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This work focuses on the dynamics of a train of solid particles, separated by a distance
L, flowing near a deformable interface formed by two co-flowing immiscible fluids in a
microchannel of height h. Our study includes a systematic analysis of the influence of the
governing parameters (fluids viscosity ratio, interface and particle positions, Reynolds Re
and capillary Ca numbers and the inter-particle distance L) on the hydrodynamic force f
exerted on the particle. In the pure inertial regime with non-deformable interfaces Ca = 0,
the particle is driven towards the wall (interface) when the particle is close to the interface
(wall). Up to three neutral equilibrium positions f = 0, two of them stable, are found in
this limit. The contrary is obtained in the pure capillary regime Re = 0. In this limit,
we also carried out an asymptotic analysis in the distinguished limits of very large and
very small surface tension. In the latter case, the amplitude of the interface deformation
induced by the particle is large, comparable to its diameter, but its influence is limited to
a small region upstream and downstream of the particle. In the limit of very large surface
tension, the amplitude of the interface deformation is small but the presence of the particle
modifies the shape of the interface in a region of length 2λ, much larger than the particle
diameter d. The parameter λ, introduces an additional characteristic length that determines
the asymptotic behaviour of the flow properties in the limit of large surface tension.

Key words: microfluidics, particle/fluid flow

1. Introduction

Microfluidic lab-on-a-chip devices allow users to sample and sort cells, engineer flow
patterns or fabricate metamaterials (Schaaf, Rühle & Stark 2019). One phenomenon that
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has attracted considerable attention over the past decades is the utilisation of fluid–fluid
interfaces in many engineering and microfluidics applications, including encapsulation,
coating and dissolution processes (Magnaudet & Mercier 2020), micro-reactions
(Rivero-Rodriguez & Scheid 2018), flow batteries (Ruiz-Martín et al. 2022), fabrication of
complex materials (Isa, Samudrala & Dufresne 2014) or biotechnology and biomedicine
(Hütten et al. 2004). In addition, the development of complex fabrication techniques often
implies the utilisation of particles embedded in one or both of the fluids that eventually
cross the liquid–liquid interface, with encapsulation and coating being some of the most
relevant applications (Kawano et al. 1996; Pitois, Moucheront & Weill 1999; Tsai et al.
2011; Sinha et al. 2013; Hadikhani et al. 2018). In these situations, the couple effects
between the hydrodynamic drag, inertial effects, interface deformation and shear or strain
near the walls of the channels drive the movement of a particle in a non-quiescent flow
towards or away of the fluid–fluid interface at low Reynolds numbers (Magnaudet &
Mercier 2020).

The control of the dynamics of these particles near fluid interfaces or elastic membranes
enables, for instance, the preparation of high-quality crystals, plays an important role on
the fabrication of foams and emulsions (Bresme & Oettel 2007) and enables the study of
swimmers and particles near elastic interfaces (Rallabandi et al. 2018). In the latter case,
the compliance of the membrane couples the hydrodynamic field with the hydroelastic
forces of the membrane, breaking symmetry and inducing repulsive forces that separate the
particle from the membrane with a velocity that changes with the resistance to bending and
shearing of the membrane (Daddi-Moussa-Ider, Lisicki & Gekle 2017; Rallabandi et al.
2018).

The problem of particles moving near fluid–fluid interfaces has been analysed
extensively in the limit in which inertial forces are considerably larger than capillary and
viscous forces. The paper by Magnaudet & Mercier (2020) offers an excellent review of
the recent work on the matter when the body (bubble, droplet or rigid body) impinges
perpendicularly into a free surface. A closely related problem with more relevance in other
applications, such as liquid filters (Sinha et al. 2013) or conformal coating (Moon et al.
2014), is that of particles moving parallel to a fluid–fluid interface inside a channel that,
eventually, may cross the interface to emerge on the other phase. Available experiments
and simulations have focused on bodies moving in a quiescent fluid, but very little is known
about the interaction between the tangential displacement of the particle and fluid–fluid
interfaces or elastic membranes. Experiments with particles travelling along an air–water
interface indicated that the drag coefficient depends on the deformation of the interface
(Petkov et al. 1995). Numerically, the work by Loudet et al. (2020) simulated a particle
embedded in a fluid–fluid interface deformed by the weight of the particle. Their numerical
results, using a non-realistic uniform velocity profile at both the inlet and outlet sections
of the computational domain, showed that large drag forces are not correlated with large
interfacial distortions.

The presence of the interface affects the velocity and pressure fields even in the limit
of zero Reynolds number. When two unbounded immiscible fluids are considered (Lee,
Chadwick & Leal 1979; Bławzdziewicz, Ekiel-Jeżewska & Wajnryb 2010), the problem
can be tackled using asymptotic methods in the limit of very large surface tension, to show
that the drag force on the particle is larger than in the case of an single infinite fluid.

Taking advantage of the linearity of the equations in the limit of zero Reynolds number,
Berdan & Leal (1982) obtained the shape of the interface considering the effect of gravity
in the limit of small capillary number Ca = μ2ū/γ , with μ2 the viscosity of the fluid in
which the sphere is embedded, ū the characteristic velocity and γ the surface tension of the
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Figure 1. Schematics of the flow configuration, including the geometrical and fluid-dynamical relevant
parameters.

fluid–fluid interface. In their semi-analytical calculations they obtained a non-symmetric
interface deformation in which the surface tension allowed very broad deformation
with small curvature. This deformation induced a transverse force that promotes the
migration of the sphere. This migration is similar to that induced by inertial effects when
the Reynolds of the problem is small but non-zero (Segré & Silberberg 1962a,b). A
detailed literature review of the dynamics of particles, drops and bubbles can be found
in Rivero-Rodriguez & Scheid (2018), with some examples of utilisation of these effects
for fascinating applications in medicine, chemistry and engineering given by Zhang et al.
(2016) and Di Carlo (2009).

Motivated by these applications, in this paper we aim to compute the vertical force
exerted on a rigid particle moving with terminal velocity V and angular velocityΩ inside a
two-dimensional channel parallel to a fluid–fluid interface. The present work is organised
as follows. First, the problem under study is formulated in § 2 including the equations
governing the fluid flow and the appropriate boundary conditions. The range of parameters
selected in the computations presented throughout the paper is discussed in this section in
terms of the stability of the interface. Section 3 considers the problem in the pure inertial
regime in which the interface is considered non-deformable. Section 4 tackles the pure
capillary regime Re = 0 considering a deformable interface and studies asymptotically
the limits of very large and very small surface tension.

2. Formulation of the problem

The formulation here presented examines the effect of shear and surface tension on
the dynamics of moving particles in the presence of deformable fluid interfaces. We
considered two immiscible liquids flowing in a channel with height h. The two liquids
form an interface that is located at y = Γ , with subscripts 1 and 2 referring to the lower and
upper fluid, respectively. The total volumetric flow rate of the two liquids is Q = Q1 + Q2
and we assume that both liquids have equal density ρ = ρ1 = ρ2 but different viscosity
μ1 /=μ2.

The experiments by Lee et al. (2010) motivate the configuration of the problem sketched
in figure 1. In our computations, a train of particles of diameter d travels at its terminal
velocity V in the upper fluid forming a periodic flow structure with a single line of
particles, with each particle separated by a distance L from the closest neighbour. The
distance L is constant and will be changed in our simulations to consider the effect reported
by Lee et al. (2010) when the height of the channel was changed. The transverse location
of the particle depends on the intensity of a uniform volumetric force f acting on both
liquids.
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Figure 2. Definition of the normalised position of the (a,b) particle ξ with arbitrary η and (c,d) of the
interface η.

