furthermore, for a class C of �-structures closed under induced substructures one
easily verifies that

C = Forb

(
“{A ∈ Str[�] | A /∈ C}”

)
and Cfin = Forbfin

(
“{A ∈ Strfin[�] | A /∈ C}”

)
.

(3)

We have put the corresponding F ’s in brackets as they are not sets but classes.
However for Cfin we can repair this by considering only structures whose universe is
an initial segment of natural numbers, i.e.,

Cfin = Forbfin
(
{A ∈ Strfin[�] | A /∈ C and A = [�] for some � ≥ 1}

)
.

So we see that for every class of finite structures a denumerable set F suffices. When
is a finite F enough?

We say that a class C of �-structures (of finite �-structures) is definable by a finite
set of forbidden induced finite substructures if there is a finite set F of finite structures
such that C = Forb(F ) (C = Forbfin(F )). Recall that �E = {E} with binary E.
The sentences

ϕDG := ∀x¬Exx and ϕGraph := ∀x¬Exx ∧ ∀x∀y(Exy → Eyx)

axiomatize the classes of directed graphs and of graphs, respectively. Define the
�E -structuresH0 =

(
V (H0), E(H0)

)
and H1 =

(
V (H1), E(H1)

)
by

V (H0) := {1}, E(H0) :=
{
(1, 1)

}
and V (H1) := {1, 2}, E(H1) :=

{
(1, 2)

}
.

Then Forb

(
{H0}

)
and Forb

(
{H0, H1}

)
are the class of directed graphs and the

class of graphs, respectively, i.e., Mod(ϕDG) = Forb

(
{H0}

)
and Mod(ϕGraph) =

Forb

(
{H0, H1}

)
.

The following result (Proposition 2.2) generalizes this simple fact and establishes
the equivalence between axiomatizability by a universal sentence and definability by
a finite set of forbidden induced finite substructures. For an arbitrary vocabulary �,
an FO[�]-sentence ϕ, and k ≥ 1 let

Fk(ϕ) :=
{
A ∈ Str[�]

∣∣ A |= ¬ϕ and A = [�] for some � ∈ [k]
}
.

Thus, Fk(ϕ) is, up to isomorphism, the class of structures with at most k elements
that fail to be a model of ϕ. Note that F1(ϕDG) = {H0}. By (2) and (3) we have

if Mod(ϕ) is closed under induced substructures,

then Mod(ϕ) ⊆ Forb(Fk(ϕ)) for all k ≥ 1. (4)

Proposition 2.2. For a class C of �-structures and k ≥ 1 the statements (i) and
(ii) are equivalent.

(i) C = Mod(�) for some universal sentence � := ∀x1 ...∀xk �0 with quantifier-
free �0.
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(ii) C = Forb(F ) for some finite set F of structures, all of at most k elements.

If (i) holds for �, then C = Forb(Fk(�)).

The main step of the proof of (ii) ⇒ (i) is contained in the following lemma.

Lemma 2.3. Let A be a finite �-structure and k := |A|. There is a universal sentence
�A�→ = ∀x1 ... ∀xk �0 with quantifier-free �0 such that for every �-structure B,

B |= �A�→ ⇐⇒ B has no induced substructure isomorphic to A,

i.e.,

Mod(�A�→) = Forb({A}). (5)

Proof. Let A = {a1, ... , ak}. Let �(x1, ... , xk) be the conjunction of all literals
(i.e., atomic or negated atomic formulas) �(x1, ... , xk) such that A |= �(a1, ... , ak).
Then for every �-structure B and b1, ... , bk ∈ B we have

B |= �(b1, ... , bk) ⇐⇒ the clauses 	(ai) = bi for i ∈ [k] define

an isomorphism from A onto [b1, ... , bk]B

(recall that [b1, ... , bk]B denotes the substructure of B induced on {b1, ... , bk}). Thus
we can set

�A�→ := ∀x1 ... ∀xk¬�(x1, ... , xk). �

Proof of Proposition 2.2. (ii) ⇒ (i): Let C = Forb(F ) for some finite set F
of structures, all of at most k elements. If F is empty, then C = Mod(∀x x = x).
Otherwise, by (ii) and (5),

C = Mod

( ∧
A∈F

�A�→

)
.

As the conjunction of finitely many universal sentences of the form ∀x1 ... ∀x� �0

with quantifier-free sentence �0 and with � ≤ k is equivalent to such a sentence, we
get the desired result.

(i) ⇒ (ii): Let C = Mod(�) for � as in (i). Then Mod(�) is closed under
induced substructures and hence, C ⊆ Forb

(
Fk(�)

)
by (4). Now assume that

A /∈ C. Then A |= ¬� and hence there are a1, ... , ak ∈ A with A |= ¬�0(a1, ... , ak).
For B := [a1, ... , ak]A we have B |= ¬�0(a1, ... , ak) (as �0 is quantifier-free) and
thus, B |= ¬�. Therefore, B is isomorphic to a structure in Fk(�) and therefore,
A /∈ Forb

(
Fk(�)

)
. �

Corollary 2.4. Let ϕ be a �-sentence and k ≥ 1. Then

Mod(ϕ) = Forb

(
Fk(ϕ)

)
⇐⇒ ϕ is equivalent to a universal sentence

of the form ∀x1 ...∀xk �0 with quantifier-free �0.

By (2) and (4) we get the following corollaries:

Corollary 2.5. If Mod(�) = Forb

(
Fk(�)

)
for some universal� and some k ≥ 1,

then Mod(�) = Forb

(
F�(�)

)
for all � ≥ k.
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Corollary 2.6. It is decidable whether two universal sentences are equivalent.

Proof. Let � and �′ be universal sentences. W.l.o.g. we may assume that � =
∀x1 ... ∀xk �0 and �′ = ∀x1 ...∀x� �′0 with 1 ≤ k ≤ � and quantifier-free �0 and �′0.
By Corollaries 2.4 and 2.5, we have

Mod(�) = Forb

(
F�(�)

)
and Mod(�′) = Forb

(
F�(�′)

)
.

Thus � and �′ are equivalent if and only if F�(�) = F�(�′). The right-hand side of
this equivalence is clearly decidable. �

The last equivalence of the preceding proof shows the following:

Corollary 2.7. For universal sentences � and �′ we have

� and �′ are equivalent ⇐⇒ � and �′ are finitely equivalent.

The next result generalizes this corollary.

Lemma 2.8. Let Φ be a set of universal sentences and 
 a Π2-sentence, i.e., a sentence
of the form ∀x1 ...∀xk∃y1 ... ∃y� 
0 for some k, � ∈ N and some quantifier-free 
0.

If Φ |=fin 
, then Φ |= 
 and thus there exists a finite Φ0 ⊆ Φ with Φ0 |=fin 
.

Proof. If not Φ |= 
, then there is a (finite or infinite) structure A with A |=
Φ ∪ {¬
}. Note that ¬
 is equivalent to a sentence of the form

∃x1 ... ∃xk �
with universal �. Choose elements a1, ... , ak with A |= �(a1, ... , ak). Then B :=
[a1, ... , ak]A is a model of Φ ∪ {¬
} and thus shows Φ �|=fin 
. �

As the class of all at most countable �-structures shows, not every class closed
under induced substructures is the class of models of a set of universal sentences. In
contrast, for classes of finite structures, we have the following:

Lemma 2.9. Let C be a class of finite �-structures closed under induced substructures
and define the set of universal sentences ΦC by

ΦC := {�A�→ | A ∈ Strfin[�] and A /∈ C}.
Then,

C = Forbfin(“{A ∈ Strfin[�] | A /∈ C}”) = Modfin(ΦC).

Proof. The first equality immediately follows from (3) using the closure of C
under induced substructures and the second equality follows from (5). �

We use the two preceding results to prove (see [17]):

Theorem 2.10 (Compton’s Theorem). Let C be a class of finite �-structures closed
under induced substructures and FO-axiomatizable by a Π2-sentence 
. Then C is
already axiomatizable by a universal sentence.

Proof. By assumption and the preceding lemma, we have C = Modfin(
) =
Modfin(ΦC), in particular, ΦC |=fin 
. By Lemma 2.8 there is a finite subset Φ0 of
ΦC such that Φ0 |=fin 
. Thus,

C = Modfin(ΦC) ⊆ Modfin(Φ0) ⊆ Modfin(
) = C.
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Hence, C is axiomatizable by the conjunction of the sentences in Φ0, a universal
sentence. �

Recall that our main goal is to find a class of finite graphs with the properties
(a)–(c).

(a) The class is closed under induced subgraphs.
(b) The class is FO-axiomatizable (by a single sentence).
(c) The class is not FO-axiomatizable by a universal sentence.

Compton’s Theorem tells us that w.r.t. the quantifier prefix the simplest possible
FO-axiomatization of such a class is by a Σ2-sentence, i.e., by a sentence of the form
∃x1 ...∃xk∀y1 ... ∀y� � with k, � ∈ N and quantifier-free �.

The following consequence of Corollary 2.2 will be used in the next section.

Corollary 2.11. Letm, k ∈ N withm > k and let �0 and �1 be FO[�]-sentences.
Assume that A is a finite model of �0 ∧ �1 with at least m elements and all its induced
substructures with at most k elements are models of �0 ∧ ¬�1. Then �0 ∧ ¬�1 is
not finitely equivalent to a universal sentence of the form � := ∀x1 ...∀xk �0 with
quantifier-free �0.

