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Abstract

This note considers an established reaction–diffusion model for a combustion system,
in which there are competing endothermic and exothermic reaction pathways. A
combustion front is assumed to move at constant speed through the medium. An
asymptotic theory is presented for solid fuels in which material diffusion is ignored,
and it allows a simple and complete analysis of the approximate system in the phase
plane. Both the adiabatic and nonadiabatic cases are discussed.
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1. Introduction

Travelling waves are now a well-established phenomenon in reaction–diffusion
systems, in a variety of applications. Mathematically they are interesting because they
predict the wave behaviour typical of hyperbolic partial differential equations, but in
systems that are parabolic. The famous Fisher wave is an example of such behaviour
in a biological system, as discussed by Murray [9]. Travelling waves also occur in
combustion systems, and have been the subject of intense interest. Gray and Scott [6]
and Zel’dovich et al. [13] discuss further examples of these phenomena.

There has also been recent interest in chemical combustion systems in which
both exothermic (heat-producing) and endothermic (heat-consuming) reactions occur
simultaneously. In a model of bushfire spread, Forbes [3] appealed to such competitive
mechanisms in an attempt to explain why it is that not every small heat input develops
into a major conflagration. Ball et al. [1] undertook a comparative study of reactions
with parallel and competing pathways. The idea of reactions in which endothermic
and exothermic mechanisms are in competition has been developed more recently by
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Hmaidi et al. [7] and analysed further by Sharples et al. [10], who included material
diffusion.

In this note, the model of Hmaidi et al. [7] is simplified by means of an asymptotic
approximation to the nonlinear temperature-dependent reaction rates. This permits
the resulting system to be integrated once, with the result that the behaviour of the
two possible steady states can be specified in advance, so as to guarantee conditions
needed for a travelling combustion wave in the system. A reasonably straightforward
phase-plane analysis then allows the complete determination of the travelling wave.
That model is then extended to allow for nonadiabatic conditions in which cooling
to ambient temperature is permitted, apparently for the first time, and a phase-plane
approach is also shown to be possible in that situation.

2. Model and asymptotic analysis

Consider a system of two one-step chemical reactions, in which a single chemical
species X decays either by an endothermic reaction to form products A and B, or
else by an exothermic process to create species C and D. Schematically, this may be
represented in the form

↗k1(T ) A + B endothermic

X (2.1)

↘k2(T ) C + D exothermic.

The “classical” combustion model consists only of the exothermic portion of this
reaction, and has been studied by Weber et al. [11], and by Brindley et al. [2] for
solid fuels of varying geometry. Ball et al. [1] refer to a scheme of the form (2.1) as a
competitive reaction pathway, and the two reaction rates k1(T ) and k2(T ) are dependent
on the reaction temperature T . From Hmaidi et al. [7] and Sharples et al. [10], the
governing equations for the system are

∂X
∂t

= D
∂2X
∂x2
− Xk1(T ) − Xk2(T ), (2.2)

ρcp
∂T
∂t

= K
∂2T
∂x2
− ρQ1Xk1(T ) + ρQ2Xk2(T ). (2.3)

Here X and T are the mass fraction and temperature, respectively, and ρ is the density
of the material. The constant cp is a heat capacity, D and K are mass and temperature
diffusion coefficients, and Q1 and Q2 are enthalpies of reaction for the endothermic
and exothermic reactions, respectively.

Nondimensional variables are introduced, and used henceforth. The reaction rates
are assumed to obey Arrhenius kinetics

k1(T ) = Z1 exp
(
−

E1

RT

)
, k2(T ) = Z2 exp

(
−

E2

RT

)
, (2.4)
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in which constants Z1 and Z2 are first-order rates with dimension 1/time, and E1 and E2

are activation energies for each reaction. The quantity E2/R is then chosen as the scale
for temperature, in which R is the universal gas constant. Lengths are scaled relative
to the quantity

√
(KE2)/(ρQ2Z2R) and the unit of time is taken to be (cpE2)/(Q2Z2R).