To describe the motion of the particle, we use a reference system attached to a particle
that moves at its terminal velocity V so that the centre of the particle is located at x = xp =
0 and y = yp. To write the problem in non-dimensional form, we choose the channel height
h, the average velocity ū = Q/h and pc = μ2ū/h as the characteristics length, velocity
and pressure to define the non-dimensional variables. The average velocity ū and the
properties of fluid 2 define the Reynolds number of the flow Re = ρQ/μ2 and the capillary
number Ca = μ2Q/γ . Hereafter, all new variables refer to non-dimensional variables and
the previously introduced refer to their non-dimensional counterparts scaled with their
characteristic values defined previously. Introducing the non-dimensional variables, we
obtain the non-dimensional continuity and momentum equations, yielding

∇ · vi = 0, (2.1)

Re vi · ∇vi = ∇ · T̂ i, (2.2)

where T̂ i = −p̂iI + μ(∇vi + ∇vT
i ) and with p̂i = pi − f · (x − xp) being the reduced

pressure. The uniform volumetric force f is assumed to have only non-zero vertical
component f = f ey. The interface separating both fluids is described by the function
Γ = Γ (x) and defines each fluid domain x ∈ V , as indicated in figure 1. Consequently
with this definition, the viscosity ratio in (2.2) is μ = μ1/μ2 if y < Γ and μ = 1 if y > Γ .

To identify the position of both the particle and the interface, we define the normalised
variable ξ = [yp − (ΓL/2 + d/2)]/[1 − (d + ΓL/2)] and η = ΓL/2/(1 − d), with ΓL/2 =
Γ (L/2). The variable ξ ranges between 0 � ξ � 1 and the two extreme values of ξ
corresponds to the particle touching the interface yp = ΓL/2 + d/2 when ξ = 0 or the
channel wall yp = 1 − d/2 when ξ = 1, respectively (see figure 2). The normalised
position of the interface 0 � η � 1 defines the extreme cases in which only fluid 2 runs
through the channel η = 0 and the case in which the particle is squeezed between the
interface and the upper wall η = 1, as illustrated in figure 2.

2.1. Boundary conditions
The system of equations given above in (2.1) and (2.2) is complemented with appropriate
boundary conditions. In the reference frame attached to the particle, the velocity of the
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Dynamics of a train of solid particles

liquids at the walls y = 0 and y = 1 is written as vi = −Vex. Considering that the particle
centre is located at x = xp = 0, we impose periodicity conditions so that

v|L/2 = v|−L/2 , ∂xv|L/2 = ∂xv|−L/2 , p̂
∣∣
L/2 = p̂

∣∣−L/2 −	p. (2.3a–c)

The pressure drop 	p and interface position are obtained by imposing the flow rates as
total flow rate and flow ratios∫ Γ

0
(u1 + V) dy +

∫ 1

Γ

(u2 + V) dy = 1, (2.4)

∫ Γ

0
(u1 + V) dy = Q1

Q2

∫ 1

Γ

(u2 + V) dy, (2.5)

at any arbitrary section, for example x = L/2. The terminal velocity V is determined by
imposing zero force on the particle in x direction∫

Σp

ex · T̂ 2 · np = 0 (2.6)

with np a unit-length vector normal to the surface of the particle Σp pointing towards the
fluid. The non-slip and zero net torque conditions are applied to determine the motion of
the rigid particles,

v2(x) = Ω × (x − xp) at Σp (2.7)

0 =
∫
Σp

np ·
{

T̂ 2 × (x − xp)
}

· ez dΣ, (2.8)

with Ω = Ωez and ez = ex × ey. The implicit equation q(x, y, t) = Γ (x, t)− y = 0
describes the location of the interface. Because q = 0 on the interface at all times, the
material derivative must satisfy

v2 · n = 0 at Γ, (2.9)

with n = ∇q/|∇q| = (Γx,−1)/(1 + Γ 2
x )

1/2 the unit-length vector normal to the surface
Γ pointing from fluid 2 towards fluid 1. At the fluid–fluid interface we impose the
continuity of velocities and the jump condition on the stress tensor,

[v] = 0, n · [T̂ ] = Ca−1(−n∇ · n), (2.10a,b)

with Ca = μ2ū/γ the capillary number, γ the surface tension and the brackets indicating
the jump of the variable included between them [L] = L2 − L1. To compute the force
per unit volume f necessary to keep the particle at a given vertical position ξ , we impose
equilibrium of vertical forces on the particle, yielding∫

Σp

ey · T̂ 2 · np dΣ − fVp = 0, (2.11)

where Vp is the volume of the particle. In previous expression, the first term stands for the
hydrodynamic force exerted by the fluid on the particle. The second is the external body
force and represents, for example, buoyancy in the presence of a gravity field.

Once the problem is formulated in non-dimensional form, and taking into account that
the density ratio is considered unity ρ2/ρ1 = 1 and the size of the particle is set constant
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and equal to d = 0.2, it is possible to identify the parametric dependence of the variables
of the problem ψ = (p̂i, vi, Γ,V,Ω, f ,	p) by writing the generic expression

ψ = ψ(μ1/μ2,Re,Ca, η, ξ,L) (2.12)

in which the functional dependence will be obtained by numerically integrating the system
of equations detailed previously in (2.1)–(2.11). After imposing the parameters of the
problem, the flow variables ψ are calculated simultaneously using a Newton’s iterative
method that continues until the error is below 10−6.

The inter-particle distance L is a key parameter that will determine the behaviour of
the interface and the force that the fluid exerts on the particle f . When this distance L
is sufficiently long, the interaction between particles is negligible and the one-directional
classical solution for the velocity field is recovered, yielding vi = 0 and

u1 = 6
A

Q1
[
Cy + y(1 − y)

] − V, y � ΓL/2 (2.13)

u2 = 6
A
μ1

μ2
Q1

[
C( y − 1)+ y(1 − y)

] − V, y � ΓL/2 (2.14)

with

C = ΓL/2(1 − ΓL/2)(μ1/μ2 − 1)
(μ1/μ2)(1 − ΓL/2)+ ΓL/2

and A = 3Γ 2
L/2(1 + C)− 2Γ 3

L/2. (2.15a,b)

From this expression it is straightforward to check that once μ1/μ2 and ΓL/2 = η(1 − d)
are chosen, there is only a value of Q1 that satisfies mass conservation and for which
the flow ratio Q1/Q2 = Q1/(1 − Q1) can be easily obtained using (2.5). The resulting
pressure gradient can then be calculated as pl = −dp/dx = 12Q1(μ1/μ2)/A.

The value of L above which particles do not feel the effect of their neighbours is
unknown a priori and depends on the rest of parameters defining the flow. As we show
in the following, L = 40 is generally enough in the limit Ca−1 � 1 but inter-particle
distances as long as L = 200 might be needed in the limit of very high surface tension
Ca−1 � 1.