Proof. As there is no universal sentence � as above for k = 0, we can
assume k ≥ 1. For a contradiction assume Modfin(�0 ∧ ¬�1) = Modfin(�) for
� := ∀x1 ...∀xk �0 with quantifier-free �0. As Mod(�) = Forb

(
Fk(�)

)
by Propo-

sition 2.2, we get (applying the finite equivalence of �0 ∧ ¬�1 and � to obtain the
last equality)

Modfin(�0 ∧ ¬�1) = Modfin(�) = Forbfin
(
Fk(�)

)
= Forbfin

(
Fk(�0 ∧ ¬�1)

)
.

However, by the assumptions the structure A is not contained in Modfin(�0 ∧ ¬�1)
but in the class Forbfin(Fk(�0 ∧ ¬�1)). �

Remark 2.12. Let C be a class of �-structures closed under induced substructures.
For an FO[�]-sentence ϕ we set ModC(ϕ) := {A ∈ C | A |= ϕ}. We say that the
Łoś-Tarski Theorem holds for C if for every FO[�]-sentence ϕ such that the class
ModC(ϕ) is closed under induced substructures there is a universal sentence � such
that ModC(ϕ) = ModC(�). The following holds:

Let C and C′ be classes of �-structures closed under induced
substructures with C′ ⊆ C. Furthermore assume that there is a
universal sentence �0 such that C′ = ModC(�0). If the Łoś–Tarski
Theorem holds for C, then it holds for C′, too.

In fact, for every FO[�]-sentence ϕ we have ModC′(ϕ) = ModC(�0 ∧ ϕ). Hence,
if ModC′(ϕ) is closed under induced substructures, then by assumption there
is a universal � such that ModC(�0 ∧ ϕ) = ModC(�). Therefore, ModC′(ϕ) =
ModC(�0 ∧ ϕ) = ModC(� ∧ �0) = ModC′(�).

However, as examples mentioned in the Introduction show, in general the failure
of the Łoś–Tarski Theorem on a class does not imply its failure on every subclass.
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§3. Basic ideas underlying the classical results. This section contains a proof of
Tait’s Theorem telling us that the analogue of the Łoś–Tarski-Theorem fails if
we only consider finite structures. Afterwards we refine the argument to derive a
generalization, namely Proposition 3.11, which is a key result to get Gurevich’s
Theorem.

Our counterexample to the Łoś–Tarski-Theorem on finite structures essentially
is the one given by Alechina and Gurevich in [1], which in turn simplifies the one
given by Gurevich and Shelah in [17]. All these counterexamples use the main idea
of the original counterexample due to Tait [25].

We consider the vocabulary �0 := {<,Umin, Umax, S}, where < and S (the
“successor relation”) are binary relation symbols and Umin and Umax are unary.

Let ϕ0 be the conjunction of the universal sentences:

– ∀x¬x < x, ∀x∀y(x < y ∨ x = y ∨ y < x), ∀x∀y∀z((x < y ∧ y < z) →
x < z), i.e., “< is an ordering.”

– ∀x∀y
(
Umin x → (x = y ∨ x < y)

)
, i.e., “every element in Umin is a minimum

w.r.t. <.”
– ∀x∀y

(
Umax x → (x = y ∨ y < x)

)
, i.e., “every element in Umax is a maximum

w.r.t. <.”
– ∀x∀y(Sxy → x < y).
– ∀x∀y∀z((x < y ∧ y < z) → ¬Sxz).

Note that in models of ϕ0 there is at most one element in Umin, at most one in
Umax, and that S is a subset of the successor relation w.r.t. <. We call the models of
ϕ0 �0-orderings.

For a vocabulary � with<∈ � and �-structures A and B we write B ⊆< A and say
that B is a <-substructure of A if B is a substructure of A with <B=<A ∩ (B × B).

We remark that the relation symbols Umin, Umax, and S are negative in ϕ0.
Therefore we have the following:

Lemma 3.1. Let A and B be �0-structures with B ⊆< A. If A |= ϕ0, then B |= ϕ0.

Let

ϕ1 := ∃x Umin x ∧ ∃xUmax x ∧ ∀x∀y(x < y → ∃zSxz). (6)

We call models of ϕ0 ∧ ϕ1 complete �0-orderings. Clearly, for every k ≥ 1 there is a
unique, up to isomorphism, complete �0-ordering with exactly k elements. The next
lemma shows that all its proper <-substructures are models of ϕ0 ∧ ¬ϕ1.

Lemma 3.2. Let A and B be �0-structures. Assume that A |= ϕ0 and B is a finite
<-substructure of A that is a model of ϕ1. Then B = A (in particular, A |= ϕ1).

Proof. By the previous lemma we know that B |= ϕ0. Let B := {b1, ... , bn}. As
<B is an ordering, we may assume that

b1 <
B b2 <

B ··· <B bn–1 <
B bn.

As B |= (ϕ0 ∧ ϕ1), we haveUB
minb1,UB

maxbn, and SBbibi+1 for i ∈ [n – 1]. As B ⊆ A,
everywhere we can replace the upper index B by A.
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We show A = B (then A = B follows from A |= ϕ0): Let a ∈ A. By A |= ϕ0, we
have b1 ≤A a ≤A bn. Let i ∈ [n] be maximal with bi ≤A a. If i = n, then bn = a.
Otherwise, bi ≤A a <A bi+1. As SAbibi+1, we see that bi = a (by the last conjunct
of ϕ0). �

Corollary 3.3. Every finite proper <-substructure of a model of ϕ0 ∧ ϕ1 is a
model of ϕ0 ∧ ¬ϕ1.

The Łoś–Tarski Theorem does not remain valid when restricted to finite
structures. In fact, the class of finite �0-orderings that are not complete is closed
under induced substructures but not axiomatizable by a universal sentence:

Theorem 3.4 (Tait’s Theorem). The class Modfin(ϕ0 ∧ ¬ϕ1) is closed under <-
substructures (and hence, closed under induced substructures) but ϕ0 ∧ ¬ϕ1 is not
finitely equivalent to a universal sentence.1

By Compton’s Theorem (Theorem 2.10) the sentence ϕ0 ∧ ¬ϕ1 is not even
equivalent to a Π2-sentence. However, note that ϕ0 ∧ ¬ϕ1 is (equivalent to) a
Σ2-sentence.

Proof of Theorem 3.4. Modfin(ϕ0 ∧ ¬ϕ1) is closed under <-substructures: If
A |= ϕ0 ∧ ¬ϕ1 and B is a finite <-substructure of A, then B |= ϕ0 (by Lemma 3.1).
If B |= ¬ϕ1, we are done. If B |= ϕ1, then A |= ϕ1 by Lemma 3.2, which contradicts
our assumption A |= ¬ϕ1.

Let k ∈ N. It is clear that there is a finite model A of ϕ0 ∧ ϕ1 with at least
k + 1 elements. By Corollary 3.3 every proper induced substructure of A is a model
of ϕ0 ∧ ¬ϕ1. Therefore, by Corollary 2.11, the sentence ϕ0 ∧ ¬ϕ1 is not finitely
equivalent to a universal sentence of the form ∀x1 ...∀xk �0 with quantifier-free �0.
As k was arbitrary, we get our claim. �

Remark 3.5. As Modfin(ϕ0 ∧ ¬ϕ1) is closed under induced substructures but
ϕ0 ∧ ¬ϕ1 is not finitely equivalent and hence not equivalent to a universal sentence,
the class Mod(ϕ0 ∧ ¬ϕ1) of finite and infinite models ofϕ0 ∧ ¬ϕ1 is not closed under
induced substructures. Nevertheless, as ϕ0 ∧ ¬ϕ1 is equivalent to a Σ2-sentence, a
result in [24] tells us that this class has a “local Łoś–Tarski property.” More precisely,
for k ∈ N we say that a class C of �-structures has k-cores if for every A ∈ C there is
a subset C of A of at most k elements such that every induced substructure B of A
with C ⊆ B is in the class C. Note that Mod(ϕ0 ∧ ¬ϕ1) has 2-cores. In fact, let A
be in this class. If A |= ¬∀x∀y(x < y → ∃zSxz), then setC = {a, b} where a <A b
and for all a′ ∈ A not SAaa′. If A |= ∀x∀y(x < y → ∃zSxz), then choose as C the
empty set.

In [24] the authors showed: Let k ∈ N and C be an FO-axiomatizable class of
�-structures. Then C has k-cores if and only if C is axiomatizable by a Σ2-sentence
of the form ∃x1 ... ∃xk �with universal �. Note that for k = 0 we get the Łoś–Tarski
Theorem.

We turn to a refinement of Theorem 3.4 that will be helpful to get Gurevich’s
Theorem.

1As already mentioned, Tait showed this result in [25] for a sentence different from ϕ0 ∧ ¬ϕ1.
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Definition 3.6. (a) Let � be obtained from the vocabulary �0 by adding finitely
many relation symbols “in pairs,” the standard R together with its complement
Rcomp (intended as the complement of R). The symbols R andRcomp have the
same arity and for our purposes we can restrict ourselves to unary or binary
relation symbols (even though all results can be generalized to arbitrary
arities). We briefly say that � is obtained from �0 by adding pairs.

(b) Let � be obtained from �0 by adding pairs. We say that ϕ0� ∈ FO[�] is an
extension of ϕ0 (where ϕ0 is as above) if it is a universal sentence such that:

(i) the sentence ϕ0 is a conjunct of ϕ0� ,
(ii) the sentence

∧
R standard ∀x̄(¬Rx̄ ∨ ¬Rcompx̄) is a conjunct of ϕ0� ,

(iii) besides < all relation symbols are negative in ϕ0� (if this is not the case
for some new R or Rcomp, the idea is to replace any positive occurrence
of R orRcomp by ¬Rcomp and ¬R, respectively). For instance, we replace
a subformula

x < y ∧Rxy by x < y ∧ ¬Rcompxy.