The mass fraction X is dimensionless.
In these new variables, the mass and energy equations (2.2)–(2.3) take the form

∂X
∂t

= σ
∂2X
∂x2
− αµXk1(T ) − µXk2(T ), (2.5)

∂T
∂t

=
∂2T
∂x2
− αγXk1(T ) + Xk2(T ), (2.6)

in which the Arrhenius rate laws (2.4) reduce simply to k1(T ) = exp
(
−ε/T

)
and

k2(T ) = exp
(
−1/T

)
. The five dimensionless parameter groups appearing in (2.5)–(2.6)

are

α =
Z1

Z2
, γ =

Q1

Q2
, ε =

E1

E2
, µ =

cpE2

Q2R
, σ =

ρD
Kcp

. (2.7)

Following Hmaidi et al. [7] and Sharples et al. [10], this note is concerned with
travelling waves of constant dimensionless speed c, and, accordingly, the travelling-
wave variable

ξ = x − ct (2.8)

is introduced. To simplify matters, the coefficient σ of material diffusion in (2.5)–(2.7)
is set to zero, as is appropriate for solid fuels [11].

The Arrhenius reaction rates (2.4) are somewhat unrealistic, in that they allow
reaction to occur at any temperature above absolute zero; this is the famous “cold
boundary difficulty”, and has been commented on by many authors, including Gray
et al. [5] and Matkowsky and Sivashinsky [8]. Here, the approach of Forbes and
Derrick [4] is adopted, and it is assumed that the reaction only occurs above some
critical (“ignition”) temperature θa, taken to be the same for both rates. A further
discussion of this concept is given by Zel’dovich et al. [13]. As a result, the rates (2.4)
are replaced with the dimensionless forms

k1(T ) =

0 T < θa

1 − eε(θa−T ) T > θa,
k2(T ) =

0 T < θa

1 − e(θa−T ) T > θa.
(2.9)

The asymptotic approximation now proceeds by simplifying the rates (2.9) using
linearization, and assuming that the temperature always remains above the ignition
value θa (which consequently plays no further role in the problem). The rates are thus
taken to be

k1(T ) ≈ εT1, k2(T ) ≈ T1 where T1 = T − θa, (2.10)

for T moderately close to the ignition value θa. The analysis to follow, then, may be
regarded as a weakly nonlinear approximation. This is similar in some respects to the
theory presented by Forbes and Derrick [4], which led to a classical “sech squared”
soliton temperature profile in that application.
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When the travelling-wave assumption (2.8) is combined with the asymptotic
approximations (2.10), the partial differential equations (2.5)–(2.6) reduce to the
simpler nonlinear third-order system of ordinary differential equations

− c
dX
dξ

= −λXT1, −c
dT1

dξ
=

d2T1

dξ2
+ δXT1, (2.11)

in which it is convenient to define auxiliary constants

λ = µ(αε + 1), δ = 1 − αγε. (2.12)

The two ordinary differential equations in the system (2.11) are combined in such a
way as to eliminate the nonlinear product XT1, and this leads at once to the equation

−c
dT1

dξ
=

d2T1

dξ2
+

cδ
λ

dX
dξ
.

This can immediately be integrated, using the undisturbed boundary conditions X→
X0, T1→ 0 as ξ→∞ ahead of the propagating flame front. Here X0 denotes the
original unburnt fuel concentration. As a result, an explicit relation is obtained for
the mass fraction X in terms of perturbation temperature T1 in the form

X = X0 −
λ

cδ

[
cT1 +

dT1

dξ

]
, (2.13)

although the wave speed c is as yet undetermined. This relation (2.13) allows the mass
fraction X to be eliminated from the second differential equation in the system (2.11),
leading to the second-order differential equation

d2T1

dξ2
=

[
−c +

λ

c
T1

]dT1

dξ
− δX0T1 + λT 2

1 (2.14)

for the perturbation temperature T1(ξ). Equation (2.14) thus represents a first integral
of the original travelling-wave system (2.11).