2.2. Numerical method and stability of the interface
The fluid–fluid interface Γ is tracked using the arbitrary Lagrangian–Eulerian (ALE)
technique (Donea et al. 2004), which enables us to impose the kinematic boundary
condition (2.9) along the interface by prescribing the deformation of the mesh. An iterative
Newton method is used to solve the algebraic system of equations that continues until
the weighted Euclidean norm of the error vector falls below 5 × 10−4. The steady-state
computation is initiated with the interface located at η and the particle at the prescribed
value ξ .

A finite-element method with an unstructured triangular mesh elements and
Taylor–Hood basis functions were considered to discretise the system of equations. The
convergence of the mesh has been thoroughly checked by monitoring the calculated body
force f using different element sizes near (|x| � L/4) and far (|x| � L/4) from the particle.
Of the order of 100 elements uniformly distributed along the solid particle surface were
sufficient for the results to be independent of this parameter. We clustered a maximum
number of elements near the particle, with a minimum element size 	ϕ/h = 1 × 10−6

that was slowly increased to reach a maximum element size 	ϕ/h = 0.075 far from the
particle. In addition, the mesh was symmetrical with respect to x = 0 and the skewness
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of the mesh was always around 0.93 to ensure a good mesh quality. The steady results
were verified by comparing the numerical solution with the theoretical unidirectional flow
solution given above in (2.13) and (2.14) and with the results given by Rivero-Rodriguez,
Perez-Saborid & Scheid (2018).

The numerical method has been extensively verified by Ruiz-Martín et al. (2022)
comparing our computational results with the asymptotic stability predictions given by
Yiantsios & Higgins (1988) in the limit of quasi one-directional flow Re d/L � 1 in
the absence of particle. The largest Reynolds number considered in this study satisfies
Re � Rec � 27, where Rec represents the critical Reynolds above which we find shear-flow
instabilities in the less-viscous fluid at x = 0 (Yiantsios & Higgins 1988). Below the
above-mentioned Reynolds number, the discontinuity in the shear rate resulting from
the viscosity jump at the interface initiates Yih’s instability (Yih 1967). The absolute
or convective nature of the interfacial stability, of relevance in order to anticipate the
fluid dynamical behaviour of the interface, depends strongly on the viscosity ratio
μ1/μ2 and capillary number Ca. The numerical analysis presented in the following
sections has chosen only the combinations of parameters that make the interface stable to
long-wavelength disturbances, according to the stability analysis carried out by Yiantsios
& Higgins (1988) and Blyth & Pozrikidis (2004). Therefore, the viscosity ratio μ1/μ2 and
position of the interface η of the results showed in the following sections are always in the
region of stability of the interface. According to Yiantsios & Higgins (1988), the size of
the stability region widens as Ca−1 increases and the unstable (U) region corresponding
to short-wavelength perturbations becomes narrower. The interface is, therefore, unstable
only to long-wavelength instabilities that, in the asymptotic limit Ca−1 � 1, cannot
develop in a channel with finite length.

3. Effect of inertia considering non-deformable fluid–fluid interface Ca = 0

In this section we study the vertical force f = f ey needed to hold the particle at a
given position ξ within the channel, considering that the interface separating the fluids
is non-deformable Ca = 0. The computational results are used to depict the evolution of
the volumetric force in the η–ξ parametric space for μ1/μ2 > 1 and μ1/μ2 < 1.

3.1. The linear regime Re � 1
In pure creeping flows Re = 0, lateral migration cannot occur at all and, consequently,
transverse forces are a direct consequence of the inertial effects that remain non-zero,
though small, for small Reynolds numbers Re � 1. In this limit, the flow enters in the
linear inertial regime in which all variables can be expanded in powers of the Reynolds
number as ψ = ψ0 + Reψ1 with ψ = (p̂i, vi,V,Ω, f ,	p). The resulting system of
equations for each of the two fluids i = 1, 2 considered can be written, up to the first
order, as

∇ · vi,0 = 0 and 0 = ∇ · T̂ i,0, (3.1a,b)

∇ · vi,1 = 0 and vi,0 · ∇vi,0 = ∇ · T̂ i,1 (3.2a,b)

with boundary conditions at x = ±L/2 and at the interface given above in (2.3a–c) and
(2.10a,b) enforced at every order of the expansion. To compute the terms of the expansion
of the terminal and rotational velocities, we impose equilibrium in x direction (2.6),
non-slip (2.7) and the zero torque condition (2.8) at the particle at every order of the
solution.
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Figure 3. Effect of the position of the particle ξ on (a) the terminal velocity V and (b) the rotational velocity
Ω for different values of the viscosity ratio μ1/μ2 in the linear regime with η = 0.50.

The zeroth-order solution of the terminal and rotational velocities are plotted in figure 3
in terms of the particle positions ξ for an interface location η = 0.50 and viscosity ratios
between μ1/μ2 = 100 and μ1/μ2 = 0.01. The first-order V1 and Ω1 are identically zero.
As the viscosity ratio increases, the lower fluid acts as a passive surface u = v = 0 whereas
the velocity of fluid 2 attains a single-phase Poiseuille profile, with the maximum velocity
located at the centre of the channel. In this case, the largest terminal velocity is achieved
when the particle is mid-way between the interface and the wall ξ = 0.50. The terminal
velocity V reduces when the particle is near the interface ξ = 0 or near the wall ξ = 1. The
location of the particle at which the maximum terminal velocity is found shifts towards the
interface ξ → 0 as the viscosity ratio decreases μ1/μ2 � 1, with maximum values of V
significantly smaller than in the case μ1/μ2 > 1.

Negative (positive) rotational velocities Ω are found near the interface (wall) as a
consequence of the velocity gradients induced between the particle and the interface (wall)
when μ1/μ2 = 100. A change in the sign of the velocity is observed at ξ = 0.5 as the
particle approaches the upper wall. In contrast, when the particle is in the more-viscous
fluid μ1/μ2 < 1, the rotational velocity keeps a constant direction Ω > 0 regardless of
its position. As can be anticipated by looking at the velocity profiles included in (2.13)
and (2.14), both the velocity and the transverse velocity gradients become small around
the particle when μ1/μ2 � 1, creating a weak torque that rotates the particle with small
angular velocity.

From the numerical solution, we obtain that the first-order correction of the force is
zero f0 = 0, recovering the solution anticipated by the classical stokes law Re = 0. The
evolution of the first-order correction computed force f /Re = f1 with the eccentricity ξ
in the limit Re � 1 is illustrated in figure 4 for μ1/μ2 = 100 and μ1/μ2 = 0.01. Large
positive (negative) values of the vertical force are obtained when the particle is close to
the interface (wall). When the particle is immersed in the less-viscous fluid μ1/μ2 � 3,
we find two transition points df /dξ = 0 and multiple neutral equilibrium positions f = 0,
as shown in figure 4(a). The transitions points define the range of stable particle locations
df /dξ < 0, indicated in the figure 4 with solid lines, in which the position of the particle
would remain unaltered to the effect of short and small perturbations on the applied force.
In contrast, small perturbations on the value of f would induce appreciable changes on the
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Figure 4. Evolution of the force f /Re = f1 with the eccentricity ξ in the asymptotic linear limit Re � 1 for
different values of η (indicated in the figure) and (a) μ1/μ2 = 100 and (b) μ1/μ2 = 0.01. The markers indicate
the particle position ξ at which the stability of the solution changes.

position of a particle initially located outside the stable (S) region, depicted in figure 4
with dashed lines.