(c) Let � be obtained from �0 by adding pairs. Then we set

ϕ1� := ϕ1 ∧
∧

R standard

∀x̄(Rx̄ ∨Rcompx̄),

where ϕ1 is as above see (6).

For a �-structure B with B |= ϕ0� ∧ ϕ1� we have

B |=
∧

R standard

(
∀x̄(¬Rx̄ ∨ ¬Rcompx̄) ∧ ∀x̄(Rx̄ ∨Rcompx̄)

)
.

Hence, for standard R ∈ � of arity r, we have

if B |= ϕ0� ∧ ϕ1� , then (Rcomp)B = Br \RB. (7)

Now we derive the analogues of Lemma 3.1—Theorem 3.4 essentially by the same
proofs. In all these results the vocabulary � is obtained from �0 by adding pairs and
ϕ0� is an extension of ϕ0.

Lemma 3.7. If B ⊆< A and A |= ϕ0� , then B |= ϕ0� .

Proof. By Definition 3.6, the sentence ϕ0� is universal and all relation symbols
distinct from < are negative in ϕ0� . �

Lemma 3.8. Assume that A |= ϕ0� and that a finite <-substructure B of A is a
model of ϕ1� . Then B = A in particular, A |= ϕ1� .

Proof. Let A � �0 and B � �0 be the �0-structures obtained from A and
from B by removing all relations in � \ �0. By Lemma 3.2 we know that B �
�0 = A � �0. Furthermore, B |= ϕ0� by the previous lemma; thus, B |= ϕ0� ∧ ϕ1� .
Hence, by (7), (Rcomp)B is the complement of RB for standard R. Clearly,
RB ⊆ RA and (Rcomp)B ⊆ (Rcomp)A. As A = B and A is a model of the sentence∧
R standard ∀x̄(¬Rx̄ ∨ ¬Rcompx̄), we get RB = RA and (Rcomp)B = (Rcomp)A. �
Corollary 3.9. Every proper <-substructure of a finite model of ϕ0� ∧ ϕ1� is a

model of ϕ0� ∧ ¬ϕ1� .

https://doi.org/10.1017/jsl.2023.99 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.99


FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI THEOREM 529

By replacing in the proof of Tait’s Theorem the use of Lemma 3.1, Lemma 3.2,
and Corollary 3.3 by Lemma 3.7, Lemma 3.8, and Corollary 3.9, respectively, we
get the following:

Lemma 3.10. The class Modfin(ϕ0� ∧ ¬ϕ1�) is closed under <-substructures (and
hence, closed under induced substructures) but ϕ0� ∧ ¬ϕ1� is not finitely equivalent to
a universal sentence.

Perhaps the reader will ask why we do not introduce for < the “complement
relation symbol” <comp and add the corresponding conjuncts to ϕ0� and ϕ1� (or,
to ϕ0 and ϕ1) in order to get a result of the type of Lemma 3.8 (or already of the
type of Lemma 3.2) where we can replace “<-substructure” by “substructure.” The
reader will realize that corresponding proofs of B = A break down.

The next proposition, the core of the proof of Gurevich’s Theorem, provides
a uniform way to construct FO-sentences that are only equivalent to universal
sentences of large size.

Proposition 3.11. Again let � be obtained from �0 by adding pairs and ϕ0� be an
extension of ϕ0. Let m ≥ 1 and � be an FO[�]-sentence such that

ϕ0� ∧ ϕ1� ∧ � has no infinite model but a finite model with at least m elements. (8)

For  := ϕ0� ∧ (ϕ1� → ¬�) the statements (a) and (b) hold.

(a) The class Mod() is closed under <-substructures.
(b) If � := ∀x1 ...∀xk �0 with quantifier-free �0 is finitely equivalent to , then
k ≥ m.

Proof. (a) Let A |=  and B ⊆< A. Thus, B |= ϕ0� . If B �|= ϕ1� , we are done.
Assume B |= ϕ1� . In case B is infinite, by (8) we know that B is a model of ¬� and
hence of . Otherwise, B is finite; then B = A (by Lemma 3.8) and thus, B |= .

(b) According to (8) there is a finite model A of ϕ0� ∧ ϕ1� ∧ �, i.e., of
ϕ0� ∧ ¬(ϕ1� → ¬�), with at least m elements. By Corollary 3.9 every proper
induced substructure of A is not a model of ϕ1� and therefore, it is a model
of ϕ0� ∧ (ϕ1� → ¬�). Hence by Corollary 2.11, ϕ0� ∧ (ϕ1� → ¬�) is not finitely
equivalent to a universal sentence of the form � := ∀x1 ...∀xk �0 with k < m and
quantifier-free �0. �

Remark 3.12. We can strengthen the statement (b) of the preceding proposition
to:

If the Π2-sentence 
 = ∀x1 ... ∀xk∃y1 ...∃y� 
0 with quantifier-free

0 is finitely equivalent to , then k ≥ m.

In fact, assume that Modfin() = Modfin(
) with 
 as above. We first show that k
cannot be 0. In fact, if k = 0, then 
 is an existential sentence. By assumption there
is a finite model A of ϕ0� ∧ ϕ1� ∧ � with at least m elements. Obtain the �-structure
B from A by settingUB

min = UB
max = ∅. Clearly, then B |= ¬ϕ1� and B |= ϕ0� asUmin

and Umax are negative in ϕ0� . Hence, B |=  and thus, B |= 
. Let C be a finite
extension of B (i.e., B is an induced substructure of C) with an element c such that
(c, c) ∈<C . Then, C |= 
 as 
 is existential. However, C |= ¬ϕ0� as <C is not an
ordering. Thus, C |= ¬, a contradiction.
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So we know that k ≥ 1 and now show that Modfin() = Modfin(
) implies
k ≥ m. For a contradiction assume k < m. By (8) there is a finite model A of
ϕ0� ∧ ϕ1� ∧ � with at least m elements. Then A �|= 
. Hence there are a1, ... , ak ∈
A with A |= ¬∃y1 ...∃y� 
0(a1, ... , ak). Then B |= ¬∃y1 ...∃y� 
0(a1, ... , ak), where
B := [a1, ... , ak]A is the substructure of A induced by a1, ... , ak . Hence, B �|= 

and therefore, B �|= ϕ0� ∧ ¬ϕ1� . As k < m, the structure B is a proper induced
substructure of A. Thus, B |= ϕ0� ∧ ¬ϕ1� by Corollary 3.9, a contradiction.

§4. The general machinery: strongly existential interpretations. We show that
appropriate interpretations preserve the validity of Tait’s theorem and of the
statement of Proposition 3.11. Later on these interpretations will allow us to get
versions of the results for graphs.

Let �E := {E} with binary E. As already remarked in the Preliminaries for all
�E -structures we use the notation G = (V (G), E(G)) common in graph theory.

Let � be obtained from �0 by adding pairs. Furthermore, let I := (ϕuni, (ϕT )T∈�)
be an interpretation of width 2 (we only need this case) of �-structures in
�E -structures. This means that ϕuni and the ϕT ’s are FO[�E ]-formulas with
ϕuni = ϕuni(x1, x2), ϕT = ϕT (x1, x2) for every unary relation symbol T ∈ �, and
ϕT = ϕT (x1, x2, y1, y2) for every binary relation symbol T ∈ �.

Then for every �E -structure G we set

OI (G) :=
{
ā ∈ V (G) × V (G)

∣∣ G |= ϕuni(ā)
}
.

If OI (G) �= ∅, i.e., if G |= ∃x̄ϕuni(x̄), then the interpretation I assigns to G a
�-structure with universe OI (G), which we denote by OI (G) 2, given by:

– TOI (G) :=
{
ā ∈ OI (G)

∣∣ G |= ϕT (ā)
}

for unary T ∈ �.
– TOI (G) :=

{
(ā, b̄) ∈ OI (G) ×OI (G)

∣∣ G |= ϕT (ā, b̄)
}

for binary T ∈ �.
As the interpretation I is of width 2, we have

|OI (G)| ≤ |V (G)|2. (9)

Recall that for every sentence ϕ ∈ FO[�] there is a sentence ϕI ∈ FO[�E ] such that
for all �E -structures G with G |= ∃x̄ϕuni(x̄) we have

OI (G) |= ϕ ⇐⇒ G |= ϕI . (10)

For example, for the sentence ϕ = ∀x∀y Txy we have

ϕI = ∀x̄
(
ϕuni(x̄) → ∀ȳ

(
ϕuni(ȳ) → ϕT (x̄, ȳ)

))
.

Furthermore there is a constant cI ∈ N such that for all ϕ ∈ FO[�],

|ϕI | ≤ cI · |ϕ|. (11)

From time to time we will make use of the following lemma.

2As for the interpretations I and the graphs G we are interested in, the structure OI (G) is an ordered
structure, we use the notation OI (G)
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Lemma 4.1. Let I :=
(
ϕuni, (ϕT )T∈�

)
be an interpretation of �-structures in �E -

structures. For �-sentences �1 and �2,

Mod(�1) = Mod(�2) ⇒ Graph(∀x̄¬ϕuni(x̄) ∨ �1
I ) = Graph(∀x̄¬ϕuni(x̄) ∨ �2

I )
(12)

and the same implication holds if we restrict to finite structures, i.e.,

Modfin(�1) = Modfin(�2)

⇒ Graphfin(∀x̄¬ϕuni(x̄) ∨ �1
I ) = Graphfin(∀x̄¬ϕuni(x̄) ∨ �2

I ). (13)

If for every finite �-structure A there is a finite graph G with OI (G) ∼= A, then

Modfin(�1) = Modfin(�2)

⇐⇒ Graphfin(∀x̄¬ϕuni(x̄) ∨ �1
I ) = Graphfin(∀x̄¬ϕuni(x̄) ∨ �2

I ). (14)

Proof. The implications in (12) and (13) follow immediately from (10). We still
have to show the implication from right to left in (14). So let A be a finite �-structure.
By assumption there is a finite graph G with OI (G) ∼= A. As A �= ∅, we have G |=
¬∀x̄¬ϕuni(x̄). By the equality on the right-hand side, thus we know that

(
G |=

�1
I ⇐⇒ G |= �2

I
)
. Hence, by (10), A ∈ Modfin(�1) ⇐⇒ A ∈ Modfin(�2). �

Definition 4.2. Let � be obtained from �0 by adding pairs. An interpretation I
of �-structures in �E -structures is strongly existential if all formulas of I (i.e., ϕT for
T ∈ � and ϕuni) are existential and in addition ϕ< is quantifier-free.

