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Abstract. The Great Plains is the most important wheat producing region in the
United States. Dwindling returns and changes in government farm programs have
reduced wheat acreage, raising concerns over its future viability. Small farms and
marginal areas are particularly vulnerable, including the western Great Plains
(WGP). To assess the technical and economic viability of wheat farms, the
efficiency of 141 wheat farms in the WGP was estimated. Results found
substantial inefficiency among all producer types. The largest source of
inefficiency was input use among smaller farms. The smaller farms were the most
scale efficient, reducing concerns over their future viability.
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1. Introduction

Farms aspire to make the most efficient use of their resources, yet studies indicate
that sizable inefficiencies often prevail in agricultural enterprises. Across a broad
set of producers and regions, economic efficiency (EE) and technical efficiency
(TE) measures in the United States have ranged approximately between 60% and
90% (Aly et al., 1987; Byrnes et al., 1987; Chavas and Aliber, 1993; Featherstone,
Langemeier, and Ismet, 1997; Hall and LeVeen, 1978; Mayen, Balagtas, and
Alexander, 2010; Mugera and Langemeir, 2011; Olson and Vu, 2009; Paul
et al., 2004; Rowland et al., 1998). Removing those levels of efficiency through
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improved farm management practices would generate savings in input use and
production costs by as much as 40%. Identifying inefficiency is thus an important
first step in assisting producers to move toward optimal farming outcomes,
higher profits, and more socially desirable outcomes.Measuring efficiency is also
useful for policy analysts and stakeholders because it can distinguish efficient
managers, those making best decisions and utilizing their resource optimally,
from less efficient ones. The literature on production efficiency began a few
decades ago, seeking to explain how and why certain firms perform better than
others (Farrell, 1957; Koopmans, 1951). Efficiency measures were developed
to quantify differences in firm performance owing to scale, scope, production,
economic, and allocative inefficiencies (Banker, Charnes, and Cooper, 1984;
Charnes, Cooper, and Rhodes, 1978).

Efficiency is particularly important for commodities such as wheat whose
prices have fallen significantly over the past few decades. In real terms,
U.S. wheat prices have been on a long-run decline falling by an average
of 3.0% per year between 1970 and 2016 (U.S. Department of Agriculture
[USDA], National Agricultural Statistics Service [NASS], 2018). In other
commodities such as corn, new technology has been introduced to offset
price declines through yield increases and cost reductions. Wheat producers,
however, have had fewer opportunities to innovate and improve productivity.
Wheat yields have lagged maize in large part because of wheat’s genetic
potential, which has begun to level off (Graybosch and Peterson, 2010).
Because wheat breeding began several decades ago, about half of wheat’s
yield increases have been from genetic improvement with the remainder from
purchased inputs such as fertilizers, pesticides, and so forth. Corn, along
with soybeans, has also benefited from genetically modified crop technology
that has further assisted farms in reducing production costs and increasing
yields.

Economic returns of wheat have largely fallen in step with the downward price
and yield trends. In the western Great Plains (WGP), one of the most important
wheat producing regions in the United States, estimated average winter wheat net
returns (revenue less total costs) were negative for 14 of the 16 years between
2001 and 2016, with an average net loss of $61 per acre (USDA, Economic
Research Service [ERS], 2018a). Corresponding net returns for corn in the U.S.
heartland (also known as the U.S. Corn Belt) during these same years were
substantially higher, averaging positive net returns (revenue less total costs) of
$21 per acre (USDA ERS, 2018a). The lower economic returns, and limited
technology introduction, are anticipated to have a negative impact on efficiency
in wheat producing areas such as the WGP. Access to improved technology,
usually concentrated among the larger producers, has been cited as having a
positive effect on efficiency.

Wheat has traditionally been the primary crop grown in the WGP for the
past several decades (USDA-NASS, 2018). Low economic returns, coupled with
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the 1996 Freedom to Farm Bill, which gave producers greater flexibility in their
planting decisions (Fausti, 2015), has resulted in a precipitous decline in wheat
acreage throughout the United States including the WGP. U.S. wheat production
has declined from a peak of 88 million acres in 1981 to just over 50 million
acres in 2016 (USDA-NASS, 2018). In the WGP, wheat production has fallen
in step with the national trend, from a maximum of 37 million acres in 1981
to 22 million acres in 2016. Wheat acreage declines are expected to continue
driven by the growing opportunity cost of maintaining wheat enterprises
relative to other farm alternatives, particularly cattle and most recently biomass
production for the burgeoning biofuel industry (Li, Guan, and Merchant,
2012).

Producers have diversified their crop portfolio as wheat incentives have
declined and farm programs have been allowed greater planting flexibility
(Biermacher, Epplin, and Keim, 2006; Vitale et al., 2014; Wimberly et al., 2017).
Diversification has the potential to increase TE and EE through sharing of input,
machinery, and other fixed costs, and to employ idle resources by extending
the crop calendar to include slack periods of labor (Chavas and Aliber, 1993;
Paul et al., 2004; Wu, Devadoss, and Lu, 2003). Such advantages are reduced
if rotation crops do not share the same inputs, require specialized equipment,
or exacerbate production constraints—for example, promoting greater insect
and weed populations (Olson and Vu, 2009). Wheat producers in the WGP
have a handful of potential cropping alternatives, including wheat rotations with
sorghum, corn, or millet, which could enhance farm efficiency (Elliot, 2006). It
remains unclear whether the shift away from the wheat monoculture into a more
diversified cropping system has had any substantial effect on farm efficiency in the
WGP, because of the lack of empirical evidence. One purpose of this article is to
close this gap by investigating the effect that crop diversity has had on efficiency
in the WGP.

Declining prices and limited access to technology raise particular concerns
for smaller wheat producers. Studies have identified smaller farms as having
significantly greater inefficiency than large farms (Featherstone, Langemeier,
and Ismet, 1997; Hall and LeVeen, 1978; Olson and Vu, 2009). This is of
particular interest because the welfare and viability of smaller, family-operated
farms has been of interest to policy makers over the past few decades given
the trend toward consolidation and larger farm sizes (Hall and LeVeen, 1978).
Resulting scale effects including the greater applicability of new technology and
pecuniary benefits generally favor large farms. Hall and LeVeen (1978) identified
new dairy technology as a significant factor explaining the greater efficiency of
large producers. Ultimately, smaller farms that cannot keep pace by lowering
production costs and maintaining scale efficiency (SE) are forced out of business
resulting in concentration as smaller farms are forced to exit (Featherstone,
Langemeier, and Ismet, 1997; Hall and LeVeen, 1978;Matulich, 1978; Paul et al.,
2004). In other studies, however, small farms were found to be as efficient as
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their larger counterparts (Garcia, Sonka, and Yoo, 1982; Sidhu and Baanante,
1979).

Efficiency can also be affected by other factors. Farm operator–related factors
have also been found to explain differences in efficiency and farm management
performance. Prior research has found that operator age, operator education,
off-farm income, and Internet use affect efficiency measures in both positive
and negative directions (Langemeier and Bradford, 2005; Olson and Vu, 2009).
Renting land, custom hired labor, and tillage practices can also affect farm
efficiency. Less intensive tillage practices (minimum or no-till) offer economic
benefits by lowering machinery costs and reducing the need for power intensive
implements such as moldboard, chisel, and disk plows (Langemeier, 2005).
Reduced tillage benefits are offset, however, because they require specialized,
more expensive equipment (drills and planters) and higher pest control costs
(Halde, Keith, and Martin, 2015; Schillinger and Young, 2004). Land rental is a
fairly common practice in the region and has been identified in other studies
as having both positive and negative effects on farm efficiency (Giannakas,
Schoney, and Tzouvelekas, 2001; Langemeier and Bradford, 2005; Olson and
Vu, 2009). Custom hired labor is commonly used by many farms in the region,
especially smaller farms. Custom work can enhance efficiency on farms where
labor bottlenecks or lack of experience constrain production and is typically
priced competitively.

The primary purpose of this article is to estimate the TE and EE of wheat
dominant farms across the WGP. A nonparametric modeling framework was
constructed to estimate TE, SE, allocative efficiency (AE), and EE measures.
The efficiency measures were further analyzed using a Tobit regression model
to test the explanatory power of farm-specific characteristics related to farm
structure and household demographics. Using Koopmans’s efficiency framework,
the most important sources of inefficiency were identified to provide policy
makers and stakeholders with measures that can be taken to assist producers in
achieving greater levels of efficiency. The analysis addressed the following policy
research questions: (1) Are smaller family farms in the WGP less efficient than
larger more commercially oriented farms? (2) Has diversification away from the
wheat monoculture had a detrimental impact on farm efficiency? (3) Can farm
efficiency be enhanced by farm management practices such as the adoption of
reduced tillage, renting additional land, or the hiring of custom operators? (4)
Do farm-specific characteristics such as operator age, education, experience, or
access to the Internet have any significant effect on farm efficiency? Our article
contributes to the farm management and production literature by providing an
initial benchmark of efficiency for wheat dominant farms across the WGP. The
efficiency analysis is conducted using a four-year set of panel data, a unique
departure from most previous studies that relied on cross-sectional data over
a single-year period.
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2. Methodology