The multiplicity of neutral equilibrium positions f = 0 disappears for μ1/μ2 > 1 when
the interface approaches the upper wall η > 0.90. In these cases, the particle is stable in all
the transverse positions except for a narrow region close to the interface ξ < 0.05. When
the fluid containing the particle is the most-viscous fluid μ1/μ2 < 1 and the interface is
close to the upper wall, all particle positions become stable and the evolution of f with
the particle position becomes monotonic. In between, the particle is pushed away f > 0
the interface when ξ is approximately smaller than ξ < 0.6. In contrast, the particle is
pushed towards ( f < 0) the interface for higher values of ξ . The multiplicity of vertical
positions at which the particle is at equilibrium f = 0 disappears. In the particular case
μ1/μ2 = 0.01 shown in figure 4(b), a unique and stable neutral equilibrium position
f = 0 is found independently of the position of the interface η. The multiplicity of
equilibrium positions disappears approximately when μ1/μ2 = 3. For lower values of
the viscosity ratio the remaining unstable positions would presumably be in the lower
fluid.

The contour maps included in figure 5 summarised the dependency of the computed
force f /Re with the position of the interface and the location of the particle. The solid
curves identify the neutral equilibrium position f /Re = 0, whereas dashed curves depict
the locus ∂f /∂ξ = 0 at which we identify a transition in the stability behaviour of the
particle location. The colour map indicates the value of the force and identify whether
the position of the particle remains stable or not. In the latter case, we expect the particle
to migrate away from the equilibrium position after a small perturbation in the applied
force. This figure shows a small gradient on the value of the force when the position of
the interface η changes. The value of f shows a much greater dependence on the relative
location of the particle with respect to the interface. Small changes on the value of ξ affect
the stability behaviour of the particle even when the absolute value of f does not change
significantly.
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Figure 5. Evolution of the scaled force f /Re with η and ξ for (a) μ1/μ2 = 100 and (b) μ1/μ2 = 0.01. Solid
black lines represent equilibrium positions (f /Re = 0) and dashed black lines indicate stability transition
(∂ξ f /Re = 0).

3.2. Departures from the linear regime
To determine the critical Reynolds number Re∗ above which nonlinear effects are
significant, we compare in figure 6 the computed force obtained assuming the linear regime
(black solid line) with the numerical solution obtained integrating the whole problem
given in (2.1) and (2.2) for small Re with μ1/μ2 = (100, 0.01). When the particle is
embedded in the less-viscous fluid μ1/μ2 = 100, the linear regime is valid up to Reynolds
Re ∼ 64 similar to that obtained in a single-phase channel (Rivero-Rodriguez & Scheid
2018). In contrast, nonlinear effects become evident for Re � 0.05 when the particle is
travelling in the more-viscous fluid μ1/μ2 < 1. In this case, the maximum velocity of
the fluid containing the particle becomes very small, as anticipated by the unidirectional
velocity profile included in (2.13) and (2.14). Therefore, most of the volumetric flux
going through the channel is due to fluid 1, what increases the relative importance of
the nonlinear convective terms in (2.2).

The influence of the Reynolds number Re on the equilibrium position f /Re = 0 (solid
lines) and on the transition positions ∂ξ f /Re = 0 (dashed lines) is shown in figure 7.
This figure identifies the combination of parameters in which nonlinear effects are more
likely to emerge in the η–ξ parametric space. In the case μ1/μ2 > 1, nonlinear effects
surface when the interface is close to the upper wall but can be neglected for almost
every particle position once η < 0.7, at least up to Re = 64. In contrast, when μ1/μ2 < 1,
nonlinearities are evident for Reynolds number as small as Re = 0.05 when the interface
is, approximately, between 0.2 < η < 0.8 independently of the particle location. It is only
when the interface is close to either the lower or upper walls when nonlinear effects are
negligible for the range of Reynolds number computed.

4. Effect of capillarity in the Stokes regime Re = 0

Assuming negligible inertial effects Re = 0, this section considers the effect of finite
values of the capillary number on shape of the interface and the associated transverse
forces induced on the particle as a consequence of the interface deformation. The
first-order solution for the interface deformation induced by a solitary sphere moving
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Figure 6. Computed vertical force f /Re in terms of the particle position in the linear asymptotic limit Re � 1
(black solid line) and for several Reynolds number Re (indicated in the figure) with η = 0.5 and (a) μ = 100
and (b) μ = 0.01.
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Figure 7. Influence of the Reynolds number Re on the equilibrium position f /Re = 0 (solid curves) and
transition positions ∂ξ f /Re = 0 (dashed curves) for (a) μ1/μ2 = 100 and (b) μ1/μ2 = 0.01.

parallel to the interface was obtained by Berdan & Leal (1982) considering two unbounded
immiscible fluids in the limit of very small deformations Ca−1 � 1. This solution, that
can be written analytically in terms of the Bessel functions, predicted an anti-symmetric
shape for the interface that induced a vertical force on the surface of the sphere. A similar
problem, but considering a swimmer instead of a solid sphere, was studied by Shaik &
Ardekani (2017) also in the limit of small interface deformation. In contrast, the problem
studied in this section considers a train of particles moving in a channel and extends the
calculations to the whole range of capillary numbers 0 � Ca−1 < ∞.

The influence of Ca−1 on the absolute value of the computed transverse force f is
plotted in figure 8. As shown in this figure, the force f reaches a maximum value for
order-unity capillary numbers and reduces in the limits Ca−1 � 1 and Ca−1 � 1, when
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Figure 8. Evolution of the transverse force f with the inverse of the capillary number Ca−1 for (a) μ1/μ2 = 2
and (b) μ1/μ2 = 0.50. Solid lines for repulsive (positive) force f and dashed lines for attractive (negative)
values with respect to the interface. The insets, with both axes in a log–log scale, illustrate the existence of
two well-defined linear regimes. The inter-particle distance and the position of the particle are L = 40 and
ξ = 0.75, respectively.

this figure suggests a relationship between the force and the capillary number in the form
fCa−1 = k1 or f = k3Ca−1, respectively. A sudden change in the slope of the curve is
observed at intermediate, but still large, values of Ca−1. To explore this, we plot in figure 9
the scaled value of the force f /Ca as a function of the inverse of the capillary number
for different values of the distance between particles L. In this figure we clearly identify
three different regimes, defined by the dependence of the force with the capillary number.
As we anticipated previously, at small values of the surface tension Ca−1 � 1, the force
varies linearly with Ca−1 so that f /Ca = k3Ca−2 and becomes independent of the distance
between particles L.

In contrast, for large values of the surface tension, the dependence of the force with Ca
is given by an expression on the form f /Ca = k2Ca−n, with the value of the exponent n
calculated in § 4.3.1. In figure 9 we identify the change of slope mentioned previously with
the value of the capillary number (Ca−1)∗ above which the ratio f /Ca becomes constant.
The critical value (Ca−1)∗ changes with the inter-particle distance and will be calculated in
the following sections. For Ca−1 > (Ca−1)∗, the force changes linearly with the capillary
number f /Ca = k1, where k1 is a constant that remains independent of L.

4.1. The shape of the interface
Figures 9 and 10 show the spatial evolution of the interface deformation g = Γ (x)− ΓL/2
for different capillary numbers. In the limit Ca−1 � 1, the deformation of the interface
is anti-symmetrical with respect to the particle and the amplitude of the deformation
becomes smaller as the surface tension increases. In contrast, in the limit of small surface
tension Ca−1 � 1, the amplitude of the interface deformation is large, of the order of the
radius of the particle, with the interface adopting a nearly symmetric shape.