3. Phase-plane analysis

The second-order equation (2.14) is easily seen to have two steady states, one at
T1 = 0 and the other at T1 = δX0/λ. For a travelling wave, it is required that T1 = 0
should correspond to the unburnt conditions ahead of the wave, as ξ→∞, so that
the second steady state T1 = δX0/λ must represent conditions far behind the wave, as
ξ→−∞. For a wave travelling from left to right, there must be an elevated temperature
behind the front, and as a result, it may be assumed that the auxiliary parameter δ > 0
in (2.12). Since T1 > 0, this condition δ > 0 is thus a requirement for a travelling wave
of this type. Finally, a genuine travelling wave requires this second steady state to be
a saddle. The first steady state at T1 = 0 must be stable, and in fact must be chosen
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to be a degenerate stable node; this is because the rate functions (2.9) are zero for
T1 < 0, and consequently the ignition value θa is arbitrary. A similar choice was made
by Weber et al. [11] for the corresponding point in their analysis.

The second-order equation (2.14) may now be analysed completely in the phase
plane, by writing it in the equivalent form

dT1

dξ
= F,

dF
dξ

= −δX0T1 + λT 2
1 +

[
−c +

λ

c
T1

]
F. (3.1)

It is now a routine matter to linearize about the two steady states for this system, to
determine their nature.

For the steady state (T1, F) = (0, 0) far ahead of the flame front, the eigenvalues are
easily calculated to be

1
2

[
−c ±

√
c2 − 4δX0

]
.

As the ignition temperature θa is arbitrary in this asymptotic approximation, this steady
state must be a degenerate stable node, and this immediately leads to the formula

c = 2
√
δX0 (3.2)

for the wave speed c. Consequently, the two steady states for the phase-plane system
(3.1) have the following behaviour:

(T1, F) = (0, 0), repeated eigenvalue − c/2, eigenvector
[

1
−c/2

]
, (3.3)

and

(T1, F) =

(
δX0

λ
, 0

)
, eigenvalues c/4, −c, eigenvectors

[
1

c/4

]
,

[
1
−c

]
, (3.4)

in which the wave speed c is as given in equation (3.2).
Once the temperature T1 has been determined from the phase-plane system (3.1),

the mass fraction X is then easily obtained from (2.13) in the form

X = X0 −
λ

cδ
[cT1 + F]. (3.5)

The differential equations (3.1) have been integrated in this note using the Runge–
Kutta–Fehlberg package provided by Matlab, using the speed (3.2) and starting near
the equilibrium point (T1, F) = (δX0/λ, 0). It follows from equation (3.5) that, for the
second steady state far behind the wave front, the mass fraction is X = 0, so that all the
fuel is consumed by the flame.

Some sample results are presented here, for parameter values α = 1/2, µ = 1, γ = 1,
ε = 3/2 and unburnt mass fraction X0 = 1. From equation (3.2), the resulting wave
speed is thus c = 1. Figure 1(a) shows the temperature profile. As expected, there is
a smooth wave front moving from left to right with speed c, such that the temperature
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F 1. (a) Temperature profile and (b) mass fraction profile for a travelling wave, with parameters as
given in the text.
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F 2. The phase plane showing the saddle at (δX0/λ, 0) and the degenerate stable node at (0, 0). The
eigenvectors are shown with green arrows from the two points. The travelling wave is indicated with a
red heavy solid line and other contours not associated with the travelling wave are added in blue. (Colour
available online.)

profile decreases monotonically from the maximum value δX0/λ behind the front to
zero ahead of it. The mass fraction, computed from equation (3.5), is displayed in
Figure 1(b). It increases monotonically from the burnt value zero behind the front to
the unburnt value X0 = 1 ahead of it. These simple asymptotic results are in agreement
with the profile shapes presented by Gray et al. [5] and Sharples et al. [10].

A complete view of the phase plane is shown in Figure 2 for this same case. These
solution curves were obtained by numerical integration of the phase-plane system
(3.1). A number of solution contours not associated with the travelling wave are
sketched using thin solid lines, and these are all drawn into the degenerate stable
node at (T1, F) = (0, 0), although the portions of these curves in the region T1 < 0
have no meaning, in view of the change of definition of the rates in (2.9). The special
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contour, which starts at (T1, F) = (δX0/λ, 0) and terminates at (0, 0), corresponds to
the travelling wave shown in Figure 1 and has been drawn using a heavy solid line.
The eigenvector in (3.3) and its negative are shown near the stable node at (0, 0), and
the arrows indicate the direction along the trajectory with increasing ξ. Similarly, the
two eigenvalues in (3.4) and their negatives are shown at the saddle point (δX0/λ, 0),
and they form the separatrices of the saddle, close to this point.