2.1. Estimating Efficiency

Methods for estimating production efficiency were developed by Koopmans
(1951), Farrell (1957), Charnes, Cooper, and Rhodes (1978), and Banker,
Charnes, and Cooper (1984). Early approaches relied on specifying production
functions to estimate efficiency (e.g., Cobb-Douglas) but over time have grown
to a larger set of more flexible functional forms (Bauer, 1990). Alternatively,
efficiency can also be measured without explicitly estimating a production
function—that is, nonparametric methods, which use math programming to
construct, rather than estimate, production possibility frontiers (Färe,Grosskopf,
and Lovell, 1985). The nonparametric data envelopment analysis (DEA) was
used in this article to determine TE and EE measures. A few practical advantages
of the nonparametric DEA to the parametric methods are as follows: (1) it
does not require specifying a functional form when mapping input/output
relationships; (2) both multiple inputs and outputs can be simultaneously
assessed; and (3) it can incorporate alternative returns to scale assumptions
in its analysis. Although the nonparametric methods approach lacks the rigor
of hypothesis testing and statistical inference typically reported in econometric
studies, the structure required by parametric methods to estimate the underlying
production function is overly restrictive and sensitive to the distribution assumed
for the inefficiency effect (Chavas andAliber, 1993).Moreover, inmany instances,
including in this article, estimating the underlying production functions is
of much less importance compared with the efficiency measures, making the
nonparametric approach a more flexible and less complicated method than
parametric approaches. DEA estimates production efficiency by calculating the
ratio of sum-of-weighted outputs to sum-of-weighted inputs for a sample of
observations. DEA then determines the “best practice” efficient frontier, a locus
drawn along the points where the observed output to input ratios are greatest.
Graphically, efficiency can be viewed as the distance measured between a given
farm and the efficient frontier, with efficient farms lying on or near the frontier
and less efficient ones located farther from it.

An input-oriented DEA model was chosen because the crops produced in the
study region (wheat, sorghum, millet) are homogenous, so most wheat farms are
assumed to direct their annual decision making toward minimizing their input
costs. Output-based decisions on crop acreage patterns were treated as quasi-
fixed in the short run (Chavas and Aliber, 1993; Kalaitzandonakes,Wu, and Ma,
1992; Paul et al., 2004; Rowland et al., 1998). An input-oriented model estimates
efficiency by minimizing input use subject to a given level of output. Technology
is implicitly assumed fixed over time. Structurally, as its name suggests, input-
oriented models estimate efficiency using a parameter, θ , which scales observed
input use, xi, to satisfy output levels on the efficient frontier. Theta (θ) is the TE
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score, and its value is bounded from 0 to 1. For perfectly efficient farms located
on the efficient frontier, θ = 1, with less efficient farms farther from the frontier
having smaller θ values. Variable returns-to-scale models were estimated for TE
because previous studies had identified U.S. farms with increasing, decreasing,
and constant returns to scale (CRS). A group of input-oriented models, under
alternative returns-to-scale assumptions, were used to estimate efficiency scores
for each farm in the data set.

Equation (1) estimates technical efficiency using the input-oriented DEA
model under constant returns to scale (TECRS) assumption representing the case
of a single output produced using multiple input:

Min
θ,λ

TECRS = θ,

Subject to

⎧⎨
⎩

−yi + Yλ ≥ 0, i = 1, 2, ..., n,
θxi −Xλ ≥ 0,

λ ≥ 0.

⎫⎬
⎭ ,

(1)

where θ is a scalar for measuring TECRS, λ is an n× 1 vector of weights for each
farm, xi is anm× 1 vector of actual quantities of inputs used by the ith farm, yi is
the actual quantity of crops produced by ith farm,Y is a 1 × n vector of observed
crop output with values populated using observations from the entire sample of
farms, and likewise X is an m × n matrix of inputs with values populated using
observations from the entire sample of farms.

The first constraint establishes that each farm i must produce output equal to
or greater than the reference unit does. The second constraint establishes that
the ith farm uses input equal to or less than the reference unit uses, and the third
constraint requires that λ is greater than or equal to the zero vector. Equation
(1), along with its three constraints, is solved n times so that TE score of θ can
be estimated for each farm in the sample. This model minimizes input use by
scaling observed input levels, xi, with θ , to the observed efficiency frontier under
the assumption of CRS. Equation (2) estimates technical efficiency under variable
returns to scale assumption (TEVRS), which is similar to equation (1) except
for an added third equality constraint to account for variable returns to scale,
implying that a frontier is a convex envelopment.

Min
θ,λ

TEVRS = θ,

Subject to

⎧⎪⎪⎨
⎪⎪⎩

−yi + Yλ ≥ 0, i = 1, 2, ..., n,
θxi −Xλ ≥ 0,

N′λ = 1,

λ ≥ 0.

⎫⎪⎪⎬
⎪⎪⎭

, (2)

where N is an N × 1 vector of ones. Under the variable returns to scale
assumption, SE is calculated as the ratio of the efficiency measures between
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constant and variable returns to scale:

SE = TECRS/TEVRS, (3)

where TECRS is the score of technical efficiency under constant returns to scale
and TEVRS is the score of technical efficiency under variable returns to scale.
Farms with an SE score of 1 are scale efficient, indicating they are operating at
a point along their production possibility curve (isoquant) consistent with CRS.
If the SE score is different from 1, then results imply the farm is scale inefficient,
which may result from a farm operating in a region of either increasing returns
to scale (IRS) or decreasing returns to scale (DRS).

To determine if the farm is operating in either the IRS or the DRS region,
a second linear programming problem is solved under an assumption of
nonincreasing returns to scale (NIRS). The NIRS formulation is solved using
equation (4), which is like equation (1) with the addition of an inequality
constraint restriction on lambda to test for nonincreasing returns. If the NIRS
score is not different from the TECRS score found using equation (1), then the
farm is determined to be operating under IRS. Otherwise, the farm is found to
be operating in the DRS region.

Min
θ,λ

TENIRS = θ,

Subject to

⎧⎪⎪⎨
⎪⎪⎩

−yi + Yλ ≥ 0, i = 1, 2, .., n,
θxi −Xλ ≥ 0,

N′λ ≤ 1,

λ ≥ 0.

⎫⎪⎪⎬
⎪⎪⎭

(4)

Equation (5) is designed to minimize the cost of each farm to produce a given
level of outputs:

Min
xi∗,λ

w
′
ixi

∗,

Subject to

⎧⎪⎪⎨
⎪⎪⎩

−yi + Yλ ≥ 0, i = 1, 2, ..., n
xi∗ −Xλ ≥ 0,

N′λ = 1,

λ ≥ 0 .

⎫⎪⎪⎬
⎪⎪⎭

,
(5)

where wi is an m × 1 vector of input prices of the ith farm and xi∗ is an m ×
1 vector of minimum input requirements for the ith farm determined from the
model solution.

Structurally, equation (5) minimizes production cost using a vector of inputs
xi∗, which is constrained to lie on the observed efficient frontier—that is, xi∗ is the
ideal (fully efficient) set of inputs a farm should have used. Economic efficiency
under variable returns to scale (EEVRS) is then calculated by comparing the ideal
economically efficient vector of inputs xi∗ with the actual (observed) vector of
inputs, xi, using the following equation:

EEVRS = wi’xi∗/wi’xi, (6)
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where wi’xi∗ is the solution of equation (5), the minimum efficient cost of ith
farm, and wi’xi is the actual cost of ith farm. The EE (EEVRS) score is a function
of both TE and AE. If the EEVRS score equals 1, then producers have obtained
the lowest, most efficient unit cost of production.

Equation (7) measures the AE of farms. This efficiency score measures whether
a producer uses the correct combination of inputs, xi, given input prices.
Allocative efficiency under variable returns to scale (AEVRS) is calculated as
follows:

AEVRS = EEVRS/TEVRS, (7)

where EEVRS is economic efficiency under variable returns scale, and TEVRS is
technical efficiency under variable returns to scale. Allocative efficient farms have
scores of 1, indicating they are ideal both economically and technically efficient,
with lower scores indicating less efficient farms further away from the ideal.

This study uses the GAMS (GAMS Development Corporation, 2009)
computer software to formulate and solve equations (1) through (7). Median
andWilcoxon tests were used for testing the mean differences of efficiency among
farm groups and classifications (e.g., state, size, and diversity; Banker, Zheng, and
Natarajan, 2010). The null hypothesis of median and Wilcoxon tests was that
there is no mean difference of efficiency among the tested groups. If the null is
rejected, the efficiency scores are reported to be significantly different among the
groups. Otherwise, if null fails to be rejected, then groups are statistically similar,
and some type of pooling or regrouping is required.

2.2. Input Reduction to Achieving Koopmans Efficiency

The previous models to calculate efficiencies are based on the DEA approach
of Farrell (1957), Charnes, Cooper, and Rhodes (1978), and Banker, Charnes,
and Coopers (1984). One limitation of their methodology is that they could
include slack in the resource use inequality equations, even for farms deemed fully
efficient. Formeasuring howmuch farms should reduce their slack and redundant
inputs, Koopmans’s concept of efficiency was used. According to Koopmans
(1951), a farm is fully efficient if and only if it is not possible to improve the
efficiency of any input (or output) without worsening at least one other input
(output). Using linear programming to illustrate this concept, first note that the
efficient production frontier is constructed as piece-wise linear (Figure 1). If a
segment of the efficient frontier line is parallel with an axis, then a slack condition
exists. For example, in Figure 1, Farm B is located parallel with Farm Cwith both
farms on the efficient frontier according to Farrell’s (1957) definition. However,
Farm B uses more of input X2 compared with Farm C. This additional quantity
of input used by Farm B, K units, is the slack in resource availability because its
use in the production process cannot be uniquely determined. The presence of
slack resources violates the concept of efficiency because employing any positive
amount of the slack resource would increase output under any SE assumption. To
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Figure 1. Slack and Radial Input Reduction for Technical Inefficient Farms

overcome this limitation, Koopmans’s (1951) definition for a technically efficient
farm requires that the farm operate on the frontier and that all slack variables
associated with the inputs are zero. Hence, based on Koopmans’s definition of
TE, Farm B cannot be deemed efficient. The inefficient Farm E can reduce its
inefficient use of inputs by the distance EI (radial distance), but also the quantity
of slack resource usage given by IC to achieve TE.

