A MODULAR ANALOG OF A THEOREM OF R. STEINBERG ON COINVARIANTS OF COMPLEX PSEUDOREFLECTION GROUPS

LARRY SMITH

Mathematisches Institut der Universität, Bunsenstraße 3/5, D37073 Göttingen, Federal Republic of Germany e-mail: larry@sunrise.uni-math.gwdg.de

(Received 30 May, 2001; accepted 23 July, 2001)

Abstract. Let $\rho : G \hookrightarrow \operatorname{GL}(n, \mathbb{F})$ be a representation of a finite group over the field \mathbb{F} , $V = \mathbb{F}^n$ the corresponding *G*-module, and $\mathbb{F}[V]$ the algebra of polynomial functions on *V*. The action of *G* on *V* extends to $\mathbb{F}[V]$, and $\mathbb{F}[V]^G$, respectively $\mathbb{F}[V]_G$, denotes the ring of invariants, respectively coinvariants. The theorem of Steinberg referred to in the title says that when $\mathbb{F} = \mathbb{C}$, dim_{\mathbb{C}} (Tot($\mathbb{C}[V]_G$)) = |G| if and only if *G* is a complex reflection group. Here Tot($\mathbb{F}[V]_G$ and |G| is the order of *G*. Chevalley's theorem tells us that the ring of invariants of a complex pseudoreflection representation $G \hookrightarrow \operatorname{GL}(n, \mathbb{C})$ is polynomial algebra, and the theorem of Shephard and Todd yields the converse. Combining these results gives: dim_{\mathbb{F}}(Tot($\mathbb{C}[V]_G$) = |G| if and only if $\mathbb{C}[V]^G$ is a polynomial algebra. The purpose of this note is to show that the two conditions

(i) dim_{\mathbb{F}}(Tot($\mathbb{F}[V]_G$)) = |G|,

(ii) $\mathbb{F}[V]^G$ is a polynomial algebra

are equivalent regardless of the ground field; in particular in the modular case.

2000 Mathematics Subject Classification. 13A50, 20F55, 20F56.

Let $\rho: G \hookrightarrow \operatorname{GL}(n, \mathbb{F})$ be a representation of a finite group over the field \mathbb{F} , $V = \mathbb{F}^n$ the corresponding *G*-module, and $\mathbb{F}[V]$ the algebra of polynomial functions on *V*. The action of *G* on *V* extends to $\mathbb{F}[V]$, and we denote by $\mathbb{F}[V]^G$, respectively $\mathbb{F}[V]_G$, the ring of invariants, respectively coinvariants. As a general reference for invariant theoretic matters we use [**2**]. The theorem of Steinberg referred to in the title is the equivalence $(a) \iff (e')$ in Theorem 1.3 of the amazing paper [**3**]. It says that when $\mathbb{F} = \mathbb{C}$, dim_C(Tot($\mathbb{C}[V]_G$)) = |G| if and only if *G* is a complex reflection group. Here Tot($\mathbb{F}[V]_G$ and |G| is the order of *G*. Chevalley's theorem tells us that the ring of invariants of a complex pseudoreflection group $G \hookrightarrow \operatorname{GL}(n, \mathbb{C})$ is a polynomial algebra, and the theorem of Shephard and Todd yields the converse, [**2**, Theorem 7.4.1]. The purpose of this note is to prove the following theorem, which is a characteristic free analog of Steinberg's theorem.

THEOREM. Let $G \stackrel{\rho}{\hookrightarrow} GL(n, \mathbb{F})$ be a representation of a finite group over the field \mathbb{F} . Then the conditions

(i) $\dim_{\mathbb{F}}(\operatorname{Tot}(\mathbb{F}[V]_G)) = |G|,$

(ii) $\mathbb{F}[V]^G$ is a polynomial algebra,

are equivalent.

Proof. Suppose (i) holds. By definition

$$\mathbb{F}[V]_G = \mathbb{F} \otimes_{\mathbb{F}[V]^G} \mathbb{F}[V]$$

is the module of $\mathbb{F}[V]^G$ -indecomposable elements of the module $\mathbb{F}[V]$ (see e.g., [2, Section 5.1]). Therefore we can find an epimorphism

$$\varphi: \mathbb{F}[V]^G \otimes \mathbb{F}[V]_G \longrightarrow \mathbb{F}[V]$$

of $\mathbb{F}[V]^G$ -modules. We claim that φ is actually an isomorphism. To see this let $\mathbb{K} = FF(\mathbb{F}[V]^G)$ be the field of fractions of $\mathbb{F}[V]^G$ and $\mathbb{L} = FF(\mathbb{F}[V])$ that of $\mathbb{F}[V]$ and note that φ induces a map (the classic Cartan–Eilenberg change of rings map)