Lemma 4.3. Let � be obtained from �0 by adding pairs and let ϕ0� be an extension of
ϕ0. Then for every strongly existential interpretation I the sentence ϕ0�

I is (equivalent
to) a universal sentence.

Proof. The claim holds as all relation symbols distinct from < are negative in
ϕ0� . For example, for ϕ := ∀x∀y

(
Umin x → (x = y ∨ x < y)

)
, we have

ϕI = ∀x̄
(
ϕuni(x̄) → ∀ȳ

(
ϕuni(ȳ) → (ϕUmin (x̄) → ((x1 = y1 ∧ x2 = y2) ∨ ϕ<(x̄, ȳ)))

))
.

�
The following result shows that strongly existential interpretations transform

induced subgraphs into <-substructures; this will be crucial to transfer the results
of the preceding section to graphs.

Lemma 4.4. Assume that I is strongly existential. Then for all �E -structures G and
H withH ⊆ind G and OI (H ) �= ∅, we have OI (H ) ⊆< OI (G).

Proof. As ϕuni is existential, we have OI (H ) ⊆ OI (G). Let T ∈ � be distinct
from < and b̄ ∈ TOI (H ). Then H |= ϕT (b̄). As ϕT is existential, G |= ϕT (b̄) and
thus, b̄ ∈ TOI (G). Moreover, for b̄, b̄′ ∈ OI (H ) we have

b̄ <OI (H ) b̄′ ⇐⇒ H |= ϕ<(b̄, b̄′)

⇐⇒ G |= ϕ<(b̄, b̄′) (as H ⊆ind G and ϕ< is quantifier-free)

⇐⇒ b̄ <OI (G) b̄′.

Putting all together we see that OI (H ) ⊆< OI (G). �
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Corollary 4.5. Assume I is strongly existential and let � be a �-sentence.
If Mod(�) (resp. Modfin(�)) is closed under <-substructures, then
Mod(∀x̄¬ϕuni(x̄) ∨ �I ) (resp. Modfin(∀x¬ϕuni(x̄) ∨ �I )) is closed under induced
substructures.

Proof. Let G and H be �E -structures,H ⊆ind G , and G |= ∀x̄¬ϕuni(x̄) ∨ �I . If
H |= ∀x̄¬ϕuni(x̄), we are done. Otherwise, alsoG �|= ∀x̄¬ϕuni(x̄) and thus,G |= �I .
Hence, OI (G) |= � and OI (H ) ⊆< OI (G) by the previous lemma. Therefore, by
assumption, OI (H ) |= � and thus, H |= �I . �

We obtain from Lemma 3.8 the corresponding result in our framework.

Lemma 4.6. Let I be strongly existential and let ϕ0� be an extension of ϕ0. Assume
that the �E -structure G is a model of ϕ0�

I and that H ⊆ind G with finite OI (H ), is a
model of ϕ1�

I . Then OI (H ) = OI (G) and G |= ϕ1�
I .

Proof. As H |= ϕ1�
I , we have H |= (∃x Umin x)I holds and thus, OI (H ) �= ∅.

Therefore,OI (H ) ⊆< OI (G) by Lemma 4.4. By assumption and (10),OI (G) |= ϕ0�

and OI (H ) |= ϕ1� . As OI (H ) is finite, Lemma 3.8 implies OI (H ) = OI (G), and in
particular OI (G) |= ϕ1� . Hence, G |= ϕ1�

I by (10). �

We now prove for strongly existential interpretations two results, Proposition 4.7
corresponds to Tait’s Theorem (Theorem 3.4) and Proposition 4.8 corresponds to
Proposition 3.11 (relevant to Gurevich’s Theorem).

Proposition 4.7. Assume that the interpretation I of �0-structures in �E -structures
is strongly existential. Furthermore, assume that for every finite complete �0-ordering
A, i.e., A |= ϕ0 ∧ ϕ1, there is a finite graph G with OI (G) ∼= A. Then for

ϕ := ∀x̄¬ϕuni(x̄) ∨
(
ϕ0 ∧ ¬ϕ1

)I
the class Graphfin(ϕ) is closed under induced subgraphs, but ϕ is not equivalent to a
universal sentence in finite graphs.

Proof. By Theorem 3.4, we know that Modfin(ϕ0 ∧ ¬ϕ1) is closed under <-
substructures. Hence, Graphfin

(
∀x̄¬ϕuni(x̄) ∨

(
ϕ0 ∧ ¬ϕ1

)I )
is closed under induced

subgraphs by Corollary 4.5.
Now we show that for every k ≥ 1 the sentence ϕ is not equivalent in finite

graphs to a sentence of the form � = ∀z1 ...∀zk �0 with quantifier-free �0. Let A :=(
A,<A, UA

min, U
A
max, S

A)
be a complete �0-ordering with at least k2 + 1 elements. In

particular, A |= ϕ0 ∧ ϕ1. By assumption there is a finite graph G such that OI (G) ∼=
A. Then OI (G) |= ϕ0 ∧ ϕ1, hence, G |= ϕ0

I ∧ ϕ1
I . Thus G |= ¬ϕ. As |OI (G)| =

|A| ≥ k2 + 1, the graph G must contain more than k vertices by (9).
We want to show that every induced subgraph of G with at most k vertices

is a model of ϕ. Then the result follows from Corollary 2.11 for �0 := ϕGraph ∧(
∀x̄¬ϕuni(x̄) ∨ ϕ0

I
)

and �1 := ∃x̄ϕuni(x̄) ∧ ϕ1
I .

So let H be an induced subgraph of G with at most k vertices. Clearly,H |= ϕ0
I . If

H |= ∀x̄¬ϕuni(x̄) orH |= ¬ϕ1
I , we are done. Otherwise OI (H ) �= ∅ andH |= ϕ1

I .
Then, Lemma 4.6 implies OI (H ) = OI (G). Recall |V (H )| ≤ k, so OI (H ) has at
most k2 elements by (9), a contradiction as |OI (G)| ≥ k2 + 1. �
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Proposition 4.8. Let � be obtained from �0 by adding pairs and let ϕ0� be an
extension of ϕ0. Assume that I is a strongly existential interpretation of �-structures
in �E -structures with the property that for every finite �-structure A that is a model of
ϕ0� ∧ ϕ1� there is a finite graph G with OI (G) ∼= A and G |= �.

Let m ≥ 1 and � be an FO[�]-sentence such that

ϕ0� ∧ ϕ1� ∧ � has no infinite model but a finite model with at least m elements. (15)

For

� := ∀x̄¬ϕuni(x̄) ∨
(
ϕ0� ∧ (ϕ1� → ¬�)

)I
,

the statements (a) and (b) hold.

(a) The class Graph(�) is closed under induced subgraphs.
(b) If � := ∀x1 ...∀xk �0 with quantifier-free �0 is equivalent in finite graphs to �,

then k2 ≥ m.

Proof. Again (a) follows from Proposition 3.11(a) by Corollary 4.5.
(b) By (15) there is a finite model A of ϕ0� ∧ ϕ1� ∧ � with at least m elements.

By assumption there is a finite graph G with OI (G) ∼= A and G |= �. Clearly, G |=
¬∀x̄¬ϕuni(x̄) and G |= (ϕ0� ∧ ϕ1� ∧ �)I . Hence, G |= ¬�. Assume that k2 < m. We
want to show that every induced subgraph of G with at most k elements is a model
of �. Then the claim (b) follows from Corollary 2.11 (with �0 := ∀x x = x and
�1 := ¬�).

So let H be an induced subgraph of G with at most k elements. Clearly, H |=
ϕ0�
I . If H |= ∀x̄¬ϕuni(x̄) or H |= ¬ϕ1�

I , we are done. Otherwise OI (H ) �= ∅ and
H |= ϕ1�

I . Then, OI (H ) = OI (G) by Lemma 4.6. This leads to a contradiction,
as OI (H ) has at most k2 elements by (10), while OI (G) has m elements and we
assumed k2 < m. �

Remark 4.9. (a) The result corresponding to Remark 3.12 is valid for Proposition
4.7 too.

(b) By Compton’s Theorem (Theorem 2.10) the sentence ∀x̄¬ϕuni(x̄) ∨
(
ϕ0 ∧

¬ϕ1
)I

is not equivalent to a Π2-sentence. However, ∀x̄¬ϕuni(x̄) ∨
(
ϕ0 ∧ ¬ϕ1

)I
itself

is equivalent to a Σ2-sentence. In fact, as all relation symbols besides < are negative
in ϕ0, the sentence ϕ0

I is universal. Moreover, as Umin, Umax, and S are positive
in ϕ1, the sentence ϕ1

I (as ϕ1) is equivalent to a Π2-sentence. Hence ∀x̄¬ϕuni(x̄) ∨(
ϕ0 ∧ ¬ϕ1

)I
is equivalent to a Σ2-sentence.