The first step in finding the radial and slack reduction required to reach the
efficient frontier is to solve equation (2). The second step is to find the input slacks
byminimizing the observed level of resource slack given the efficiency scores from
the first step (Coelli et al., 2005). This second step is called the second-stage linear
programing problem, and its formulation is

Minλ,OS,IS − θ (OS+M1′IS),

Subject to

⎧⎨
⎩

−yi +Yλ −OS = 0,

θ xi −Xλ − IS = 0,

λ ≥ 0,OS ≥ 0, IS ≥ 0.

⎫⎬
⎭ ,

(8)

whereOS is an output slack, IS is an m × 1 vector of input slacks,M1 is an m ×
1 vector of ones, and θ is the solution value of first stage from equation (2) and
is not a decision variable in this model. Similar to the first stage, this equation
must be solved N times for each of the i farms in the sample.
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2.3. Estimating Meta-frontier Approach for Measuring Technical Efficiency
across Different Levels of Tillage

The varying intensity of tillage practices is expected to have a significant effect
on efficiency measures. The meta-frontier approach was used to account for
inherent differences in productivity among alternative tillage practices (Batteses,
Rao, and O’Donnell, 2004; Hyami, 1969; Hyami and Ruttan, 1971). The meta-
frontier approach allows discrete groups to be defined according to their a priori
differences in technology and their subsequent effect on input efficiency, such
as tillage practice. For example, using the same level of inputs, tillage practice
A could provide more efficient production outcomes than tillage practice B.
Hence, for this article, three groups of farms were classified based on their tillage
practices—no-till, minimum till, and conventional till—to allow for differential
efficiency among producers using similar inputs. The group-specific TE is defined
by TEil(x, y), where x is the set of observed inputs, y is an observed output in
farm i and the set l = {no-till, minimum till, conventional till}, and the overall
meta-frontier TE for the entire group is defined by TEi(x, y) for farm i. The
meta-frontier approach assesses efficiency differences among groups using the
technology gap ratio (TGR) for farm i, which is the ratio of the TE score for
farm i generated from its group sample to the TE score for farm i generated from
the entire sample:

TGRi
l = TEi

l (x, y)
TEi(x, y)

. (9)

Median and Wilcoxon tests were used for testing the mean differences of
efficiency score among farm groups (Banker, Zheng, and Natarajan, 2010).

2.4. Estimation of Factors Affecting Efficiency Measures

Tobit regression models were used to identify producer characteristics that can
significantly explain how efficiency measures varied among the cross section of
farms. The Tobit models were used because the efficiency measures are truncated,
with observations clustered at the upper limit of 1 while bounded by 0 at the
lower limit. Banker (1993) shows that the estimators of DEA (i.e., the true
inefficiency values) are the density function of maximum likelihood estimates
that by assumption are normally distributed with mean u and constant variance,
σ 2. Chilingerian and Sherman (2011) state that although the distribution of DEA
scores is never normally distributed, and often skewed, the regression assuming
a normal distribution can nevertheless be informative for policy analysis.

A random effects error component was incorporated into the Tobit models
because our data have a panel structure composed of 141 farms observed over
four consecutive years, 2002–2005. The cross-sectional component of the data
set (i.e., the number of farms) is much larger than the temporal aspect (i.e.,
the number of years) creating autocorrelation concerns. To estimate the model
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correctly given these panel data also requires treating the year and farm variables
as either a fixed or random effect to prevent unwanted correlation between
unobserved variables and error terms. For instance, an unconditional Tobit
model with fixed effects is biased because of the panel data, which contain a fixed
number of observations (cross sectional and temporal) resulting in inconsistent
coefficient estimates (Maddala, 1987).

To avoid autocorrelation, two remedies are employed. The first is to construct
the Tobit model by defining year and any other time-related variable as a fixed
effect. The second is to use a random effects model so that unobserved effects
from farm heterogeneity can be captured via the random error term (ui), which
does not vary over time. The total model error is decomposed into both a random
error (ui) term to capture farm heterogeneity and an overall error (eit) term for
temporal variability. The error terms have the familiar assumptions properties
from ordinary least squares (OLS) (i.e., mean zero, normally distributed, and
independent of one another). The random effects Tobit model used in this article
is specified as follows:

Yit = 1 ifYit = α +Yeartβ +Xitγ + ui + eit > 0,

= 0otherwise, (10)

where Yit is an efficiency score at farm i year t, Yeart is year effect for year t, Xit

is the matrix of independent variables for farm i year t, α is an intercept, β and γ

are vectors of parameters, ui is a farm random effects distributed normally with
mean 0 and variance σ 2

u for farm i, eit is an error term distributed normally with
mean 0 and variance σ 2

e . The error terms ui and eit are assumed to be independent
of one another.

3. Farm Survey and Model Data

Cooperative extension service county educators, managers of farmer-owned
cooperatives, and executives from producer organizations identified a sample
of 141 producers who participated in all four years of the study from 2002
to 2005. The total number of observations in the data set was 564. Although
participants were not drawn from a random sample of the population at large,
the selection process was designed to include representative farms from across
the WGP study region (Colorado, Kansas, Nebraska, Oklahoma, Texas, and
Wyoming). Farm managers attended annual group meetings, and comprehensive
on-farm interviews were conducted annually from 2002 through 2005. The
survey questionnaire elicited information on farm efficiency–related factors: farm
size, acres planted (by crop), input use (price and quantity), tillage practices,
capital equipment, and farm operator experience. The farm survey data were
used to construct detailed crop enterprise budgets—summarizing revenue and
costs—on an annual basis (USDA, Natural Resources Conservative Service,
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Table 1. Summary Statistics of Variables used for Computing Efficiency Scores ($/farm per
year)

Frequencya Mean Standard Deviation

Output variable
Revenue 564 219,473 200,768

Input variables
Machinery 564 34,324 36,000
Seeds 564 16,960 16,048
Fertilizer 564 41,575 50,078
Chemicals 564 16,769 27,253
Labor 564 5,439 5,126
Miscellaneous 564 31,719 39,445
Land 564 57,199 47,488

aFrequency count includes zero values.

2000). Revenue calculations included gross returns (price multiplied by yield),
crop insurance, and grazing benefits on dual purpose wheat.

3.1. Model Data

The TE and EE models were constructed using the farm survey data. The TE
models require data to specify the input and output vectors, xi∗ and Yi, and the
EEmodels require the vector of input prices,wi. The vector of inputs xi contained
several items: machinery, seed, fertilizer, chemical, labor, land, and miscellaneous
(Table 1).As discussed in Rowland et al. (1998) and Coelli et al. (2005), empirical
issues usually arise when estimating efficiency models from farm survey data. The
input categories used to define xi—for example, seed, chemicals, and fertilizer—
contained assorted types and brands and were bundled in different quantities and
sold at different prices.1 The unit value of the approach of Coelli et al. (2005)
was hence used to develop a single variable for each input category reflecting the
average use of the input. The total cost of each input category was calculated
by summing the cost of item (input price × quantity applied) purchased as
recorded by the farm surveys. For example, the total seed cost was calculated
as the product of the quantity of each type of seed used per acre multiplied
by its unit price. The unit value was obtained by dividing the total cost by the
total quantity of seed used. Fertilizer, chemical, and labor costs were calculated
using the same unit value approach. Labor costs included both hired and family
labor. Because most farms do not pay family labor a wage or salary, family labor
was valued as the opportunity cost of family labor used to conduct machinery

1 Input categories varied by type and brand, but no substantial difference in quality or productivity
of the subitems in a category was assumed to be present. Moreover, because the price of each item was
recorded by the survey, any difference in quality would be reflected by corresponding differences in costs.
Fertilizer, for example, had different nutrient formulas, but the unit cost per active ingredient (N-P-K) was
considered reasonably consistent across fertilizer types.
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and field operations. The machinery category included operating costs for fuel,
lube, and repair. Quantities were based on the on the rated horsepower for each
piece of equipment. Custom costs were also included in the machinery costs.
Chemical costs included three subitems: herbicide, insecticide, and fungicide.
Land cost was calculated as the product of the cash rent value of cropland
in the county and the farm’s harvested acres for all crops. The miscellaneous
category included depreciation, insurance cost, operating interest, overhead, and
THI (taxes, housing, and interest). The average input costs are listed in Table 1.

For computing efficiency scores, total annual gross revenue received from all
crops was used as output for each farm, yi. During the four-year study period
(2002–2005), the weighted-average U.S. farm price received for hard red winter
wheat was relatively stable. Wheat prices ranged from $2.71 to $3.29 per bushel
for the 2004–2005 crop years. Other grain prices were also relatively stable
during this four-year period of time, with the weighted-average U.S. farm price
received for corn ranging from $2.00 to $2.42 per bushel (USDA-ERS, 2018b).
Efficiency scores were estimated for each of the 564 observations, four annual
observations for each of 141 farms.