$$\Phi: \mathbb{K} \otimes \mathbb{F}[V]_G = \mathbb{K} \otimes_{\mathbb{F}[V]^G} (\mathbb{F}[V]^G \otimes \mathbb{F}[V]_G) \longrightarrow \mathbb{L} \otimes_{\mathbb{F}[V]} \mathbb{F}[V] = \mathbb{L}$$

of K-vector spaces. We claim Φ is an epimorphism. For, if $f/h \in \mathbb{L}$, then by multiplying numerator and denominator by $\prod_{1 \neq g \in G} gh$ we may suppose that h is G-invariant, so $1/h \in \mathbb{K}$. Since φ is an epimorphism we may write

$$f = \varphi \bigg(\sum_{i \in \mathcal{I}} f_i \otimes u_i \bigg),$$

where \mathcal{I} is a finite index set, $f_i \in \mathbb{F}[V]^G$, and $u_i \in \mathbb{F}[V]_G$. Then

$$\frac{f}{h} = \frac{1}{h}\varphi\bigg(\sum_{i\in\mathscr{I}}f_i\otimes u_i\bigg) = \varPhi\bigg(\frac{1}{h}\otimes\varphi\bigg(\sum_{i\in\mathscr{I}}f_i\otimes u_i\bigg)\bigg),$$

showing Φ is an epimorphism.

Since (i) holds, $\mathbb{K} \otimes \mathbb{F}[V]_G$ has dimension |G| as a \mathbb{K} -vector space, and since $\mathbb{K} \hookrightarrow \mathbb{L}$ is Galois with Galois group G so does \mathbb{L} . Hence Φ is an isomorphism.

The functor $\mathbb{K} \otimes_{\mathbb{F}[V]^G}$ —is an exact functor, so $\ker(\mathbb{K} \otimes \varphi) = \mathbb{K} \otimes_{\mathbb{F}[V]^G} \ker(\varphi)$. Since $\ker(\varphi)$ is $\mathbb{F}[V]^G$ -torsion free $\ker(\varphi) \neq 0$ implies that $\mathbb{K} \otimes_{\mathbb{F}[V]^G} \ker(\varphi) \neq 0$ and this implies $\ker(\Phi) \neq 0$ contrary to what was just shown. Hence $\ker(\varphi) = 0$ and φ is an isomorphism. Therefore $\mathbb{F}[V]$ is a free $\mathbb{F}[V]^G$ -module and the result follows from [2, Theorem 6.4.4] or [1].

The implication (ii) \Rightarrow (i) follows from the Degree theorem, [2, Theorem 5.5.3]. Specifically, if $\mathbb{F}[V]^G = \mathbb{F}[f_1, \dots, f_n]$ then $f_1, \dots, f_n \in \mathbb{F}[V]$ are a system of parameters since $\mathbb{F}[V]^G \hookrightarrow \mathbb{F}[V]$ is a finite extension. Since $\mathbb{F}[V]$ is Cohen–Macaulay $f_1, \dots, f_n \in \mathbb{F}[V]$ is a regular sequence so $\mathbb{F}[V]$ is a free $\mathbb{F}[V]^G$ module. Let deg $(f_i) = d_i$ for $i = 1, \dots, n$. Then the Poincaré series of $\mathbb{F}[V]_G$ is

$$P(\mathbb{F}[V]_G, t) = \frac{P(\mathbb{F}[V], t)}{P(\mathbb{F}[V]^G, t)} = \frac{\frac{1}{(1-t)^n}}{\frac{1}{\prod_{i=1}^n (1-t^{d_i})}} = \prod_{i=1}^n (1+t+\dots+t^{d_i-1})$$

and evaluating $P(\mathbb{F}[V]_G, t)$ at t = 1 then gives

 $\dim_{\mathbb{F}}(\operatorname{Tot}(\mathbb{F}[V]_G)) = d_1 \cdots d_n = |G|$

by a corollary to the Degree theorem [2, Corollary 5.5.4].

REMARK. The argument in the proof of the theorem that shows that Φ is an epimorphism is valid in general. It implies the following elementary fact which shows that the condition (i) is an extremal condition, namely a minimum condition.

COROLLARY. Let $G \xrightarrow{\rho} GL(n, \mathbb{F})$ be a faithful representation of a finite group over the field \mathbb{F} . Then dim_{\mathbb{F}}($\mathbb{F}[V]_G) \ge |G|$.

REFERENCES

1. L. Smith, On the invariant theory of finite pseudoreflection groups, *Archiv Math. (Basel)* 44 (1985), 225–228.

2. L. Smith, *Polynomial invariants of finite groups* (A.K. Peters, Ltd., Wellesley, MA, 1995, second printing 1997).

3. R. Steinberg, Differential equations invariant under finite reflection groups, *Trans. Amer. Math. Soc.* **112** (1964), 392–400.