4. The nonadiabatic case

In this section, the previous asymptotic analysis is applied to the situation in which
an additional cooling term is added to the energy equation in the system (2.5)–(2.6).
Simple Newtonian cooling is assumed, so that the new system of nondimensional
equations takes the form

∂X
∂t

= σ
∂2X
∂x2
− αµXk1(T ) − µXk2(T ), (4.1)

∂T
∂t

=
∂2T
∂x2
− αγXk1(T ) + Xk2(T ) − β(T − θa). (4.2)

Here it is assumed in addition that the ambient temperature θa is equal to the ignition
temperature, for simplicity. The new parameter β is therefore the rate of Newtonian
cooling to ambient.

If again the asymptotic approximations (2.10) are invoked, and a travelling-wave
coordinate of the type (2.8) is introduced, then the nonadiabatic governing equations
(4.1)–(4.2) take the form

− c
dX
dξ

= −λXT1, −c
dT1

dξ
=

d2T1

dξ2
+ δXT1 − βT1, (4.3)

in which the combination parameters λ and δ are as in (2.12).
Unlike the purely adiabatic system considered in Section 2, this new system (4.3) no

longer reduces to a phase-plane system for the temperature T1 but remains irreducibly
third order in that variable. However, the first equation in the system (4.3) can be
written so as to eliminate the temperature variable T1 in terms of the mass fraction X,
and gives

T1 =
c
λ

d
dξ

(ln X). (4.4)

Now the second equation in the system (4.3) can be integrated at once to yield

−cT1 =
dT1

dξ
+

cδ
λ

(X − X0) −
cβ
λ

ln
( X

X0

)
,

using the unburnt conditions X→ X0 and T1→ 0 as ξ→∞ ahead of the flame. Finally,
the variable T1 in this equation can be eliminated using (4.4), and the result is a second-
order differential equation for the mass fraction X. This may be expressed as

dX
dξ

= G,
dG
dξ

= −δX(X − X0) + βX ln
( X

X0

)
− cG +

G2

X
. (4.5)
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Once again, a phase-plane system has been obtained, although now for the mass
fraction X, rather than the temperature T1. This again admits a rather complete
analysis, complementing that presented in Section 3. Finally, temperature is recovered
from equation (4.4) in the simple form

T1 =
cG
λX

. (4.6)

The steady states of the phase-plane system (4.5) occur at the three points (X,G) =

(0, 0), (X∗, 0) and (X0, 0), in which the constant X∗ satisfies the nonlinear algebraic
equation

δ

β
(X − X0) = ln

( X
X0

)
. (4.7)

An equation similar to this was given by Weber et al. [12], and it arose in a model of the
spread of an infectious disease. It is straightforward to demonstrate that 0 < X∗ < X0

when β/δ < X0 but that X∗ > X0 if β/δ > X0. This second case is clearly unphysical,
and only the first case is of practical interest, since it involves a burnt fraction X∗

behind the flame front that is less than the original unburnt fraction X0. Importantly, in
the case β/δ < X0 of practical interest, the fuel behind the moving flame front cannot
be completely consumed since X∗ > 0, unlike the purely adiabatic case considered in
Section 2.

As in Section 3, the stability of the steady states is again determined by analysis
of the eigenvalues of the Jacobian matrix for the phase-plane system (4.5). For the
unburnt equilibrium (X,G) = (X0, 0) ahead of the flame, the eigenvalues are easily
calculated to be

1
2

[
−c ±

√
c2 + 4(β − δX0)

]
.

As previously, this must be chosen to be a degenerate stable node, in view of the form
(2.9) of the rate parameters. This then determines the wave propagation speed to be

c = 2
√
δX0 − β, (4.8)

so generalizing the result (3.2) in the purely adiabatic case. The wave speed (4.8) is
reduced by the presence of convective cooling, with coefficient β.