The survey data on input prices were collected in nominal terms and, along
with the crop prices, were deflated by price indices to account for inflation and
other price changes that occurred during the four-year study period (Coelli et al.,
2005). Input costs within each of the categories were deflated by producer price
indices that varied by input type referenced from the indices of the Bureau of
Economic Analysis (Coelli et al., 2005; U.S. Department of Commerce, Bureau
of Economic Analysis, 2018). Deflation of all input costs and output used 2005
as the base year. Seed costs were deflated by the corresponding producer’s
price indices given by the categories defined by “farm products: grains.” Labor
costs were deflated by employment cost index for wages and salaries: farming.
Machinery costs were deflated by the farm machinery and equipment index.
Fertilizer costs were deflated by the corresponding nitrogen fertilizer, synthetic
ammonia, and ammonium compound indices. Chemical costs were deflated
by the corresponding producer indices for pesticide and other agricultural
chemical manufacturing. Miscellaneous costs were deflated by the average on
producers’ indices for insurance agencies and brokerages of commercial property
and casualty insurance, and interest rates on the discount rate for the United
States. Likewise, the prices used to calculate revenue were deflated by the
personal consumption expenditure index (CPI), which was performed for all
crops produced on the farm (Table 1).

3.2. Independent Variables

The Tobit regression model (equation 10) used 10 independent variables to
explain how farm and operator characteristics influence the TE and EEmeasures.
Descriptive statistics of the farm and operator characteristics are summarized in
Table 2. Three of the independent variables were categorized (size, diversity, and
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Table 2. Summary Statistics of Independent Variables Used in the Tobit Models Explaining
Efficiency Measures (TE, EE, AE, and SE)

Variables (unit) Definition Mean Standard Deviation

Farm Operating size Very small = 0, small = 1,
medium = 2, large = 3

1.2 0.9

Crop diversity High wheat % = 0, medium
wheat % = 1, low wheat
% = 2

1.00 0.70

Tillage No till = 0, minimum till =
1, conventional till = 2

1.2 0.68

Proportion of cash rented land (%) % of farm land cash leased 0.16 0.23
Machinery ($1,000/year/farm) Cost of hiring or leased

machinery and power
machines

11.035 21.061

Custom work (%) Ratio of number of custom
work to total work

0.16 0.18

Age (years) Producer age in years 49.4 10.67
Education (years) Producer education in years 14.7 1.593
Family tenure (years) Years in which the same

family operated the farm
72.03 30

Off-farm income No = 0, yes = 1 0.72 0.45
Internet use Obtain producer-related

information from the
Internet

No = 0, yes = 1

0.8 0.36

Number of observations 544a

aThe smaller number of observations in the Tobit models is because of the presence of missing data.
Note: AE, allocative efficiency; EE, economic efficiency; SE, scale efficiency; TE, technical efficiency.

tillage) to enable comparisons between groups such as small versus larger farms.
Other independent variables were defined as either proportions (rented land and
custom work) or binary variables (off-farm income and Internet use). With only
a few exceptions, the farm managers remained in the survey panel throughout
the four years and completed the questionnaires surveys. There were a handful of
missing entries on some questionnaires that reduced the number of observations
in the regression from 564 to 544.

Farm size. Prior research has employed several measures of farm size, with most
defining farm size based on revenue, or farm income, rather than acreage. This
article follows the approach of Mugera and Langemeier (2011), which argued
that revenue generated from crop production is the most appropriate measure
to use for farm size. Farms with annual crop revenue in excess of $500,000
were classified as large; those with revenue between $250,000 and $500,000,
as medium; those with revenue between $100,000 and $250,000, as small; and
those with revenue less than $100,000, as very small. In the model, categories
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were assigned numbers from 0 (very small) to 3 (large). The mean value of farm
size was 1.2, indicating that most farmers were in the “small” category (38.7%)
(Table 2).

Crop diversity. Wheat is the primary crop grown in the WGP and has been for
the past several decades (USDA-NASS, 2018), but changes in the 1996 Farm Bill
have allowed farmers to grow other crops. In response, dry season crops such as
sorghum and millet, as well as cover crops, have become increasingly important.
Crop diversity is measured using the ratio of wheat area to total land cropped.
Farms in the upper 25% of the diversity ratio were classified as “high wheat
%” farms. Farms in the lower 25% of the diversity ratio were classified as “low
wheat %” farms. The remaining farms, in the middle 50% of the diversity ratio,
were classified as “medium wheat %” farms. Given our method of categorizing
diversity, the mean value of crop diversity was 1.0, indicating that most of the
farmers were in the “medium wheat %” category (50.0%) (Table 2).

Tillage. To measure tillage, tillage practices were separated into three discrete
groups: no-till, minimum till, and conventional till. A farm was classified as
“no-till” if land was not tilled. A farm was classified as “conventional till” if
the producer reported three or more tillage passes prior to seeding a crop. The
remaining farms that reported using one or two passes prior to seeding were
classified as “minimum till.” The mean value of tillage is 1.0, indicating that
most of the farmers were in the “minimum till” category (Table 2).

Proportion of cash rented land. To assess its effect on efficiency, the proportion
of cash rented variable was defined as the ratio of cash rented land to total
farmed acreage. The mean value for proportion of cash rented land was 16.0%,
indicating that on average about 1 in 6 acres are rented (Table 2).

Machinery.To measure the machinery variable, the cost of hiring machinery was
used to provide a consistent cost basis among the farms because the survey data
did not include detailed machinery cost accounting entries. The cost of hiring
farm machinery and other power machines, such as custom machine operations
or rented machines, was summed across the machinery required for each of the
farming operations. On average, the value for machinery was $11,035 per year
(Table 2).

Custom work. The custom work variable was defined as the proportion of the
work performed by custom operators relative to the total work performed on
the farm. The mean value for custom work was 16.0 % (Table 2).

Farm demographic characteristics. Prior research has found that operator age,
operator education, off-farm income, and Internet use affect efficiency measures
in both positive and negative directions. Age and off-farm income have been
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found to be negatively related to efficiency (Langemeier and Bradford, 2005;
Olson and Vu, 2009). Efficiency is expected to be positively related to the
number of years that the farm has been in the family because knowledge of local
conditions and experience is accumulated and can be passed from one generation
to the next. Internet access and use can provide managers with new sources of
information, assist in financial planning, and reduce marketing transaction costs.
Education could equip producers with opportunities to make more informed
decisions and to utilize new approaches to farm planning. For this survey, a
typical farm operator could be characterized as middle aged (49.4 years), with a
high school degree,with 2.7 years of college work,most likely (72.0%)works off-
farm, and is highly likely to have Internet access (80.0%) (Table 2). The average
farm had been in the family for 72.0 years (Table 2).

3.3. Outliers

The DEA method is sensitive to outliers in the data set that can potentially bias
results. To detect the presence and nature of outliers, an Andrews-Pregibon (AP)
statistic (Andrews and Pregibon, 1978; Willson, 1993) was used. This method
does not require OLS residuals and can be used with nonparametric methods
such as DEA-based models. The AP method calculates statistics based on the
proportional change in the geometric volume of space spanned by the input and
output vectors when potentially outlying observations are deleted. Using FEAR
software based on R (Willson, 2010), seven data outliers in the four farms were
detected and scrutinized relative to the remaining raw data. Those outlier farms
were identified as having more cropland and higher yields compared with their
farming counterparts. They were deemed by AP approach, however, as being
inherently more efficient than other farms, rather than an anomaly because of
measurement or selection bias. We also tested how much those outliers affected
efficiency scores and found that they did not have a significant effect on any of
the efficiency scores. Based on the AP statistic they were kept in the efficiency
analysis and Tobit model.

3.4. Data Validation

An analysis of the data was conducted to determine if the sample of farms drawn
by the panel of experts was representative of farms in the WGP. Estimates of
returns and production costs obtained from the surveyed farms were compared
with those reported by USDA as part of their annual data collection efforts.
The USDA data act as an ideal benchmark because the USDA’s farm surveys
are randomly drawn and administered annually. The estimates of wheat cost
and returns for the USDA Prairie Gateway Region for the years 2002–2005 are
reported in Table A1 in the Appendix. The Prairie Gateway Region includes parts
of Colorado, Kansas, Nebraska, NewMexico, Oklahoma, and Texas, essentially
the same as the WGP study area used in this article. A host of t-tests were
conducted to determine if the mean values for economic returns and production
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costs were different between the two samples (Table A1). For all of the variables
except farm size, the t-tests found there was no significant difference between
the farm sample drawn by the panel of experts used in this study and the
USDA sample (Table A1). The sample of farms included in this study planted
significantly more wheat, 1,380 acres, compared with the 395 acres planted
by wheat farms in the USDA sample. Based on these findings, the production
practices and per acre costs and revenue on the sample farms are assumed to be
representative of wheat farms in the WGP region even though the sample farms
are substantially larger. This suggests that larger farm sizes do not substantially
influence how operators plan and manage their production practices and that
efficiency measures based on a per acre basis should not be substantially altered
by the larger farm sizes. Moreover, because the analysis results were grouped
according to four categories of farm size, the effect of the smaller farms is
transparent and the influence of farm size can be assessed from the results.