Amplitude and symmetry of the interface deformation are quantified by calculating
g0 = g|x=0 and gx0 = dg/dx|x=0, with gx0 = 0 and gx0 /= 0 indicating a symmetrical and
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Figure 9. (a) Evolution of the scaled force f /Ca (left axis) and the ratio f /gx0 (right axis) with the inverse
of the capillary number Ca−1 for μ1/μ2 = 0.50, η = 0.50, ξ = 0.75 and several inter-particle distances L
(values indicated in the figure). Black markers indicate the onset of the linear regime at Ca−1 → ∞. On the
right panels, we included the interface profiles calculated for L = 5 for (b) Ca−1 = 10−2, (c) Ca−1 = 101.5 and
(d) Ca−1 = 104. Blue-filled symbols define the value of λ as the longitudinal position at which g = ḡ.

anti-symmetrical interface deformation, respectively. The functions g0 and gx0 are plotted
in figure 11 as a function of the position x and of the capillary number with the particle
at ξ = 0.75 moving in the less- μ1/μ2 = 2 or more-viscous μ1/μ2 = 0.5 fluid. In both
figures, we observed that the solution slowly evolves to achieve gx0 � 1 for extreme values
of the capillary number, either because the amplitude of the deformation is small g � 1
(Ca−1 � 1) or because the interface becomes nearly symmetrical (Ca−1 � 1), even when
the amplitude of the deformation approaches its maximum value. To plot these figures, we
chose the values of μ1/μ2 that maximise the values of η at which the interface remains
stable in the limit of small surface tension (Yiantsios & Higgins 1988).

The magnitude of the computed force f is similar when the capillary number achieves
very large or very small values. To explore the influence of the interface symmetry on the
vertical force we plotted in figure 12 the ratio f /gx0 versus the capillary number. This figure
show that the transverse force is proportional to the symmetry factor gx0 in almost the
whole range of capillary numbers and becomes independent of Ca−1 for extreme values
of the surface tension. The main difference is that f /gx0 is independent of L for small
capillary number but changes with L in the limit Ca−1 � 1, aspect that will be explored
in the following section. To understand the relevance of the symmetry of the interface on
the vertical force, we decomposed the function g in its symmetrical and anti-symmetrical
components g = ga + gs, defined as gs = (g(x)+ g(−x))/2 and ga = (g(x)− g(−x))/2.
Figure 12 depicts the anti-symmetrical component ga of the interface deformation for
Ca−1 = 0.01 and Ca−1 = 104. In both limits, the order of magnitude of ga is similar and
g = ga only in the limit Ca−1 � 1, as can be easily checked by comparing figures 9(d)
and 12(d). In addition, from figure 12(a) we confirm that the ratio f /gx0 becomes constant
at large and small values of Ca, revealing that both the anti-symmetric part of the interface
deformation gx0 and the vertical force f scale identically with Ca. On the other hand, the
symmetric part of the deformation varies differently with Ca, as shown in figure 11, and
does not contribute to the value of f .
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Figure 10. Spatial evolution of the interface deformation g/d with the capillary number for Re = 0, ξ = 0.75
and (a,b) μ1/μ2 = 2, η = 0.80 and (c,d) μ1/μ2 = 0.50, η = 0.50.

In both limits, the ratio f /gx0 changes only for order-unity values of the capillary
number, when the anti-symmetric component of the interface deformation ga evolves from
the asymptotic shape observed at Ca−1 � 1, illustrated in figure 12(b), to the shape of the
interface adopted in the limit Ca−1 � 1 depicted in figure 12(b).

4.2. The limit of small surface tension Ca−1 � 1: accuracy of the linear approximation
As suggested by figure 8, the capillary regime Ca−1 � 1 can be described by considering
the expansionψ = ψ0 + Ca−1ψ−1 + O(Ca−2), withψj representing any of the dependent
variables pi, vi, V andΩ . As explained in the Appendix A, we also consider small regular
perturbations δ = Ca−1δ−1(x)+ O(Ca−2) normal to the unperturbed interface Γ0 so that
the coordinates of the perturbed surface Γ ′ can be written as x′ = x + δn with x′ ∈ Γ ′
and x ∈ Γ0. Considering that Re = 0 and introducing this expansion in the Navier–Stokes
equations, we obtain

∇ · vi,0 = 0 and 0 = ∇ · T̂ i,0, (4.1a,b)

∇ · vi,−1 = 0 and 0 = ∇ · T̂ i,−1. (4.2a,b)
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Figure 11. Influence of the inverse of the capillary number Ca−1 on the interface deformation g0 and
symmetry parameter gx0 at x = 0 for different values of η (indicated in the figure), ξ = 0.75 and (a,c)
μ1/μ2 = 2 and (b,d) μ1/μ2 = 0.50.

Periodicity and non-slip conditions are imposed at x = ±L/2 and y = 0 and y = 1. To
impose the boundary conditions at the perturbed interface Γ ′, we use the methodology
originally described by Rivero-Rodriguez et al. (2018), that we summarised in the
Appendix A for the sake of completeness. Consequently, the condition of non-penetrability
and continuity of velocity at the interface is then given by

n · v2,0 = 0, [v0] = 0, (4.3a,b)

n · v2,−1 − DS · (δ−1v2,0) = 0, [v−1] + δ−1n · ∇([v0]) = 0. (4.4a,b)

The stress balance at the interface is now written as

n ·
[
T̂ 0

]
= 0, (4.5)

n ·
[
T̂−1

]
− DS ·

(
δ−1

[
T̂ 0

])
= DS1, (4.6)
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Figure 12. (a) Evolution of the ratio f /gx0 with the inverse of the capillary number Ca−1 for μ1/μ2 = 0.50,
η = 0.50, ξ = 0.75 and several inter-particle distances L (values indicated in the figure). On the right panels,
we included the anti-symmetrical component of the interface profiles ga = (g(x)− g(−x))/2 calculated for
L = 5 for (b) Ca−1 = 10−2, (c) Ca−1 = 101.5 and (d) Ca−1 = 104.

with n representing the normal vector to the unperturbed interface Γ0, ∇Sψ = (I − nn) ·
∇ψ and the differential operator DSψ = −(n∇ · n)ψ + ∇Sψ . The rotational velocity is
computed considering non-slip conditions (2.7) and equilibrium of moments (2.8). The
terminal velocity is obtained imposing the equilibrium in x direction given by (2.6).

Once the first order of the solution is obtained, we compute the first correction for the
force k3 = f Ca using (2.11). The results of that calculations are compared in figure 13
with the results of the integration of the full problem specified in (2.1)–(2.9) with Re = 0
and Ca−1 � 1 but non-zero. The linear approximation of the solution works fairly well
for order-unity values of the capillary number Ca−1 = 1 when the particle is in the
less-viscous fluid μ1/μ2 = 2, but rapidly worsens for larger surface tensions giving wrong
predictions for up to 35 % when Ca = 3.16. In the limit of small surface tension, the
linear approximation gives an accurate prediction of the force for relatively large capillary
numbers Ca−1 = 10−0.5 as long as the particle is not very close to the interface. In
that region, the validity of the linear approximation is confined to the small values of
the inverse of the capillary number Ca−1 � 1 hypothesised in the derivation of this
section.