§5. Tait’s Theorem for finite graphs. We present strongly existential interpreta-
tions that allow us to get Tait’s Theorem for graphs in this section and Gurevich’s
Theorem for graphs in Section 6.

We first introduce a further concept. Let G be a graph and a, b ∈ V (G). For
r, s ≥ 3 a path from vertex a to vertex b of length r with an s-ear is a path between
a and b with a cycle of length s; one vertex of this cycle is adjacent to the vertex
adjacent to b on the path; path and cycle have no vertex in common. Figure 1 is a
path from a to b of length 6 with a 4-ear.
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Figure 1. A path of length 6 with a 4-ear.

Lemma 5.1. For r, s ≥ 3 there are quantifier-free formulas ϕc,r(x, z̄) and
ϕpe,r,s(x, y, z̄, w̄) such that for all graphs G we have:

(a) G |= ϕc,r(a, ū) ⇐⇒ ū is a cycle of length r containing a.
(b) G |= ϕpe,r,s(a, b, ū, v̄) ⇐⇒ ū is path from a to b of length r with the s-ear v̄.

Proof. (a) We can take as ϕc,r(x, z1, ... , zr) the formula∧
1≤i<r

Ezizi+1 ∧ Ezrz1 ∧
∧

1≤i<j≤r
¬zi = zj ∧

∨
i∈[r]

x = zi .

(b) We can take as ϕpe,r,s(x, y, z0, ... , zr , w1, ... , ws) the formula

x = z0 ∧ y = zr ∧
∧

0≤i<r–1

Ezizi+1 ∧
∧

0≤i<j≤r
¬zi = zj ∧

∧
0≤i≤r, j∈[s]

¬zi = wj

∧
∨
i∈[s]

(ϕc,s(wi , w1, ... , ws) ∧ Ezr–1wi).

�
To understand better how we obtain the desired interpretation we first assign to every
complete �0-ordering A, i.e., to every model of ϕ0 ∧ ϕ1, a �E -structure G := G(A)
that is a graph.

In a first step we extend A to a �∗0 -structure A∗, where �∗0 := �0 ∪ {B,C,L, F } in
the following way. Here B,C are unary and L,F are binary relation symbols.

For every original (or, basic) element a, i.e., for every a ∈ A, we introduce a new
element a′, the companion of a. We set

– A∗ := A ∪ {a′ | a ∈ A},
– BA∗

:= A, CA∗
:= {a′ | a ∈ A},

– LA
∗

:=
{
(a, a′)

∣∣ a ∈ A
}
, FA∗

:=
{
(a′, b), (b, a′)

∣∣ a, b ∈ A, a <A b
}
.

Note that the relation F is irreflexive and symmetric, i.e.,
(
A∗, FA∗)

is already
a graph, which is illustrated by Figure 2. Observe that F contains the whole
information of the ordering <A up to isomorphism.

We use A∗ to define the desired graph G = G(A). The vertex set V (G) contains
the elements of A∗ and the edge relation E(G) contains FA∗

. Furthermore G
contains just all the vertices and edges required by the “gadgets” introduced by the
following clauses:

– To a ∈ UA
min we add a cycle of length 5 through a, all the other vertices of the

cycle are new, i.e., not in A∗.
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Figure 2. Turning an ordering to the relation F.

– To a ∈ UA
max we add a cycle of length 7 through a, all the other vertices of the

cycle are new.
– To a ∈ BA∗

we add a cycle of length 9 through a, all the other vertices of the
cycle are new.

– To a ∈ CA∗
we add a cycle of length 11 through a, all the other vertices of the

cycle are new.
– To (a, b) ∈ SA we add a path from a to b of length 17 with a 13-ear consisting

of new vertices (besides a and b).
– To (a, a′) ∈ LA∗

we add a path from a to a′ of length 17 with a 15-ear consisting
of new vertices (besides a and a′).

Hereby we meant by “add a cycle” or “add a path with an ear” that we only add the
edges required by the corresponding formulas in Lemma 5.1.

To ease the discussion, we divide cycles in G (= G(A)) into four categories.
[F-cycle] These are the cycles in

(
A∗, FA∗)

, i.e., the cycles using only edges of
FA∗

.
[T-cycle] For every T ∈

{
Umin, Umax, B, C

}
and a ∈ TA the cycle introduced for

a is a T-cycle.
[ear-cycle] These are the cycles that are the ears on the gadgets introduced for the

pairs of the relations SA∗
and LA∗

.
[mixed-cycle] All the other cycles are mixed.
For example, we get a mixed cycle if we start with a2, a′0, a1 in Figure 2 and then

add the path introduced for (a1, a2) ∈ SA (ignoring the ear).
A number of observations for these types of cycles are in order.

Lemma 5.2. (i) All the F-cycles are of even length.
(ii) Every Umin-, Umax-, B-, and C-cycle is of length 5, 7, 9, and 11, respectively.
(iii) Every ear-cycle is of length 13 or 15.
(iv) Every mixed-cycle neither uses new vertices of any T-cycle for T ∈{

Umin, Umax, B, C
}

nor any vertex of any ear-cycle.
(v) Every mixed-cycle has length at least 17.

Proof. (i) follows easily from the fact that
(
A∗, FA∗)

is a bipartite graph; (ii) and
(iii) are trivial. For (iv) assume that a mixed-cycle uses a new vertex b of a T-cycle C
introduced for some a ∈ TA∗

, where T ∈
{
Umin, Umax, B, C

}
. As C is mixed, it must

contain a vertex c /∈ TA∗
. To reach b from c the mixed cycle must pass through a

and hence must contain one of the two segments of C between b and a. Therefore, in
order for the mixed-cycle to go back from b to c, it must also use the other segment
of C between a and b. This means that it must be the T-cycle C itself, instead of a
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mixed one. A similar argument shows that mixed cycles do not contain vertices of
any ear-cycle.

To prove (v), let C be a mixed-cycle. By (iv), C must contain all vertices of a (at
least one) path introduced for a pair (a, a′) ∈ LA∗ or (a, b) ∈ SA∗

(ignoring the
ear). As these paths have length 17, we get our claim. �

We want to recover A (up to isomorphism) from G(A) by means of a strongly
existential interpretation. Let G be any graph. First we define a �0-structure O(G),
possibly the “empty structure” (and then we show that O(G) = OI (G) for some
strongly existential interpretation I). For the definitions of “cycle” and of “path
with ear” see Lemma 5.1.

– O(G) :=
{
(a1, a2) ∈ V (G) × V (G)

∣∣ a1 is a member of a cycle of length 9,
a2 is a memberof a cycle of length 11, and there is a path from a1 to a2 of
length 17 with a 15-ear

}
– <O(G):=

{
((a1, a2), (b1, b2)) ∈ O(G) ×O(G)

∣∣ {a2, b1} ∈ E(G)
}

– UO(G)
min :=

{
(a1, a2) ∈ O(G)

∣∣ a1 is a member of a cycle of length 5
}

– UO(G)
max :=

{
(a1, a2) ∈ O(G)

∣∣ a1 is a member of a cycle of length 7
}

– SO(G) :=
{
((a1, a2), (b1, b2)) ∈ O(G) ×O(G) | there is a path from a1 to b1

of length 17 with a 13-ear
}
.

Lemma 5.3. For every complete �0-ordering A we have O(G(A)) ∼= A.

Proof. Let G := G(A) and A+ := O(G). We claim that the mapping
h : A→ A+ defined by

h(a) := (a, a′) for a ∈ A

is an isomorphism from A to A+. To that end, we first prove that

A+ =
{
(a, a′)

∣∣ a ∈ A
}
,

which implies that h is well defined and a bijection. For every a ∈ A it is easy to
see that (a, a′) ∈ O(G) (= A+). For the converse, let (a1, a2) ∈ O(G). In particular,
a1 is a member of a cycle of length 9. By Lemma 5.2, this must be a B-cycle that
contains some a ∈ A. Using the same argument, a2 is a member of a C-cycle that
contains a vertex b′ being the companion of some b ∈ A. Furthermore, there is a
path from a1 to a2 of length 17 with a 15-ear. The 15-ear is a cycle of length 15. Again
by Lemma 5.2 this cycle is an ear-cycle that belongs to the gadget we introduced for
some (c, c′) ∈ LA∗

with c ∈ A. Then it is easy to see that a = c = b. This finishes
the proof that h is a bijection from A to A+.

Similarly, we can prove that h preserves all the relations. �

We show that we can obtain O(G) from G by a strongly existential FO-
interpretation I of width 2. We set

ϕuni(x, x′) := ∃x̄∃x̄′∃z̄∃w̄ �(x, x′, x̄, x̄′, z̄, w̄).

Here �(x, x′, x̄, x̄′, z̄, w̄) is the formula

ϕc,9(x, x̄) ∧ ϕc,11(x′, x̄′) ∧ ϕpe,17,15(x, x′z̄, w̄)
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that expresses “x̄ is a cycle of length 9 containing x, x̄′ is a cycle of length 11
containing x′, and z̄ is a path from x to x′ of length 17 with the 15-ear w̄.”
Furthermore we define:

– ϕ<(x, x′, y, y′) := Ex′y,
– ϕUmin(x, x′) := ∃z̄ ϕc,5(x, z̄),
– ϕUmax(x, x′) := ∃z̄ ϕc,7(x, z̄),
– ϕS(x, x′, y, y′) := ∃z̄∃w̄ϕpe,17,13(x, y, z̄, w̄).

Then we have the following:

Lemma 5.4. I := (ϕuni, ϕ<, ϕUmin , ϕUmax , ϕS) is a strongly existential interpreta-
tion of �0-structures in �E -structures. For every complete �0-ordering A we have
OI (G(A)) = O(G(A)) and hence, by Lemma 5.3,

OI (G(A)) ∼= A.