4. Empirical Results

The estimated results of the efficiency scores based on the input-oriented DEA
models of Charnes, Cooper, and Rhodes (1978) and Banker, Charnes, and
Cooper (1984) are reported in Table 3. The average efficiency scores varied
minimally with no apparent trend across years, with the greatest change in AE,
which increased from 0.46 to 0.54 between 2002 and 2005 (Table 3). According
to the results, farm managers in the WGP have been most efficient in sizing their
operations to the proper scale level. SE averaged 0.90, one of the highest scores
reported in the production literature, which indicates that most of the farms
operate rather close, within 10%, to their optimal level of scale (Table 3). Results
imply that if all farms were to resize their operations to reach the efficient frontier
(CRS), then costs could be reduced by an average of 10%. Although the average
SE score of 0.90 places most of the farms near the efficiency frontier, only 34 out
of the 564 observations (6%) were found to actually be scale efficient. Most of
the farms that were found to be scale efficient achieved efficiency in only one of
the four years. Only two farms were efficient in more than a single year, with one
farm efficient in two years and the other in three years.

A majority of the observations (52%) were identified as producing in the DRS
region, where costs are rising, indicating that farms would need to reduce their
operating scale to become fully efficient (Table 4). Alternatively, a substantial
number of observations (42%) were found in the IRS region where costs are
falling and efficiency could be increased by expanding operating scale. The
remaining 6% of the observations were identified as producing under CRS on
the SE frontier. Nearly half of all the farms, however, were found to have been in
either the IRS or DRS region in at least one of the four years. Results found that
74 farms (52%) were in either the DRS or IRS region for all four years, while the
remaining 67 farms (48%) were in at least two different scale regions throughout
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Table 3.Technical (TEVRS), Scale (SE), Economic (EEVRS), and Allocative (AEVRS) Efficiency
Scores by Year, State, Size, and Crop Diversity

Number of
Variable Observationsa TEVRS Scoreb SE Score EEVRS Score AEVRS Score

Year
2002 141 0.63 (0.22) 0.90 (0.12) 0.29 (0.13) 0.46 (0.18)
2003 141 0.69 (0.21) 0.91 (0.12) 0.37 (0.18) 0.53 (0.14)
2004 141 0.64 (0.21) 0.89 (0.15) 0.33 (0.16) 0.52 (0.13)
2005 141 0.67 (0.20) 0.90 (0.12) 0.36 (0.17) 0.54 (0.15)

Mean 564 0.65 (0.21) 0.90 (0.12) 0.34 (0.16) 0.51 (0.14)

State
Colorado 140 0.67 (0.20) 0.89 (0.13) 0.35 (0.15) 0.52 (0.14)
Kansas 48 0.68 (0.15) 0.86 (0.12) 0.34 (0.09) 0.50 (0.09)
Nebraska 56 0.57 (0.24) 0.95 (0.06) 0.19 (0.06) 0.35 (0.09)
Oklahoma 168 0.63 (0.20) 0.89 (0.13) 0.32 (0.16) 0.51 (0.13)
Texas 96 0.69 (0.22) 0.92 (0.12) 0.40 (0.17) 0.57 (0.13)
Wyoming 56 0.68 (0.22) 0.91 (0.15) 0.41 (0.19) 0.59 (0.13)

Mean 564 0.65 (0.21) 0.90 (0.12) 0.34 (0.16) 0.51 (0.14)

Size
Very Small 166 0.65 (0.22) 0.89 (0.15) 0.30 (0.15) 0.47 (0.14)
Small 218 0.61 (0.20) 0.97 (0.04) 0.31 (0.11) 0.50 (0.12)
Medium 140 0.67 (0.18) 0.87 (0.10) 0.36 (0.14) 0.54 (0.12)
Large 40 0.87 (0.17) 0.71 (0.15) 0.60 (0.21) 0.68 (0.15)

Mean 564 0.65 (0.21) 0.90 (0.13) 0.34 (0.16) 0.51 (0.14)

Crop diversity
High wheat % 141 0.72 (0.21) 0.92 (0.12) 0.36 (0.15) 0.50 (0.14)
Medium wheat % 282 0.65 (0.20) 0.91 (0.12) 0.34 (0.17) 0.52 (0.14)
Low wheat % 141 0.60 (0.21) 0.88 (0.14) 0.31 (0.16) 0.51 (0.13)

Mean 564 0.65 (0.21) 0.90 (0.13) 0.34 (0.16) 0.51 (0.14)

aTotal number of observations is 564. Survey contains 141 producers with four years of observations
(2002–2005) from each producer.
bValues in parentheses are standard deviations about the mean values.
Note: AEVRS, allocative efficiency under variable returns to scale; EEVRS, economic efficiency under
variable returns to scale; SE, scale efficiency; TEVRS, technical efficiency under variable returns to scale.

the four-year study period. Results imply that farms are for the most part very
close to being scale efficient but do fluctuate between DRS and IRS from one year
to the next.

TE averaged 0.65 (σ = 0.21) across all four years of the survey indicating a
much greater level of inefficiency compared with SE (Table 3). Across farms there
was considerable variability in TE, which ranged from 0.30 to 1.0. Sixty-seven
out of the 564 total observations (12%) were found to be technically efficient.
A closer look inside the data revealed that of the 67 efficient observations, 78%
were from farms found to be efficient in only one of the four years. No farm was
found to be efficient in all four years, and the remaining 22% were efficient in
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Table 4. Frequency of Returns to Scale by Farm Size and State

Attribute DRS No. Farms % CRSb IRS Total

Farm sizea

Very small 7 12 147 166
Small 115 12 91 218
Medium 131 8 1 140
Large 38 2 – 40
Total 291 34 239 564

Colorado 79 8 53 140
Kansas 39 1 8 48
Nebraska 19 4 33 56
Oklahoma 117 6 45 168
Texas 27 11 58 96
Wyoming 10 4 42 56
Total 291 34 239 564

a Farm size was classified by total revenue. Large farms were greater than $500,000 of their revenue,
medium farms were $250,000 to ∼$500,000, small farms were $100,000 to ∼$250,000, and very small
farms were less than $100,000.
b CRS represents constant returns to scale, DRS represent decreasing returns to scale, and IRS represent
increasing returns to scale. To determine returns to scale, if scale efficiency is 1, then a farm is on CRS;
if scale efficiency is less than 1 and the score of nonincreasing returns to scale is the same TECRS (as
technical efficiency under constant returns to scale) score, then the farm operates under IRS. Otherwise,
the producer operates under DRS.

either two or three years. This indicates that TE varied substantially within farms
and that most farms appear to have difficulty maintaining a consistent level of
efficiency, reaching the technical frontier in one year but not others. According
to the results, input use could be reduced by an average of 35% if all farms, by
adjusting to optimal input levels, were able to produce at the efficient frontier.
The TE score of 0.65 was slightly higher than the average efficiency of 0.59
that Mugera and Langemeier (2011) found for Kansas crop and livestock farms
between 1993 and 2007 and is commensurate with findings from other studies
(Chavas and Aliber, 1993; Featherstone, Langemeier, and Ismet, 1997; Olson and
Vu, 2009; Rowland et al., 1998).

AE averaged 0.51 (σ = 0.14) across all four years of the survey and was lower
in value than either the SE or TE measures (Table 3). Results imply greater levels
of inefficiency when producers are choosing inputs in response to price signals
compared with choices based on technical performance. Across farms there was
considerable variability in AE, which ranged from 0.19 to 1.0. Six out of the
564 observations (1%) were found to be allocative efficient, substantially less
than the 67 observations found to be technically efficient. A closer look inside
the data revealed that of the 6 efficient observations, 5 were from farms found to
be efficient in only one of the four years, and the remaining farm was efficient in
two years. According to the results, input costs could be reduced by an average
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of 49% if all farms, by adjusting to optimal input levels through prices, were
able to produce at the efficient frontier. Technical inefficiency created much more
substantial losses than scale inefficiency. On average, the inefficient producers
would be able to save $100,000 per year by producing at the efficient cost
frontier.

EE averaged 0.34 (σ = 0.16) across the survey period (Table 3). Only 6 out
of the 564 observations (1%) were found to be technically efficient, and a vast
majority of the observations (87%) were less than 50% efficient (Figure 2).
Across farms there was considerable variability in EE, which ranged from a
minimum of 0.06 to a maximum efficiency of 1.0. Almost an equal number of
observations were found in the uppermost decile (EE >0.90) as in the lowest
decile (EE<0.10),with 7 observations in the former and 4 in the latter (Figure 2).
According to the results, input costs could be reduced by an average of 66%
if all farms, by adjusting to optimal input levels, were able to produce at the
efficient cost frontier. Economic inefficiency created the most substantial losses.
On average, producers would be able to save $135,000 per year in input costs
by becoming economically efficient.

The performance of WGP farms in economic planning was particularly poor
compared with farming operations in other regions. Featherstone, Langemeier,
and Ismet (1997) reported an EE of 0.81 for Kansas farmers, more than
twice as large as the efficiency of WGP farmers (0.34) found in this study
(Table 3). Precise causes for the lower EE and AE scores are difficult to
determine. One possible explanation is that the time gap between when inputs
are required to be priced, purchased, and employed and when produced crops
are priced and sold is relatively long. In the intervening time, weather and
pests can damage crops, and markets can turn volatile. This is especially
true for winter wheat, which has a nine-month lag between planting and
harvest.