As the viscosity ratio μ1/μ2 increases, the flow rate in the bottom layer decreases
proportionally and, in the limit of very high-viscosity ratios, the continuity of velocities
at the interface approximates to a non-slip boundary condition. At sufficiently high values
of the viscosity ratio, both the symmetrical and anti-symmetrical parts of the interface
deformation become small g ∼ (μ1/μ2)

−1 and gx0 ∼ (μ1/μ2)
−2 and, consequently,

the external body force becomes f ∼ (μ1/μ2)
−2 � 1. This result, which can be also

demonstrated by deriving the asymptotic linear solution in the limit μ1/μ2 � 1, reveals
that, in this limit, the particles would be at equilibrium without the need of an external
body force regardless of the particles position. Interestingly, the viscous layer would
behave as a passive fluid with negligible deformation.
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Figure 13. Comparison of the force f Ca obtained in the linear limit Ca−1 � 1 (black solid lines) with the
computations using small but finite values of Ca−1 (indicated in the figure): (a) μ1/μ2 = 2, η = 0.80 and (b)
μ1/μ2 = 0.50, η = 0.50.

4.3. Large surface tension Ca−1 � 1: influence of the capillary number on the minimum
inter-particle distance L

Surface tension has a stabilising effect and, therefore, the range of the parameters within
which the interface is unstable asymptotically vanish in the limit Ca−1 � 1 (Yiantsios &
Higgins 1988). Consequently, we can illustrate the evolution of the flow variables and the
force f with the capillary number and the distance between particles L in a much wider
range of parameter η and μ1/μ2 than in the limit Ca−1 � 1.

At large values of Ca−1, figure 9 shows a sudden change in the asymptotic behaviour
of the force, that becomes f /Ca = k1, with k1 = k1(η, ξ, L) a constant value that will be
calculated in the following. Black dots in this figure indicate the capillary number at which
this occurs Ca−1 = (Ca−1)∗, being (Ca−1)∗ a critical value of the capillary number that
will be computed below.

The presence of the particle near the interface induces a deformation whose
characteristic length is λ = xmax − xmin, defined as the difference between the longitudinal
positions xmax and xmin at which g = ḡ, with the average deformation of the interface
defined as ḡ = L−1 ∫ L/2

−L/2 g dx. The dependence of λ with Ca−1 is depicted in the right
panels of figure 9 and in figure 14 for several inter-particle distances. As we anticipated, λ
is independent of the capillary number for Ca−1 < 0.1. The small dependence of λ with
the inter-particle distance is explained by the changes observed in the symmetrical part of
the deformation gs with L. As shown in figure 9, the force f is independent of L in the limit
Ca−1 � 1 evidencing, again, that the anti-symmetrical part of the interface deformation
ga is the only factor responsible for the vertical force exerted on the particle.

In the transition region Ca−1 < (Ca−1)∗, the length λ is determined by the surface
tension and remains smaller than the inter-particle distance L. Therefore, the surface
tension introduces a new length scale that determines the asymptotic behaviour of both the
flow parameters and the transverse force, with the latter following a generic dependence on
the form f /Ca = k2Ca−n. The exponent n is given in table 1 for different values of ξ , η and
μ1/μ2. When the surface tension increases above the threshold value Ca−1 > (Ca−1)∗,
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Figure 14. (a) Influence of the inter-particle distance on the region of influence of the deformation λ. The
black dots indicate the beginning of the linear regime when Ca−1 = (Ca−1)∗. (b) Variation of the computed
values of (Ca−1)∗ with L (Blue solid line). The black, dashed line corresponds to the fitted curve y = 1.55L2.98.
All calculations are carried out for μ1/μ2 = 0.50, η = 0.50 and ξ = 0.75.

μ1/μ2 = 0.50 μ1/μ2 = 2.0

ξ 0.75 0.75 0.50 0.25 0.75 0.75 0.5 0.25

η 0.25 0.3 0.35 0.45 0.50 0.90 0.85 0.80 0.75

α −2.75 −2.90 −3.00 −3.00 −3.00 −3.70 −2.80 −2.9 −3.00 −3.00 −3.0 −3.50 −2.80

n 1/3 0.05 0.40 1/3 0.18 0.38

Table 1. Variation of the length scaling factor α and the transition regime slope n with the interface η and
particle ξ position for μ1/μ2 = 0.5 and μ1/μ2 = 2.

the length λ becomes of the order of the inter-particle distance L/2 and the asymptotic
behaviour of the force becomes f /Ca = k1. To illustrate this, we included in the right
panels of figure 9 the influence of the capillary number on the shape of the interface. In the
limit of small surface tension Ca−1 = 10−2, the interface deforms symmetrically around
the particle (figure 9a) and the region of influence of the particle on the interface is small.
As we increase the surface tension, λ becomes longer until it does not fit between two
consecutive particles. In the limit Ca−1 � 1, the computations show a anti-symmetrical
deformation (figure 9c) with λ = L/2. The critical value of the capillary number (Ca−1)∗
above which λ = L/2 and the vertical force enters in the linear regime is calculated by
increasing the surface tension and monitoring when the force becomes constant f /Ca =
k1. The black symbols in figures 9, 12 and 14 indicate when Ca−1 = (Ca−1)∗ and show
that the linear dependence of f with Ca starts only when λ � L/2. The right panel of
figure 14 shows that the critical capillary number scales with the inter-particle distance
as (Ca−1)∗ ∝ L−α , being α = −3 for μ1/μ2 = 0.50, η = 0.50 and ξ = 0.75. Additional
values of the exponent α are included in table 1 for μ = 0.5, μ = 2 and different particle
ξ and interface η locations.
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Figure 15. Evolution of the force f /(Ca k1) for μ1/μ2 = 0.50, η = 0.50 and (a) ξ = 0.75 and (b) ξ = 0.25.
Solid lines for repulsive (positive) force f and dashed lines for attractive (negative) values with respect to the
interface.

As indicated previously, when the length of the interface deformation is longer than the
inter-particle distance λ � L/2, the problem reaches a linear regime in which all variables
can be expanded in terms of the capillary number on the formψ = ψ0 + Caψ1 + O(Ca2).
This expansion fails when the length of the deformation is smaller than the inter-particle
distance λ < L/2 and λ becomes the relevant characteristic length. In this case, the
dependence of the variables with the capillary number should be written in the form
ψ = ψ0 + Ca1−n ψ1 + O(Ca2(1−n)), with n /= 1 determined from the numerical solution
in § 4.3.1.

4.3.1. Asymptotic solution in the limit Ca−1 < (Ca−1)∗ and λ < L/2
In this intermediate region, all variables can be expanded in terms of the capillary number
as ψ = ψ0 + Ca1−nψ1 + . . . with f = Ca1−nk2 + O(Ca2(1−n)). To determine the value
of the exponent n, we plot in figure 15 the value of the scaled force f /(k1Ca) in terms
of Ca−1Lα so that all curves converge at f /(k1Ca) = 1 when Ca−1 � (Ca−1)∗, with the
value of the exponent α given in table 1 as a function of η and ξ . For μ1/μ2 = 0.5,
η = 0.5 and any inter-particle distance L, the slope of the curves in the intermediary region
Ca−1 < (Ca−1)∗ determines the value of the exponent n = 1/3. This value is independent
of the interface location η and depends weakly on the particles position ξ , as indicated in
table 1.