We get from Proposition 4.7:

Theorem 5.5 (Tait’s Theorem for graphs). There is a �E -sentence ϕ such that
Graphfin(ϕ), the class of finite graphs that are models of ϕ, is closed under induced
subgraphs but ϕ is not equivalent to a universal sentence in finite graphs.

In this section we presented a strongly existential interpretation of �0-structures
in �E -structures (more precisely, in graphs) and applied it to finite complete �0-
orderings, i.e., to models of ϕ0 ∧ ϕ1. A straightforward generalization of the
preceding proofs allows us to show the following result for vocabularies obtained
from �0 by adding pairs. We shall use it in Section 6.

Lemma 5.6. Let � be obtained from �0 by adding pairs. There is a strongly existential
interpretation I (= I�) that for every extension ϕ0� of ϕ0 assigns to every �-structure
A that is a model of ϕ0� ∧ ϕ1� a graph G(A) with OI (G(A)) ∼= A. For finite A the
graph G(A) is finite.

Proof. We get the graph G(A) as in the case � := �0: For the elements of new
unary relations we add cycles such that the lengths of the cycles are odd and distinct
for distinct unary relations in �. Let c be the maximal length of these cycles. Then
we add paths with ears to the tuples of binary relations as above. For distinct binary
relations the ears should have distinct length and again this length should be odd and
greater than c. On the other hand, the length of added new paths can be the same
for all binary relations but should be greater than the length of all the cycles. �

Remark 5.7. (a) Let C := Modfin(∀x¬Exx) be the class of finite directed graphs.
Then C′ := Graphfin, the class of finite graphs, is a subclass of C closed under
induced substructures and definable in C by the universal sentence ∀x∀y(Exy →
Eyx). As the Łoś–Tarski Theorem fails for the class of finite graphs, it fails for the
class of directed graphs by Remark 2.12.

(b) Let C′ := Planarfin be the class of finite planar graphs, a subclass of
C := Graphfin closed under induced subgraphs. As mentioned in the Introduction,
in [2] it is shown that the Łoś–Tarski Theorem fails for Planarfin. As Planarfin

is not axiomatizable in Graphfin by a universal sentence, not even by a first-order
sentence, we do not get the failure of the Łoś–Tarski Theorem for the class of
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finite graphs (i.e., Theorem 5.5) by applying the result of Remark 2.12. We show
that Planarfin = Forbfin(F ) for a finite set F of finite graphs (or, equivalently,
Planarfin = Modfin(�) for a universal �) leads to a contradiction. Let k be the
maximum size of the set of vertices of graphs in F . Let G be the graph obtained
from the clique K5 of five vertices by subdividing each edge k + 1 times. Clearly,
G /∈ Planarfin. However, every subgraph of G induced on at most k vertices is
planar. Hence, G ∈ Forbfin(F ).

(c) Let � be any vocabulary with at least one at least binary relation T. Then
the Łoś–Tarski Theorem fails for the class C := Strfin[�], the class of all finite
�-structures. By Remark 2.12 it suffices to show the existence of a universally
definable subclass C′ of C which “essentially is the class of graphs.” We set

� := ∀x∀ū¬Txxū ∧ ∀x∀y∀ū∀v̄(Txyū → Tyxv̄) ∧
∧

R∈�, R �=T
∀ū¬Rū

and let C′ be Modfin(�).
If � only contains unary relation symbols, the Łoś–Tarski Theorem holds for

Strfin[�]. It is easy to see for an FO(�)-sentence ϕ that the closure under induced
substructures of Modfin(ϕ) implies that of Mod(ϕ).

§6. Gurevich’s Theorem. The following discussion will eventually lead to a proof
of Gurevich’s Theorem, i.e., Theorem 1.5. Our proof essentially follows Gurevich’s
proof in [17], but it contains some elements of Rossman’s proof of the same result
in [22].3 Afterwards we show that it remains true if we restrict ourselves to graphs.

Our main tool is Proposition 3.11: the goal is to construct a formula � satisfying
(8) and whose size is much smaller than the number m. Basically � will describe
a very long computation of a Turing machine on a short input. We fix a universal
Turing machine M operating on a one-way infinite tape, the tape alphabet is {0, 1},
where 0 is also considered as blank and Q is the set of states of M. The initial state
is q0 and qh is the halting state; thus q0, qh ∈ Q and we assume that q0 �= qh . An
instruction of M has the form

qapbd,

where q, p ∈ Q, a, b ∈ {0, 1} and d ∈ {– 1, 0, 1}. It indicates that if M is in state
q and the head of M reads an a, then M changes to state p, the head replaces a
by b and moves to the left (if d =– 1), stays still (if d = 0), or moves to the right
(if d = 1). In order to describe computations of M by FO-formulas we introduce
binary predicates Hq(x, t) for q ∈ Q to indicate that at time t the machine M is in
state q and the head scans cell x, and a binary predicate C0(x, t) to indicate that the
content of cell x at time t is 0.

The vocabulary �M is obtained from �0 by adding pairs (see Definition 3.6(a)),

�M := �0 ∪
{
Hq,H

comp
q

∣∣ q ∈ Q}
∪

{
C0, C

comp
0

}
.

3The reader of [17] will realize that the definition of ϕn on page 190 of [17] must be modified in order
to ensure that the class of models of ϕn is closed under induced substructures.
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Intuitively, H comp
q (x, t) says that “at time t the machine is not in state q or the head

does not scan cell x;” and C comp
0 (x, t) says that “at time t the content of cell x is

(not 0 and thus is) 1.” Sometimes we write C1 instead of C comp
0 (e.g., below in ϕ2 if

a = 1 or b = 0).
Let ϕ0 and ϕ1 be the sentences already introduced in Section 3. For w ∈ {0, 1}∗

the sentence ϕ0w will be an extension of ϕ0 (compare Definition 3.6(b)). Hence, ϕ0w

will be a universal sentence and all relations symbols besides < are negative in ϕ0w ;
in particular, it contains as conjuncts ϕ0 and

∀x∀t
(
¬C0(x, t) ∨ ¬C comp

0 (x, t)
)
∧

∧
q∈Q

∀x∀t
(
¬Hq(x, t) ∨ ¬H comp

q (x, t)
)
.

Finally, ϕ0w will contain the following sentences ϕ2 and ϕw as conjuncts. The
sentence ϕ2 describes one computation step. It contains for each instruction of M
one conjunct. For example, the instruction qapb1 contributes the conjunct

∀x∀x′∀t∀t′∀y
((
Hq(x, t) ∧ Ca(x, t) ∧ S(x, x′) ∧ S(t, t′)

)
→

(
(¬C1–b(x, t

′) ∧ ¬H comp
p (x′, t′))

∧ (y �= x′ →
∧
r∈Q

¬Hr(y, t′))

∧ (y �= x → ((C0(y, t) → ¬C comp
0 (y, t′)) ∧ (C comp

0 (y, t) → ¬C0(y, t′))))
))
.

For w ∈ {0, 1}∗ the sentence ϕw describes the initial configuration of M with input
w (ifw = w1 ... w|w|, the first |w| cells (if present) containw1, ... , w|w|, the remaining
cells contain 0, and the head scans the first cell in the starting state q0). Taking into
account that models of ϕ0 ∧ ϕ1 might contain less than |w| elements, as ϕw we can
take the conjunction of

– ∀x1 ... ∀x|w|
(
(Umin x1 → ¬C1–w1 (x1, x1))

∧
∧
i∈[|w|–1](Sxixi+1 → ¬C1–wi+1 (xi+1, x1))

)
– ∀x1 ... ∀x|w|∀x

(
(Umin x1 ∧

∧
i∈[|w|–1] Sxixi+1 ∧ x|w| < x) → ¬C comp

0 (x, x1)
)

– ∀x∀y
(
Umin x → (¬H comp

q0 (x, x) ∧ (y �= x →
∧
q∈Q ¬Hq(y, x)))

)
.

Note that besides < all relation symbols of �M are negative in ϕ0w . We set ϕ1M :=
ϕ1�M ; recall that by Definition 3.6(c),

ϕ1M = ϕ1 ∧ ∀x∀t
(
C0(x, t) ∨ C comp

0 (x, t)
)
∧

∧
q∈Q

∀x∀t
(
Hq(x, t) ∨H comp

q (x, t)
)
.

(16)

Let w ∈ {0, 1}∗ and r ∈ N. Furthermore, let A be a �M -structure where <A is an
ordering and |A| ≥ r + 1. Let a0, ... , ar be the first r + 1 elements of <A. Assume
that M on the inputw ∈ {0, 1}∗ runs at least r steps. We say that A correctly encodes
r steps of the computation of M on w if for i, j with 0 ≤ i, j ≤ r,

(ai , aj) ∈ CA
0 ⇐⇒ the content of cell i after j steps is 0 (17)

and for q ∈ Q,

(ai , aj) ∈ HA
q ⇐⇒ after j stepsM is in state q and the head scans cell i. (18)
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Lemma 6.1. Let w ∈ {0, 1}∗ and r ∈ N.
(a) Let A |= ϕ0w ∧ ϕ1M and r + 1 ≤ |A| (this holds if A is infinite). If M on w runs

at least r steps, then A correctly encodes r steps of the computation of M on w.
(b) There is a finite model of ϕ0w ∧ ϕ1M with r + 1 elements. If M runs at least r

steps, then this model is unique up to isomorphism.