4.1. Significant Factors Affecting Efficiency with Tobit Random Effect
Regression

The efficiency scores estimated from the four efficiency models (equations 2
through 5) were analyzed using a Tobit regression model to explain the cross-
sectional variability using farm characteristics. Solutions were obtained from
STATA version 15, a commercially available statistical software package, using
the XTTOBIT command (StataCorp LLC, 2015). The four efficiency scores
(TE, SE, EE, and AE) were explained in the Tobit models using a vector of
10 independent variables, including 8 farm-specific characteristics that serve
as proxies explaining farm management performance and success (Table 3).
The level of censorship was greatest in the TE model, with 62 right-censored
observations, corresponding to 11.4% of the total sample of 564 observations.
The SE model had 6.1% of its observations right censored, whereas the other
two models, AE and EE, had minimal censorship with 1% of their observations
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Figure 2. Distribution of the Score of Technical, Scale, Allocative, and Economic
Efficiency under Variable Returns to Scale
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right censored. Likelihood-ratio tests were used to evaluate the importance of
the random error term used in the Tobit regression model (equation 10). The
likelihood tests compare model fit between two alternative models, one with
the random error and the other with fixed effects. In all four of the Tobit
model regressions, the chi-squared tests of the likelihood ratios found that the
random error component had a significant effect (at the 1% level) and were thus
maintained in the Tobit models’ error structures (Table 5). All four of the Tobit
models had highly significant (P < 0.001) Wald chi-square tests indicating that
each model fit the data significantly better than an alternative, empty model
without any predictors. In each of the Tobit models, there were at least three
significant variables (at the 5% level) related to farm-specific characteristics (i.e.,
omitting year, state, and the intercept) with as many as six in the TE and AE
models.

TE was significantly explained by several variables in the Tobit model: farm
size, crop diversity, cash rented land, custom work, and Internet use (Table 5).
The signs on all the regression parameters were consistent with prior expectations
except for Internet use, which had an unexpected negative sign indicating access
to Internet increased inefficiency (Table 5). According to the marginal analysis,
farm size had the most important effect on TE (Table 6). Farm size had a positive
effect on TE that grew stronger as farm size increased. The “large” farms had
the greatest marginal effect indicating that “large” farms increased TE by 0.348
(ceteris paribus) relative to the “very small” farms. The marginal effect of the
“medium” farms was somewhat lower with a value of 0.159, and the “small”
farms had a modest effect of 0.044. The Tobit model implies a critical level of
annual revenue for farms is $250,000. Above this point, larger farm sizes enabled
producers to generate greater levels of TE compared with smaller farms that
ranged as high as 0.348. The Tobit model findings suggest that diversification
through the shift away from the wheat monoculture has had a negative effect on
TE. TE was reduced for farms that had shifted away from a wheat dominant
crop portfolio with corresponding marginal effects that were nearly as large
as those of farm size. According to the marginal analysis, TE was reduced by
0.168 for the “low wheat %” farms and by 0.113 for the “medium wheat %”
farms. Tobit model results suggest that smaller farms constrained by time, land,
or labor should be able to expand their operating size by renting land or hiring
custom labor without any concerns over loss of efficiency. Renting land and
hiring custom work both have positive associations with TE. Renting land had
a marginal effect of 0.1103, indicating that a 1% increase in the amount of land
cash rented would increase TE by 0.001103. Likewise, a 1% increase in custom
hired labor would increase TE by 0.00157. Education had significant (at the
10% level) and positive association with TE. According to the marginal effects,
each additional year of education would increase (ceteris paribus) TE by 0.0138
(Table 6). This implies the value of a four-year college degree would increase
(ceteris paribus) TE by 0.0552. Internet access had an unexpected negative effect
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Table 5. Relationships between Efficiency and Farm Characteristics Using Tobit Random
Effect Model

Variable Technical Scale Allocative Economic

Intercept 0.5473411∗∗∗ 0.959457∗∗∗ 0.4391568∗∗∗ 0.2883407∗∗∗

Year (2002 = 0)
2003 0.0226241 0.0190810∗ 0.0569912∗∗∗ 0.0495471∗∗∗

2004 − 0.0197640 0.0006506 0.0562062∗∗∗ 0.0288235∗∗

2005 − 0.0059285 0.0090726 0.0692490∗∗∗ 0.0445181∗∗∗

State (Wyoming = 0)
Colorado − 0.0743047 0.0101324 −0.1081588∗∗∗ −0.1215753∗∗∗

Nebraska − 0.0935843 0.0620809∗ −0.2513646∗∗∗ −0.2196682∗∗∗

Kansas − 0.0910004 − 0.0032379 −0.1662032∗∗∗ −0.1652013∗∗∗

Texas − 0.0317368 0.0315066 −0.0416087∗∗∗ −0.0462566∗∗∗

Oklahoma − 0.1914446∗∗∗ 0.0100472 −0.1599433 − 0.2112055

Farm size (very small = 0)
Small ($–$) 0.0463875∗ 0.0468541∗∗∗ 0.0443387∗∗∗ 0.0422666∗∗∗

Medium ($–$) 0.1724466∗∗∗ − 0.0157172 0.0783694∗∗∗ 0.1343946∗∗∗

Large ($–$) 0.4461678∗∗∗ − 0.1704584∗∗∗ 0.1803853∗∗∗ 0.3540124∗∗∗

Crop diversity (high wheat % = 0)
Medium wheat % − 0.1278907∗∗∗ − 0.0024665 0.0341971∗∗∗ −0.0232545∗

Low wheat % − 0.1863987∗∗∗ − 0.0333579∗∗ 0.0207848 − 0.0555701∗∗∗

Tillage (no-till = 0)
Minimum − 0.0169726 0.0162464 −0.0053797 − 0.0087367
Conventional 0.0069961 0.0413992 0.0306175 0.0348525

Cash rented land (%) 0.1211127∗∗ − 0.0594961∗ 0.0725057∗∗ 0.1011795∗∗∗

Machinery
($1,000/year/farm)

− 3.61E-07 1.68E-07 −4.61E-07 − 1.87E-07

Custom work (%) 0.1727577∗∗ 0.0415215 −0.1267466∗∗∗ −0.0401239
Age (years) 0.0010478 − 0.0003391 −0.0002203 0.0001205
Education (years) 0.0151403∗ − 0.0057165 0.0045838 0.0062432
Family tenure (years) − 0.0003368 − 0.0001085 0.0003459 0.0000427
Off-farm income (no = 0)

Yes 0.0158213 0.0104584 −0.0149722 − 0.0000958
Internet use (no = 0)

Yes − 0.0770088∗∗ 0.0113788 0.0153947 − 0.0131469
Standard deviation of panel

residual (random effect)
0.13∗∗∗ 0.071∗∗∗ 0.075∗∗∗ 0.075∗∗∗

Standard deviation of overall
residuals

0.16∗∗∗ 0.080∗∗∗ 0.071∗∗∗ 0.095∗∗∗

Rhoa 0.39 0.44 0.53 0.38
Number of observations 544 544 544 544

aRho is defined as Rho = variance of panel residuals
Sumof variance of pannel residual+ variance of overall residuals , thus indicating is the percent

contribution to the total variance of the panel-level variance component.
Note: Asterisks (∗, ∗∗, ∗∗∗) denote significance at the 10%, 5%, and 1% level, respectively.
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Table 6.Marginal Effects of the Tobit Random Effect Model

Variable Technical Scale Allocative Economic

Year (2002 = 0)
2003 0.0204661 0.0145421∗ 0.0569707∗∗∗ 0.0487082∗∗∗

2004 −0.0181212 0.0005110 0.0561859∗∗∗ 0.0282536∗∗

2005 −0.0054134 0.0070313 0.0692258∗∗∗ 0.0437359∗∗∗

State (Wyoming = 0)
Colorado −0.0643329 0.0081076 − 0.1080741∗∗∗ −0.1211146∗∗∗

Nebraska −0.0816678 0.0454327∗ −0.2512390∗∗∗ −0.2170063∗∗∗

Kansas −0.0793317 −0.0026407 − 0.1661131∗∗∗ −0.1641866∗∗∗

Texas −0.0269438 0.0243732 − 0.0415488∗∗∗ −0.0461363∗∗∗

Oklahoma −0.1724342∗∗∗ 0.0080405 − 0.1598538 − 0.2089033
Farm size (very small = 0)
Small ($–$) 0.0443151∗ 0.0346132∗∗∗ 0.0443287∗∗∗ 0.0412700∗∗∗

Medium ($–$) 0.1592999∗∗∗ −0.0129135∗∗∗ 0.0783537∗∗∗ 0.1327140∗∗∗

Large ($–$) 0.3475189∗∗∗ −0.1585008 0.1802698∗∗∗ 0.3520394∗∗∗

Crop diversity (high wheat % = 0)
Medium wheat % −0.112904∗∗∗ −0.0018476∗∗ 0.0341852∗∗∗ −0.0229792∗

Low wheat % −0.167768∗∗∗ −0.0262809 0.0207769 − 0.0546767∗∗∗

Tillage (no-till = 0)
Minimum −0.0154787 0.0130767 − 0.0053778 − 0.0085638
Conventional 0.0063312 0.0320233 0.0306081 0.0343663

Cash rented land (%) 0.1103323∗∗ −0.0457018∗ 0.07248∗∗ 0.0995456∗∗∗

Machinery ($1,000/year/farm) −3.28E-07 1.29E-07 − 4.61E-07 − 1.84E-07
Custom work (%) 0.1573805∗∗ 0.0318947 − 0.1267017∗∗∗ −0.0394759
Age (years) 0.0009546 −0.0002605 − 0.0002202 0.0001186
Education (years) 0.0137927∗ −0.0043911 0.0045822 0.0061424
Family tenure (years) −0.0003068 −0.0000833 0.0003457 0.000042
Off-farm income (no = 0)
Yes 0.0144438 0.0081011 − 0.0149673 − 0.0000943

Internet use (no = 0)
Yes −0.0689012∗∗ 0.0088465 0.0153889 − 0.0129481

Number of observations 544 544 544 544

Note: Asterisks (∗, ∗∗, ∗∗∗) denote significance at the 10%, 5%, and 1% level, respectively.

on TE that marginal analysis found reduced efficiency by 0.0689. Given the data
available and other model results, this negative association cannot be adequately
explained.