The position of the particle clearly affects the value of the force f , as shown in figure 15.
In contrast to what was observed before in figure 4 in the limit Ca = 0, near the wall
ξ = 0.75 the fluid exerts a positive force f on the particle. A change on the sign of the
force is observed as the particle approaches the interface ξ = 0.25 at intermediate values
of the capillary number when L > 5, as shown with dashed lines in the curves plotted in
figure 15b) and in figure 16. With this combination of parameters, the force exerted on the
particle f is negative and the particle is pushed towards the interface. The negative value
of f is a direct consequence of the shape of the interface and the amplitude of the interface
deformation, as can be checked by looking at figure 16b). The sign of the force f remains
unchanged for larger surface tensions, an effect that anticipates a natural tendency of the
particle to migrate towards the interface that can be used to design passive filters.
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Figure 16. Evolution of (a) the force f /(Ca) and (b) the derivative at x = 0 of the interface deformation gx for
μ1/μ2 = 0.50, η = 0.50, ξ = 0.25. The insets show in detail the region where the sign of (a) the force f and (b)
gx0 changes from positive to negative. In (b) the evolution of the deformation at the centre of the particle x = 0,
g0/d with Ca−1 is illustrated in the upper inset. Solid lines for values corresponding to repulsive (positive)
force f and dashed lines for attractive (negative) values of f with respect to the interface.

4.3.2. Asymptotic solution in the limit Ca−1 > (Ca−1)∗ and λ > L/2
In the pure capillary regime, the system of equations can be regularly expanded as ψ =
ψ0 + Caψ1 + O(Ca2), with ψ = (p̂i, vi,V,Ω, f ,	p). The perturbation of the interface
Γ0 is expressed in terms of an infinitesimal normal displacement δ = δn with δ = δ1Ca +
δ2Ca2 + O(Ca3).

The resulting expansion of the Navier–Stokes equations up to first order yield,

∇ · vi,0 = 0 and 0 = ∇ · T̂ i,0, (4.7a,b)

∇ · vi,1 = 0 and 0 = ∇ · T̂ i,1, (4.8a,b)

at the unperturbed surface Γ0. To compute the terms of the expansion of the terminal
and rotational velocity we imposed, as before, equilibrium in x direction (2.6), non-slip
(2.7) and the zero-torque condition (2.8) at the particle at every order of the solution. The
continuity of velocity and non-penetrability conditions are enforced at the interface

n · v2,0 = 0, [v0] = 0 (4.9a,b)

n · v2,1 − DS · (δ1v2,0) = 0, [v1] + δ1n · ∇([v0]) = 0. (4.10a,b)

The first-order solution Ca = 0 of the stress jump condition gives the unperturbed surface
Γ0 = η(1 − d) while the first- and second-order perturbations yield

n ·
[
T̂ 0

]
= DS · B1 (4.11)

n ·
[
T̂ 1

]
− DS ·

(
δ1

[
T̂ 0

])
= DS · B2, (4.12)

with the rotation tensor B = Ca B1 + Ca2B2 + O(Ca3) defined such that B = nS0nSp,
with nS0 and nSp the tangential vectors to the unperturbed Γ0 and perturbed interface
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Figure 17. Computed vertical force f /Ca in terms of the particle position for several capillary numbers Ca,
with (a) μ1/μ2 = 2, η = 0.80 and (b) μ1/μ2 = 0.50, η = 0.50. In all computations L = 40.

Γ ′, as shown in the Appendix A. In 2-D Cartesian coordinates, the rotation tensor
B = exnSp and nSp = (ex − δx n)/|ex − δx n|, with δx = dδ/dx. Then, the right-hand side
of (4.11) and (4.12) can be written using the first two orders of the expansion giving
DS · B1 = δxx,1ey and DS · B2 = δxx,2ey − δx,1δxx,1ex, with δxx = d2δ/dx2. In addition,
non-slip conditions are imposed at the walls y = 0 and y = 1 and periodic boundary
conditions far from the particle x = ±L/2.

Once the rest of the variables are computed, the first order of the force f = Ca k1 +
O(Ca2) is determined numerically integrating (2.11). For L = 40, figure 9 anticipates
that the linear regime is achieved for Ca−1 = (Ca−1)∗ = 105. To check this point, we
compared the force f /Ca obtained using the linear approximation with the numerical
results obtained integrating the full problem (2.1)–(2.11) in figure 17. As expected, both
solutions are indistinguishable for Ca−1 > 105.

Once the linear solution is validated, we computed the variation of the force f /Ca with
the position of the particle in the channel for different viscosity ratios μ1/μ2 and interface
location. The results, plotted in figure 18, show only one neutral equilibrium position for
μ1/μ2 < 1 when the interface is at η = 0.5 but, unlike the pure inertial case presented
previously, is unstable. One or three equilibrium positions are found when μ1/μ2 > 1
but they only remain stable when the particle is far from both the interface or the wall,
again a behaviour that is the opposite to what we found in the pure inertial case. A similar
trend is observed at low values of ξ once we modify the location of the interface keeping
μ1/μ2 = 0.5. When η > 0.5, we find none or one unstable equilibrium position when
the particle is near to the interface. Up to three equilibrium positions f = 0, two of them
unstable, are found when η < 0.5. Again, the only stable equilibrium position is found
when the particle is halfway between the wall and the interface.

The isocontours of the computed force f /Ca are plotted in figure 19 in the η–ξ
parametric space. The asymptotic equilibrium positions f = 0 of the particle are plotted
using black thick curves. The isolines ∂f /∂ξ = 0 in which the stability behaviour of the
equilibrium position shifts from unstable to stable and vice versa are included in dashed
lines. As shown in this figure, up to three equilibrium positions can be found in a wide
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Figure 18. Effect of the position of the particle ξ on the force f /Ca in the linear regime Ca−1 > (Ca−1)∗ with
L = 40 for different values (a) of the viscosity ratio μ1/μ2 with η = 0.50 and (b) of the interface position η
with μ1/μ2 = 0.50.
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Figure 19. Isocontours of the scaled force f /Ca obtained with the asymptotic solution in the plane η–ξ for (a)
μ1/μ2 = 2 and (b) μ1/μ2 = 0.50. Solid black lines represent equilibrium positions (f /Ca = 0) and dashed
black lines indicate stability transition (∂ξ f /Ca = 0). White solid regions for unstable particle positions, gray
regions for stable. The colour bar is piecewise linear, being the linear sections and is corresponding level step:
±6428 for |f /Ca| � 10 000, ±500 for 500 < |f /Ca| < 5000 and ±100 for |f /Ca| < 250.

range of values of η for both μ1/μ2 larger and smaller than one, with only one of them
within the stable region.

A steep gradient on the transverse force f is observed in figure 19 when we modify the
position of the interface η keeping ξ constant. This figure reveals a variation of the vertical
force of several orders of magnitude, including a sign change that indicates that the particle
is pushed either away or towards the interface depending on the location of the interface.
This is clearly opposed to what is observed in the pure inertial regime included in figure 5,
in which the force f is only weakly dependent on the position of the interface once the
position of the particle ξ is set. Similarly, for intermediate values of the interface position
eta, the value of the transverse force also varies dramatically with the particle position,
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being negative (attractive) for values close to the interface and positive (repulsive) when
the particle is close to the upper wall.