Proof. (a) holds by the definitions of ϕ0w and ϕ1M . For (b) let A = {a0, ... , ar}
with pairwise distinct ai ’s. Assume first that M on w runs at least r steps. We can
interpret (17) and (18) as defining relations CA

0 and HA
q on A equipped with the

“natural” ordering and its corresponding relationsUmin,Umax, and S. If furthermore
we let (C comp

0 )A and (H comp
q )A be the complements in A× A of CA

0 and HA
q ,

respectively, we get a model of ϕ0w ∧ ϕ1M with r + 1 elements. By (a), this model is
unique up to isomorphism.

If M on input w halts, say in h(w) steps, with h(w) < r, we get a modelA ofϕ0w ∧
ϕ1M withA = {0, 1, ... , r}, for example “by repeating the configuration reached after
h(w) steps”. This means, if T is any of the relations C0, Hq, C

comp
0 , H comp

q , we set
for j with h(w) < j ≤ r and i = 0, ... , r,

(i, j) ∈ TA ⇐⇒ (i, h(w)) ∈ TA. �

Let �M be a sentence expressing that “M reaches the halting state qh in exactly
‘max’ steps,” e.g., we let �M be

∃t∃x
(
Umaxt ∧Hqh (x, t) ∧ ∀t′∀y(t′ < t → ¬Hqh (y, t

′))
)
. (19)

As a consequence of the preceding lemma, we obtain the following:

Corollary 6.2. Let w ∈ {0, 1}∗ and set

	w := ϕ0w ∧ ϕ1M ∧ �M .
(a) If M on w does not halt, then 	w has no finite model.
(b) Assume M on w eventually halts, say in h(w) steps. Then 	w has a unique model

up to isomorphism. This model is finite and has exactly h(w) + 1 elements.

We set

w := ϕ0w ∧ (ϕ1M → ¬�M ). (20)

Applying Proposition 3.11 to part (b) of the preceding corollary, we get the following:

Lemma 6.3. Let M on w halt in h(w) steps. Then:
(a) Mod(w) is closed under <-substructures.
(b) If w is finitely equivalent to a universal sentence �, then |�| ≥ h(w) + 1.

Now we show the following version of Gurevich’s Theorem.

Theorem 6.4. Letf : N → N be a computable function. Then there is aw ∈ {0, 1}∗
such that Mod(w) is closed under<-substructures (and hence equivalent to a universal
sentence) but w is not finitely equivalent to a universal sentence of length less than
f(|w |).

Note that by Corollary 2.7 the conclusion of this theorem is only apparently
stronger than “w is not equivalent to a universal sentence of length less than
f(|w |).” A similar remark applies to Theorem 6.6.
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Proof of Theorem 6.4. By the previous lemma it suffices to find a w ∈ {0, 1}∗
such that M on input w halts in h(w) steps with

h(w) ≥ f(|w |).
W.l.o.g. we assume that f is increasing. An analysis of the formula w shows that for
some cM ∈ N we have for all w ∈ {0, 1}∗,

|w | ≤ cM · |w|. (21)

We define g : N → N by

g(k) := f(5 · cM · k).

LetM0 be a Turing machine computing g, more precisely, the function 1k �→ 1g(k).
We code M0 and 1k by a {0, 1}-string code(M0, 1k) such that M on code(M0, 1k)
simulates the computation ofM0 on 1k .

Choose the least k such that for w := code(M0, 1k) we have

|w| ≤ 5k. (22)

The universal Turing machine M on input w computes 1g(k) and thus runs at least
g(k) steps, say, exactly h(w) steps. By (21) and (22)

h(w) ≥ g(k) = f(5 · cM · k) ≥ f(cM · |w|) ≥ f(|w |). �

Finally we prove Gurevich’s Theorem for graphs. For � := �M let I be an
interpretation according to Lemma 5.6. For w ∈ {0, 1}∗ we consider the sentence

�w := ∀x̄¬ϕuni(x̄) ∨ (ϕ0w ∧ (ϕ1M → ¬�M ))I = ∀x̄¬ϕuni(x̄) ∨ wI . (23)

That is, for G |= �w , either the graph G interprets an “empty �M -structure,” or
a �M -structure that is a model of w . If M halts in h(w) steps on input w, then
ϕ0w ∧ ϕ1M ∧ �M has no infinite model but a finite model with h(w) + 1 elements
by Corollary 6.2(b). Hence, by Proposition 4.8 we get the following analogue of
Lemma 6.3.

Lemma 6.5. Let M on input w halt in h(w) steps. Then:

(a) Graph(�w), the class of graphs that are models of �w , is closed under induced
subgraphs.

(b) If �w is equivalent in the class of finite graphs to the universal sentence �, then
|�|2 ≥ h(w).

Theorem 6.6 (Gurevich’s Theorem for graphs). Let f : N → N be a computable
function. Furthermore, let �w be defined by (23), where I is an interpretation for
� := �M according to Lemma 5.6. Then there is a w ∈ {0, 1}∗ such that Graph(�w)
is closed under induced subgraphs (and hence equivalent in the class of graphs to a
universal sentence) but �w is not equivalent in the class of finite graphs to a universal
sentence of length less than f(|�w |).

Proof. Again we assume that f is increasing. By the previous lemma it suffices
to find a w ∈ {0, 1}∗ such that M on input w halts in h(w) steps with

h(w) ≥ f(|�w |)2.
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There is a c ∈ N, which depends on I but not on w, such that for cI as in (11) and
cM as in (21) we have for dM := c + cI · cM ,

|�w | ≤ c + cI · |w | ≤ c + cI · cM · |w| ≤ dM · |w|. (24)

We define g : N → N by

g(k) := f(5 · dM · k)2 (25)

and then proceed as in the proof of Theorem 6.4. Let M0 be a Turing machine
computing the function 1k �→ 1g(k). We code M0 and 1k by a {0, 1}-string
code(M0, 1k) such that M on code(M0, 1k) simulates the computation ofM0 on 1k .

Choose the least k such that for w := code(M0, 1k) we have

|w| ≤ 5k. (26)

The universal Turing machine M on input w computes 1g(k) and thus runs at least
g(k) steps, say, exactly h(w) steps. We have

h(w) ≥ g(k) = f(5 · dM · k)2 ≥ f(dM · |w|)2 ≥ f(|�w |)2

by (24)–(26). �

Remark 6.7. Using previous remarks (Remarks 3.12 and 4.9) one can even
show that for every computable function f : N → N the sentence w is not finitely
equivalent to a Π2-sentence of length less than f(|w |) and the sentence �w is not
finitely equivalent in graphs to a Π2-sentence of length less than f(|w |). Moreover,
w and �w are equivalent to Σ2-sentences. To verify this note that in models of ϕ0w

the sentence �M is equivalent to

∃t∃x
(
Umaxt ∧Hqh (x, t)

)
∧ ∀t1∀t2∀y

(
t1 < t2 → ¬Hqh (y, t2)

)
,

and hence equivalent to a Σ2 and to a Π2-sentence. One easily verifies that the same
holds for �IM .

§7. Some undecidable problems. In this section we show that various problems
related to the results of the preceding sections are undecidable. Among others, these
results explain why it might be hard, in fact impossible in general, to algorithmically
obtain forbidden induced subgraphs for various classes of graphs.

A simple application of Gurevich’s Theorem for graphs yields:

Proposition 7.1. There is no algorithm that applied to any FO[�E ]-sentence ϕ
decides whether the class Graph(ϕ) is closed under induced subgraphs.

Proof. Assume A is such an algorithm. By the Completeness Theorem there
is an algorithm B that assigns to every sentence ϕ such that Graph(ϕ) is closed
under induced subgraphs a universal sentence equivalent to ϕ in graphs. Define the
function g by

g(ϕ) :=

{
0, if A rejects ϕ,

m, B needs m steps to produce a universal sentence equivalent to ϕ in graphs,

and set f(k) := max{g(ϕ) | |ϕ| ≤ k}. Then f would contradict Theorem 6.6. �
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Corollary 7.2. There is no algorithm that applied to any FO[�E ]-sentence ϕ
either reports that Graph(ϕ) is not closed under induced subgraphs or it computes for
Graph(ϕ) a finite set of forbidden induced finite subgraphs.

Proof. Otherwise we could use this algorithm as a decision algorithm for the
previous result. �

The following proposition is the analogue of Proposition 7.1 for classes of finite
graphs. We state it for FO[�E ]-sentences and graphs even though we prove it for
FO[�M ]-sentences. One gets the version for graphs using the machinery we developed
in previous sections similarly as we get Corollary 7.5 along the lines of the proof of
Proposition 7.4.

We writeM : w �→ ∞ for the universal Turing machine M and a wordw ∈ {0, 1}∗
if M on input w does not halt. We make use of the sentences ϕ0w , ϕ1M , and �M
defined in the previous section.

Proposition 7.3. There is no algorithm that applied to any FO[�E ]-sentence ϕ
decides whether the class Graph fin(ϕ) is closed under induced subgraphs.

Proof. For the universal Turing machine M and a word w ∈ {0, 1}∗ consider
the sentence

	w = ϕ0w ∧ ϕ1M ∧ �M
introduced in Corollary 6.2. Then

M : w �→ ∞ ⇐⇒ Mod fin(	w) is closed under induced substructures. (27)

In fact, if M : w �→ ∞, then Mod fin(	w) = ∅ (see Corollary 6.2(a)), hence
Mod fin(	w) is trivially closed under induced substructures. If M on input w halts
after h(w) steps, then, up to isomorphism, there is a unique model Aw of 	w and it
has h(w) + 1 elements (see Corollary 6.2(b)). Take an induced substructure of Aw
with h(w) elements (note that h(w) ≥ 1). Hence this substructure is not a model of
	w and thus Mod fin(	w) is not closed under induced substructures. As the halting
problem for every universal Turing machine is not decidable, by (27) we get our
claim. �

Proposition 7.4. There is no algorithm that applied to any FO[�M ]-sentence that
is finitely equivalent to a universal sentence computes such a universal sentence.