Size, diversity, and renting land were significant variables in the SE model.
Among those variables, size had the most important effect on SE according to the
marginal analysis results (Table 6). The Tobit model indicates that SE is enhanced
in moving from “very small” to “small” farms, but further growth to “medium”
and “large” farm sizes eventually creates additional scale inefficiency. According
to marginal analysis, the positive effect on SE found among the “small” farms
was heavily outweighed by the negative effect of the two larger farm sizes. The
“small” farms had a marginal effect of 0.035, increasing SE by that amount
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relative to the “very small” farms (included in the intercept term). The larger-
size farms were found to be less efficient. The greatest effect was on the “large”
farms, which had a marginal effect of −0.159 resulting in substantially less scale
inefficiency compared with the other sizes. On average, the “small” farms were
the most scale efficient with a score of 0.97, followed by the “very small” and
“medium” farms with SE scores of 0.89 and 0.87, respectively (Table 3). The
“large” farms were the least scale efficient with a score of 0.71 (Table 3). Crop
diversity and renting land both had negative associations with SE, but according
to themarginal analysis, their effects would be rather small. Farms that diversified
the most (“low wheat %”) had a marginal effect of −0.0263, reducing their
efficiency by 2.63% relative to the “high wheat %” farms contained in the
intercept. Rented land had a marginal effect of −0.0457 that would have little
practical importance: a 1% increase in cash rented land would reduce efficiency
by less than 0.05%.There were two other significant variables (at the 10% level).
Nebraska had a positive association with SE and a marginal effect of 0.0454. The
second year of the survey, 2003, also had a positive association with SE but had
only a small marginal effect, increasing SE by 1.45% relative to intercept.

The AE Tobit model identified four significant farm management variables:
size, crop diversity, proportion of cash rented land, and percent of custom
work (Table 5). The regression coefficients had signs that were consistent with
expectations except for the negative sign on custom work . Farm size had the
most important effect on AE, which was positive and grew stronger as farm
size increased. The “large” farms had the greatest marginal effect indicating that
“large” farms increased AE by 0.180 (ceteris paribus) relative to “very small”
farms (Table 6). The marginal effect of the “medium”farms was somewhat lower
with a value of 0.078, and the “small” farms had a modest effect of 0.044. The
positive association between farm size and AE could be explained by the greater
flexibility in input purchasing that larger farms can exploit compared with the
more constrained input choices available to smaller farms. This would include
lack of volume purchasing and less time that can be devoted in searching for
minimum pricing. Custom work had the second most important effect with a
marginal effect of −0.1267, indicating that a 1% increase in custom hired labor
decreased AE by 0.001267. The negative association with AE was unexpected
because custom work is typically priced competitively and often lower than
owner-operator costs. Renting land had a positive association with AE suggesting
that cash rental rates and associated operating costs on rented land did not limit
farms’ ability to minimize production costs. Its marginal effect of 0.0725 was
modest: a 1% increase in rented land would increase AE by less than 0.1%.
Similarly, diversity had a positive association with AE but would have only a
minimal effect. Farms in the “medium wheat %” category had a marginal effect
of 0.0342 relative to the “high wheat %” farms that were contained in the
intercept term. The “low wheat %” farms did not have any significant effect
on AE.
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The significant farmmanagement variables found in the EE model were nearly
the same as those in the TE and AE models: size, diversity, and rented land. The
most important variable was farm size, which had a positive association with
EE. The “large” farms had the largest marginal effect, which increased EE by
0.352 (ceteris paribus) relative to the “very small” farms (Table 6). The marginal
effect of the “medium” farms was somewhat lower with a value of 0.133, and
the “small” farms had a modest effect of 0.041. The Tobit model for EE implies,
as did the TE model, that a critical level of annual revenue for farms is $250,000.
Above this point, larger farm sizes enabled producers to generate greater levels
of TE compared with smaller farms that ranged as high as 0.352. Crop diversity
had a negative association with EE, which was second in effect next to farm size.
According to the marginal effects analysis, the “low wheat %” category had the
greatest marginal effect, reducing EE by 0.0547 compared with the “high wheat
%” farms (Table 6). The “medium wheat %” category had a more modest effect
on EEwith amarginal effect of−0.0230. Splitting acreage into two ormore crops
could have resulted in too much intrafarm competition for inputs and resources
that lowered EE. Renting land had a positive association with EE, but its effect
on EE was much less important compared with either size or diversity. With a
marginal effect of 0.0995, a 1% increase in cash rented land would increase EE
by less than 0.1%. As with TE and AE, model results imply that cash renting
land allowed managers to utilize existing equipment over a larger production
base, increasing EE through pecuniary benefits. Custom hired labor was the only
variable that was significant in the TE and AE models but not in the EE model.
One explanation could be that the cost of custom hired operations is somewhat
higher than the cost of performing them using farm-owned equipment and labor.
Custom hire labor’s positive effect on TE would thus have been cancelled out by
its negative effect on AE.

Although previous studies have often found a significant effect of producer
characteristics on efficiency measures (e.g., age, education, family tenure, off-
farm income, and Internet use), none of these variables were found to have
significantly explained any of the efficiency measures except for education’s
significant effect (at the 10% level) on TE (Table 5).

4.2. Summary and Discussion

Farm size was found to be the most important factor explaining all types of
efficiency considered in this article. The greatest effect of farm size was on EE,
where “large” farms had an average score of 0.60 compared with the much lower
values for the “very small” (0.30), “small” (0.31), and “medium” (0.36) farms
(Table 3). The positive effect of farm size on TE is consistent with that reported
byMugera and Langemeier (2011), Paul et al. (2004), andWeersink, Turvey, and
Godah (1990) who found that large farms were more technically efficient than
farms in smaller-sized categories.
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Figure 3. Western Great Plains Average Cost

Our analysis did not identify any factor that would suggest increasing farm
size would, on its own merits, increase efficiency of the smaller farms. The results
suggest, moreover, that the “very small, “small,” and “medium” farms operated
at or very near their optimal level of scale and had higher SE scores than the
“large” farms (Table 6). Farm size had, generally speaking, a negative effect on
SE. Tobit model results indicate that SE increased significantly between “very
small” and “small” farms, followed by significant declines as size increased to
“medium” and then “large” farms (Table 5). The “large” farm size variable had
a significant and negative effect on SE, indicating that “large” farms had the
lowest SE (Table 5). The “small” farms had the highest SE score with an average
value of 0.97,which was substantially higher (36.6%) than the large farms’ score
of 0.71 (Table 3).

The results hence indicate that the smaller and medium farms are not
inefficient because they are too small; rather, nearly all their inefficiency is
explained by factors that can be addressed without any need to expand operating
size. Farms in the “very small” and “small” categories are noticeably distant
from the efficient cost frontier compared with the “medium” and “large” farms
(Figure 3). According to Koopmans’s analysis, the smaller farms should be able
to move closer to the efficient cost frontier primarily through more efficient
application of production inputs including fertilizer, chemicals, and seeds. The
potential reduction in fertilizer expenditure was found to be the highest, $28,000
per farm, corresponding to a 67% cost savings (Table 7). Given the average
farm size of 1,381 acres, fertilizer savings would equate to $20.20 per acre.
Seeds and chemicals, if applied efficiently, would save a combined $34,000 per
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Table 7.Average Reduction of Inputsa for Achieving the Highest Technical Efficiency (TEVRS)
for Inefficient Farms ($/producer)

Percent of Each
Average Input Slack Radial Total Input Reduction

Input Used Reduction Reduction Reduction (%)

Machinery 34,323 2,170 11,169 13,340 39
Seeds 16,960 1,984 5,748 7,732 46
Fertilizer 41,575 12,712 15,183 27,895 67
Chemicals 16,769 3,927 5,813 9,740 58
Labor 5,439 372 1,888 2,260 42
Miscellaneous 31,719 2,135 10,386 12,521 39
Land 57,199 5,782 20,230 26,012 45

Total 203,985 29,084 70,417 99,500 49

a Average reduction of inputs to achieve the highest technical efficiency under variable returns to scale
(TEVRS) was based on average revenue $219,473 with 1,955 acres cropped.
Note: The number of farms is on average 124 out of 141 farms that were technically inefficient in 2002–
2005.

year, corresponding to 46% and 58% reductions in seed and chemical costs,
respectively (Table 7). The combined savings on fertilizer, chemicals, and seeds
would total $44.82 per acre. Although machinery has been found to be a major
source of inefficiency for smaller farms, reducing all the inefficiency in machinery
costs would only result in a savings of $13,340. This corresponds to a 39%
reduction in machinery costs and an overall cost savings of 16.8%.Much greater
efficiency losses are associated with the production inputs that would save a
combined 36.9% of total production costs. For the smaller farms, the results are
encouraging because these cost savings can be achieved without having to expand
operating size or make significant investments in machinery or other fixed costs.