5. Conclusions

Using a finite-element method combined with the ALE method we have studied the
dynamics of a train of solid particles separated by a distance L moving near the interface
of two co-flowing immiscible liquids. The presence of the interface introduces a new force
that plays a crucial role in determining the equilibrium position of the particles.

The first part of the work considered a non-deformable interface corresponding to the
limit of infinitely large surface tension Ca = 0 with small, but finite, Reynolds number. In
this limit, we found that the force is weakly dependent on the position of the interface but
its sign varies significantly with the position of the particle. Our calculation showed that
the particle is pushed towards the interface (wall) when it is near the wall (interface). Up to
three neutral equilibrium positions f = 0, two of them stable, are found when the particle
is embedded in the less-viscous fluid. When the particle travels in the more-viscous fluid,
a unique, neutral stable equilibrium position was found regardless of the particle or the
interface positions. The asymptotic linear solution for the flow variables ψ = ψ0 + Reψ1
found in the limit Re � 1 remains valid for values of the Reynolds number as large as Re =
60 when μ1/μ2 > 1. This is not the case when μ1/μ2 < 1 as nonlinear effects become
relevant even when Re = 0.1 due to the greater relative importance of the convective terms
in fluid 1.

In the pure capillary regime Re = 0, we computed the force necessary to keep the
particle at a given vertical location ξ in a wide range of capillary numbers 10−4 < Ca−1 <
106. The results identified three different regimes depending of the value of the capillary
number. In the limit Ca−1 � 1, the amplitude of the interface deformation induced by the
particle is large, comparable to its diameter, but its influence is limited to a small region
upstream and downstream of the particle. In this limit, all variables can be expanded
asymptotically as ψ = ψ0 + Ca−1ψ1 with the first correction of the force written as
Ca f = k3 and k3 a constant that depends on both η and ξ . This linear approximation
remains valid up to values of the capillary number of order unity as long as μ1/μ2 > 1.
As in the inertial case, nonlinear effects emerge at much lower values of the capillary
number when μ1/μ2 < 1.

The limit of very large surface tension Ca−1 � 1 turns out to be more intricate. As
expected, the amplitude of the interface deformation reduces with increasing capillary
number and becomes much smaller than the particle diameter. Nevertheless, the region
of influence of the particle λ becomes wider as the surface tension increases, becoming
of the order of the inter-particle distance for capillary numbers above a critical value
(Ca−1)∗. Above this value, the asymptotic behaviour of the flow variables become linear
with the inverse of the capillary number so that ψ = ψ0 + Caψ1 and f /Ca = k1, with
k1 a constant that depends on both the location of the interface η and the particle ξ .
Below that threshold value Ca−1 < (Ca−1)∗, the relevant characteristic length becomes λ
instead of L, modifying the asymptotic behaviour of the solution that adopts an asymptotic
expansion on the form ψ = ψ0 + Ca1−nψ1 with f /Ca = k2Ca−n, with k2 and n computed
numerically in terms of η and ξ .

In the pure capillary regime Re = 0, the anti-symmetrical component of the interface
deformation is responsible for the vertical forces f exerted on the particle. The position
of both the interface η and the particle ξ control the sign of f . Once the position of the
interface η is determined, the particle is pushed towards the interface (wall) when the
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Figure 20. Fluid volume obtained when the interface Γ is perturbed with a normal perturbation δ = δn to
form the perturbed interface Γ ′.

particle is placed near the interface (wall), a result that is opposed to what was observed
in the pure inertial regime when the interface was non-deformable Ca = 0.
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Appendix A. Interface perturbation

In order to perturb the interface separating both fluids, we applied a normal differential
displacement δ = δ(x)n that creates a volume V as a result of the displacement of the
interface from Γ0 to its perturbed position Γ ′, as sketched in figure 20.

The boundary conditions at the interface (2.9) and (2.10a,b) need to be evaluated at the
perturbed interface Γ ′ to properly account for the displacement δ during the asymptotic
expansions carried out in §§ 4.2 and 4.3. The position of the perturbed interface Γ ′ is
unknown and will be obtained as part of the calculation process. Consequently, to evaluate
(2.9) and (2.10a,b) we followed the methodology developed by Rivero-Rodriguez et al.
(2018) to write the boundary conditions at the unperturbed surface Γ0. To do so, we start
by subtracting the momentum equations (2.2) written for fluid 2 and fluid 1. Integrating the
resulting expression in the volume V and using Gauss’s theorem to transform the volume
integral into surface integrals, we obtained

−
∫
Γ0

n · [T̂ ] dΣ +
∫
Γ ′

n′ · [T̂ ] dΣ +
∫

C0

δ[T̂ ] · nS0 dl =
∫
V

[F ] dV, (A1)

with F i = Re vi · ∇vi and C0 = ∂Γ0 so that Γl = ∫
C0
δ dl is the lateral surface of the V .

The line integral in the left hand side of previous equation can be transformed to a surface
integral, giving ∫

C0

δ[T̂ ] · nS0 dl =
∫
Γ0

DS · (δ[T̂ ]) dΣ, (A2)

where DS is the differential operator DSθ = ∇Sθ − (n∇S · n)θ . The volume integral on
the right-hand side of (A1) can be expressed as

∫
V [F ] dV = ∫

Γ0
δ[F ] dΣ and (A1) can
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be written as ∫
Γ ′

n′ · [T̂ ] dΣ =
∫
Γ0

[
n · [T̂ ] − DS · (δ[T̂ ])+ δ[F ]

]
dΣ. (A3)

Next, substituting the boundary condition (2.10a,b) in (A3), it yields∫
Γ ′

Ca−1DS1 dΣ =
∫
Γ0

[
n · [T̂ ] − DS · (δ[T̂ ])+ δ[F ]

]
dΣ. (A4)

The differential operator DS on the left-hand side of (A4) can also be perturbed to facilitate
its evaluation. Following Rivero-Rodriguez et al. (2018), and using (A2), for a perturbation
δ normal to Γ we can write∫

Γ ′
DSφ dΣ =

∫
C′

n′
Sφ dl =

∫
Γ0

DS · (Bφ) dΣ, (A5)

with the rotation tensor B defined such that B = nS0n′
S. Using this result, (A4) finally

reduces to

n ·
[
T̂

]
− DS ·

(
δ
[
T̂

])
+ δ [F ] = Ca−1DS · B at Γ0, (A6)

where the tensor B needs to be determined in each particular case.
By the same token, to enforce the kinematic condition (2.9), we use the same procedure

than before and we integrate the continuity equation for the fluid 2 in the created volume
V , to write

−
∫
Γ0

n · v2 dΣ +
∫
Γ ′

n′ · v2 dΣ +
∫

C0

δv2 · nS0 dΣ = 0. (A7)

After imposing (2.9) at Γ ′ and using (A2) with δv1 substituting δ[T̂ ], it yields

n · v2 − DS · (δv2) = 0 at Γ0. (A8)

To impose the continuity of velocity [v] = 0 at Γ ′ given in (2.9), we keep the first-order
term of the Taylor expansion of the velocity difference to give

[v] + δn · ∇[v] = 0, (A9)

evaluated at Γ0. Once the differential displacement δ is obtained, the perturbed interface
Γ ′ can be obtained as x′ = x + δn, where x′ ∈ Γ ′ and x ∈ Γ0.
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