Proof. Assume that there exists such an algorithm A. It suffices to show for
every w ∈ {0, 1}∗ the statements (a) and (b) for

w = ϕ0w ∧ (ϕ1M → ¬�M )

defined in (20).

(a) Mod fin(w) = Modfin(�) for some universal �.
(b) M : w → ∞ ⇐⇒ Mod fin(w) = Mod fin(ϕ0w).

Then we can decide the halting problem for M by checking whether the universal
sentence produced by the claimed algorithm A is finitely equivalent to the universal
sentence ϕ0w . This can be decided effectively by Corollaries 2.6 and 2.7, which leads
to a contradiction.
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If M halts on w, say in h(w) steps, then we get (a) by Lemma 6.3(a) and the
Łoś–Tarski Theorem. Furthermore, by Corollary 6.2(b) we know that there is a
finite structure with h(w) + 1 elements that is a model of ϕ0w ∧ ϕ1M ∧ �M and thus
of ϕ0w ∧ ¬w . Hence this structure is a model of ϕ0w ∧ ¬�. In particular, � (and
hence, w) is not finitely equivalent to ϕ0w . Thus, also (b) holds if M halts on w.

IfM : w → ∞, then we show that Mod fin(w) = Mod fin(ϕ0w) (this implies (a)
and (b) in this case). Clearly, Modfin(w) ⊆ Modfin(ϕ0w). Now let A be a finite
model of ϕ0w . If A �|= ϕ1M , then A |= w . Otherwise A |= ϕ1M and then A correctly
represents the first |A| – 1 steps of the computation of M on w by Lemma 6.1. Thus
A is a model of ¬�M as M does not halt on w. Therefore, A is a model of w . �

Corollary 7.5. There is no algorithm that applied to any FO[�E ]-sentence ϕ such
that Graph fin(ϕ) has a finite set of forbidden induced finite subgraphs computes such
a set.

Proof. Equivalently we show that there is no algorithm that applied to any
FO[�E ]-sentence ϕ such that Graph fin(ϕ) = Graph fin(�) for some universal
sentence � computes such a �.

For graphs let I (= I�M ) be a strongly existential interpretation of �M -structures
in graphs according to Lemma 5.6. For w ∈ {0, 1}∗ we consider the sentence

�w = ∀x̄¬ϕuni(x̄) ∨ wI

defined in (23) and show (a’) and (b’), the analogues of (a) and (b) of the preceding
proof.

(a’) Graph fin(�w) = Graphfin(�) for some universal �.
(b’) M : w → ∞ ⇐⇒ Graph fin(�w) = Graph fin(∀x¬ϕuni(x̄) ∨ ϕ0w

I ).

Then we get the claim of the corollary arguing as in the previous proof.
(a’) holds by Lemma 6.5(a).
By Lemma 5.6 for every finite �M -structure A there is a finite graph G with

OI (G) ∼= A. Therefore,

M : w → ∞ ⇐⇒ Mod fin(w) = Mod fin(ϕ0w)
(
by (a) of the preceding proof

)
⇐⇒ Graph fin(�w) = Graph fin(∀x¬ϕuni(x̄) ∨ ϕ0w

I )
(
by (14)

)
.

�

Observe that Corollary 7.5 is precisely Theorem 1.3 as stated in the Introduction.
Finally we prove Theorem 1.2, which is equivalent to the following result.

Theorem 7.6. There is no algorithm that applied to an FO[�E ]-sentence ϕ such
that Graphfin(ϕ) is closed under induced subgraphs decides whether there is a finite
set F of finite graphs such that

Graphfin(ϕ) = Forbfin(F ).

Proof. Again we prove the corresponding result for �M -sentences and �M -
structures and leave it to the reader to translate it to graphs as in the previous
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proof. That is, we show:

There is no algorithm that applied to an FO[�M ]-sentence ϕ such
that Modfin(ϕ) is closed under induced substructures decides whether
there is a finite set F of �M -structures such that

Modfin(ϕ) = Forbfin(F ).

For w ∈ {0, 1}∗ set

αw := ϕ0w ∧ (ϕ1M → �M ).

It suffices to show that Modfin(αw) is closed under induced substructures and that

M : w → ∞ ⇐⇒ αw is not finitely equivalent to a universal sentence.

Assume first thatM : w → ∞. Thenϕ0w ∧ ϕ1M ∧ �M has no finite model by Lemma
6.1(a) and the definition (19) of �M . Therefore, Modfin(αw) = Modfin(ϕ0w ∧ ¬ϕ1M ).
By Lemma 6.1(b) the sentenceϕ0w ∧ ¬ϕ1M has arbitrarily large finite models. Recall
that ϕ0w is an extension of ϕ0 and ϕ1M = ϕ1�M (see (16)). Hence, by Lemma 3.10,
we know that Modfin(ϕ0w ∧ ¬ϕ1M ) is closed under induced substructures but not
finitely equivalent to a universal sentence.

Now assume that M on input w halts in h(w) steps. Then Corollary 6.2(b)
guarantees that there is a unique model Aw of ϕ0w ∧ ϕ1M ∧ �M ; moreover,
|Aw | = h(w) + 1. We present a finite set F of finite �M -structures such that

Modfin(αw) = Forbfin(F ). (28)

As ϕ0w is universal, there is a finite set F0 of finite �M -structures such that

Modfin(ϕ0w) = Forbfin(F0).

We define the sets F1 and F2 as follows: For every �M -structure B,

B ∈ F1 iff B |= ϕ0w ∧ ϕ1M and B = [�] for some � ≤ h(w),

B ∈ F2 iff B |= ϕ0w ∧ ϕ∗1M ∧ ∀t∀t′(t < t′ → ∀y¬Hqh (y, t)) and B = [h(w) + 2].

Here ϕ∗
1M is obtained from ϕ1M by replacing the conjunct ϕ1 see (6) by

ϕ∗
1 := ∃xUminx ∧ ∀x∀y(x < y → ∃zSxz).

The difference is that ϕ∗
1 does not require the set Umax to be nonempty. Hence, ϕ∗

1M
is the conjunction of ϕ∗

1 with

∀x∀t
(
(C0(x, t) ∨ C comp

0 (x, t)) ∧
∧
q∈Q

(Hq(x, t) ∨H comp
q (x, t))

)
.

Note that Lemma 6.1(a) remains true if in its statement we replace ϕ1M by ϕ∗
1M .

For F := F0 ∪ F1 ∪ F2 we show (28). Assume first that a finite structure C is a
model of αw . In particular, C |= ϕ0w and therefore, C has no induced substructure
isomorphic to a structure in F0.

Now, for a contradiction suppose that B is an induced substructure of C
isomorphic to a structure in F1. Then B |= ϕ1M and thus, by Lemma 3.8, C = B. As
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C |= αw , we get C |= ϕ0w ∧ ϕ1M ∧ �M . Hence, C ∼= Aw , a contradiction, as on the
one hand |C | = |B | ≤ h(w) and on the other hand |C | = |Aw | = h(w) + 1.

Next we show that C has no induced substructure B isomorphic to a structure
in F2. As B |= ϕ0w ∧ ϕ∗

1M and has h(w) + 2 elements, the first h(w) + 1 elements
of B correctly encode the first h(w) steps of the computation of M on w, hence
the full computation. As |B | = h(w) + 2, this contradicts B |= ∀t∀t′

(
t < t′ →

∀y¬Hqh (y, t)
)
.

As the final step let C ∈ Forbfin(F ). We show that C |= αw . As any structure in C
does not contain structures in F0 as induced substructures, we see that C |= ϕ0w . If
C �|= ϕ1M , we are done.

Recall that by Lemma 6.1(a) (more precisely, by the extension of Lemma 6.1(a)
mentioned above) for finite models B of ϕ0w ∧ ϕ∗

1M we know:

(a) if |B | ≤ h(w) + 1, then B encodes |B | – 1 steps of the computation of M on
w,

(b) if |B | > h(w) + 1, then the first h(w) + 1 elements in the ordering <B

correctly encode the (full) computation of M on w.

Now assume that C |= ϕ1M , then (a) and (b) apply to C. As no structure in F1

is isomorphic to an induced substructure of C, we see that |C | ≥ h(w) + 1. But
C cannot have more than h(w) + 1 elements, as otherwise the substructure of C
induced on the first h(w) + 2 elements would be isomorphic to a structure B in F2,
a contradiction. Hence, |C | = h(w) + 1 and thus, C |= αw . �

Remark 7.7. Mainly using Remark 6.7 one easily verifies that in all results but
Proposition 7.3 of this section we can replace:

There is no algorithm that applied to an FO[�E ]-sentence ϕ ...

by

There is no algorithm that applied to a Σ2-sentence ϕ ... .

In Proposition 7.3 we have to replace it by:

There is no algorithm that applied to a Π2-sentence ϕ ...

as ϕ1M (and ϕI1M ) are Π2-sentences.

7.1. Open problem. The main result of this paper shows that the analogue of
the Łoś–Tarski Theorem fails for the class of finite graphs. That is, there exist
FO-axiomatizable classes of finite graphs closed under induced subgraphs that
are not definable by a finite set of forbidden induced subgraphs. Often in graph
theory one considers subgraphs instead of induced subgraphs. It is known that
FO-axiomatizable classes of finite and infinite graphs are closed under subgraphs if
and only if they are definable by a finite set of forbidden finite subgraphs. However,
to the best of our knowledge it is still open whether FO-axiomatizable classes
of finite graphs closed under subgraphs are definable by a finite set of forbidden
subgraphs.
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