Consistent with our results, previous studies have found that modest to large
farms were relatively more technically and/or economically efficient than smaller
farms, including Illinois grain farmers, California fruit and vegetable producers,
California dairies, and U.S. corn producers (Featherstone, Langemeier, and Ismet,
1997; Garcia, Sonka, and Yoo, 1982; Hall and LeVeen, 1978; Matulich, 1978;
Mugera and Langemeier, 2011; Paul et al., 2004; Weersink, Turvey, and Godah,
1990). Much of this efficiency gain can be attributed to pecuniary economies
of scale. Larger farms spread fixed costs of farm machinery over more acres
than their smaller counterparts, reducing unit fixed costs; have greater access to
financial capital; and are better poised to harbor risk. Machinery has enabled
larger farms with a comparative advantage in per acre production costs and
over time accumulation of expanded land holdings, notably among U.S. corn
producers (Paul et al., 2004). Household labor also tends to be better used with
greater demand and fewer, shorter periods of slack labor. Likewise, our finding
that small farms are more scale efficient than larger farms is similar to previous
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studies. Byrnes et al. (1987) found that small Illinois grain farms were more scale
efficient than large Illinois grain farms. In a sample of Kansas farms, Mugera
and Langemeier (2011) also found that small farms were more scale efficient
than large-sized farms.

Renting land had a positive effect on all of the efficiency measures. Our
modeling results imply that renting land may have allowed managers to
utilize existing equipment over a larger production base increasing EE through
pecuniary benefits. Although the overall effect of renting land was positive in our
study, Giannakas, Schoney, and Tzouvelekas (2001) identified short-term lease
agreements and subsequent lack of incentives to maintain adequate agronomic
conditions as having a negative effect on TE. Land tenure agreements, because
they tend to be of short duration, can have a negative effect on efficiency by
reducing incentives to adequately maintain agronomic conditions (Giannakas,
Schoney, and Tzouvelekas 2001). Results from the WGP suggest that the positive
aspects of having a larger land base to earn income and acquire a larger
machinery complement outweigh any effect of land tenure arrangements.

Custom work had a positive effect on TE indicating it has been effective in
freeing up labor to perform other operations. Its negative effect on AE, however,
suggests that the costs of custom hired operations are higher than the costs of
performing them using farm-owned equipment and labor. Although producers
were able to improve input efficiency, there was not an overall cost savings as
custom work did not have a significant effect on EE. It is also possible that
managers who rely on custom work are more likely to be part-time farmers and
have off-farm employment and less experience, time, and ability to allocate inputs
and are less efficient than full-time managers.

5. Concluding Remarks

This article estimated the TE and EE of wheat farms in the WGP, one of the
most important wheat producing regions in the United States. Our results found
that wheat producers in theWGPwere best able to size their farms to the optimal
scale level. SE averaged 0.90, one of the highest scores reported in the agriculture
production literature. Small farms were the most scale efficient reducing concerns
that the agriculture sector would further concentrate and push out the smaller
farms. The smaller-sized farms are operating very close to or at their optimal level
of scale with nearly all farms producing under either IRS or CRS. The smaller
farms should be able to increase efficiency at their current size by making better
input choices. Larger farms should be encouraged to scale back their operating
size to improve efficiency.

Producers were modestly efficient in their application of production inputs
and resource use. TE averaged 0.65, which is in general correspondence with
the performance of wheat, corn, and dairy producers found in prior studies. This
reduces concerns that the less profitable wheat producing areas such as the WGP,
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where less new technology has been introduced,would struggle to maintain input
use efficiency with other producing regions.

Results suggest concerns, however, over the ability of farms in the WGP
to optimally choose inputs in response to price signals. EE averaged 0.34,
substantially lower than TE and SE. Such inefficient use of resources had severe
corresponding economic consequences. Our results found that if inputs and
resources were efficiently applied, then production costs would be reduced by an
average of $99,500 per year. Using Koopmans’s efficiency modeling approach,
fertilizer expenditures were identified as the primary source of inefficiency,
followed by expenditures on chemicals and seeds. Policymakers and stakeholders
should consider promoting new technology such as precision agriculture that
can improve input use efficiency. Sensor-based technology can target fertilizer
applications to site-specific locations and adjust fertilizer rates in real time based
on response to plant growth. Based on the inefficient use of fertilizer, it is likely
that farms are using field-level fertilizer application rates that are inadequate
to account for the spatial variability in agronomic conditions and plant growth
characteristics.

The increased opportunities to diversify crops over the past couple of decades
have a significant and negative effect on TE and EE. Our results suggest that the
introduction of crops such as sorghum and millet into the wheat rotation have
not had a complementary effect on either production or economic outcomes.
Further research will be needed to investigate whether the alternative crops
have had unintended agronomic consequences such as promoting the spread
of foliar diseases and increased weed and insect populations. Diversified farms
are likely to be more innovative and entrepreneurial than the farms in the
more traditional wheat monoculture, with the former more adept at planning
and strategy and the later having more experience managing the technical
aspects of wheat production. Producers remaining in the wheat monoculture
likely have much more experience in growing wheat compared with the
more diversified farms that have less familiarity growing the alternative crops.
Although our data were not extensive enough to determine if there has been
a learning curve associated with the alternative crops, future research using
a follow-up survey could be conducted to investigate the long-term effect of
diversification on efficiency and whether the efficiency of alternative crops can be
improved.

Renting land had an overall positive effect on efficiency. Although SE was
negatively influenced by renting land, its influence was compensated by the
larger combined gains of TE, AE, and EE. Farms rent land to increase their
scale of operation, seeking the pecuniary benefits from a larger farm size and
corresponding efficiency gains. It appears that farm managers have largely been
successful in making more efficient use of their resources and have obtained the
required knowledge and experience to manage and plan larger farm sizes. Given
the increase in EE, model results suggest that cash rental rates are competitively
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priced. There appears to be a trend, however, that renting enables farms to
expand too rapidly resulting in scale inefficiency. Policy makers and stakeholders
should thus encourage the use of renting land, while assisting producers in
identifying their optimal farm size to improve SE.

Custom work had mixed effects on efficiency. TE was enhanced by custom
work, suggesting that custom work was effectively performed in a timely manner
without any significant loss in yield. It is likely that custom work enhanced
TE by reducing labor bottlenecks and other production constraints, granting
producers additional flexibility in other operations, particularly on diverse crop
farms. It is also possible that custom work was performed in a more effective
manner, perhaps through improved technology used by custom operators or
field operations that were completed faster. However, the lack of a positive
relationship with EE shows custom work was likely more expensive than owner-
operator costs. Policy makers and researchers should consider conducting a
survey of custom operator costs to identify how competitive the custom operators
are in the WGP.

Future research is needed to more thoroughly investigate a couple of results
that were difficult to explain. One was the significant differences in efficiency
scores among the states. Researchers should consider conducting additional field
studies in these states to better explain the variability. This might include a
more detailed look at the inputs and technology used in each of the states
as well as including an expanded scope of agricultural enterprises such as
livestock. Climate, soils, and other agronomic factors could provide additional
explanatory power. A second area could address identifying additional farm
manager attributes to explain their performance, variables that were not present
in our study because of data limitations. Only one farm manager characteristic,
education, was found to be significant in the Tobit model. It is likely that the
farm managers in the survey had similar backgrounds and not enough diversity
to explain efficiency measures. Future researchers could include a farm survey
with an expanded range of farm manager characteristics. For example, previous
studies have found variables such as debt-asset ratios, capital borrowing,
and access to extension information services as significant determinants of
efficiency.
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Appendix

Table A1. Comparison of Findings from U.S. Department of Agriculture (USDA) Estimates
of Wheat Cost and Returns for the USDA Prairie Gateway Region, 2002–2005, with Average
Findings from the Study Survey for States Included in Both Estimates

USDA COP Estimatesa Surveyb

Item Units 2002 2003 2004 2005 2002 2003 2004 2005

Revenue from
wheat grain

$/acre 65.49 100.23 101.32 98.27 54.64 104.73 88.48 94.96

Revenue from
straw/grazing

$/acre 2.78 2.54 6.72 7.33 11.37 11.78 10.95 11.17

Total, gross
revenue from
production

$/acre 68.27 102.77 108.04 105.60 66.01 116.51 99.43 106.13

Seed cost $/acre 4.53 5.25 5.42 5.70 7.75 7.79 7.81 7.78
Fertilizer cost $/acre 14.18 18.54 19.84 23.24 18.41 21.55 25.20 24.59
Chemicals cost $/acre 3.15 3.16 3.75 3.81 5.22 4.75 5.73 5.96
Custom

operations
$/acre 6.61 8.05 6.24 6.29 5.74 7.51 7.20 7.85

Hired labor
cost

$/acre 2.06 2.15 2.27 2.34 2.70 3.03 2.94 2.66

Wheat yield bu./acre 22.2 35.2 29.2 31.7 20.3 34.0 31.2 32.7
Wheat acres acres 347 347 443 443 1,314 1,447 1,298 1,463

aEstimates produced by the USDA cost of production (COP) surveys. The Prairie Gateway Region includes
parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, and Texas.
bEstimates produced by the current study.
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