It now follows that the steady state (X,G) = (X0, 0) has the behaviour

repeated eigenvalue − c/2, eigenvector
[

1
−c/2

]
, (4.9)

which is completely consistent with the adiabatic result (3.3). However, in this case
there is, formally, a transcritical bifurcation at β/δ = X0 which is indicated in Figure 3
with a dashed vertical line. At this point, the wave speed c in equation (4.8) changes
from real to complex, so that the degenerate stable node for β/δ < X0 formally becomes
a centre when β/δ > X0. This is, however, of little practical concern since travelling-
wave behaviour is clearly no longer possible when c is complex. The other steady
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F 3. The three steady states of the nonadiabatic phase-plane system. The situation is illustrated for
the case X0 = 1, as a function of the bifurcation parameter β/δ. The two red horizontal lines illustrate the
solutions X = 0 and X = X0, and the blue curve corresponds to the third solution X∗. The dashed vertical
line occurs at β/δ = X0. (Colour available online.)

state (X,G) = (X∗, 0) behind the flame behaves as

eigenvalues 1
2 (−c ±

√
c2 + 4Λ), eigenvectors

[
1

1
2 (−c ±

√
c2 + 4Λ)

]
, (4.10)

in which the wave speed c is given in equation (4.8) and the constant

Λ = β − δX∗

has been defined for convenience.
There is a third steady-state point (X,G) = (0, 0) of the system (4.5) in the phase

plane. Its behaviour is not of particular interest since it is not an achievable outcome.
Nevertheless, for completeness, an analysis of this point is briefly discussed here.
From inspection of the system (4.5), it is evident that the origin is a singular point,
so that linearization about this point is not possible. To proceed, the system (4.5) is
written as a single second-order equation, and the mass fraction X is considered in the
form

X = X0eW . (4.11)

The statement X→ 0 is equivalent to W →−∞. Under the transformation (4.11), the
second-order differential equation for X becomes

d2W
dξ2

+ c
dW
dξ
− βW = −δX0(eW − 1),
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and as W →−∞, this equation is asymptotically equivalent to

d2W
dξ2

+ c
dW
dξ
− βW = δX0.

This is a linear differential equation with general solution

W(ξ) = −K1eΓ1ξ − K2eΓ2ξ −
δ

β
X0, (4.12)

in which K1 and K2 are arbitrary (positive) constants and

Γ1 = 1
2

[
−c +

√
c2 + 4β

]
, Γ2 = 1

2

[
−c −

√
c2 + 4β

]
.

The situation W →−∞ is of interest here, and the general solution (4.12) shows that
this may come about in one of two ways. Firstly, if ξ→−∞ then it is appropriate to
take

W(ξ)→−K2eΓ2ξ.

Secondly, if ξ→∞ then
W(ξ)→−K1eΓ1ξ.

When these results are combined with the transformation (4.11), it is evident that
trajectories in the (X,G) phase plane return to the point (0, 0) at an exponentially rapid
rate. In the phase plane the trajectories may thus be shown to have the behaviour

G ∼ Γ2X ln
( X

X0

)
if ξ→−∞,

G ∼ Γ1X ln
( X

X0

)
if ξ→∞,

after some algebra. Thus trajectories in the phase plane enter the point (0, 0) vertically,
either from above if ξ→∞ or from below if ξ→−∞.

Sample results are shown here for the case α = 1/2, µ = 1, γ = 1, ε = 3/2 and
unburnt mass fraction X0 = 1, as in Section 3. In addition, the cooling rate to ambient
is chosen to be β = 0.1. From equation (4.8), the wave speed is calculated to be
c = 0.7746, and the burnt fraction behind the wave is computed from equation (4.7)
by Newton’s method to be X∗ = 0.1074. Figure 4(a) shows the mass fraction for the
travelling wave, and unlike the similar diagram in Figure 1 in the adiabatic case, the
mass is not all consumed by the flame, but instead X→ X∗ for large negative ξ. The
temperature pulse is calculated using equation (4.6), and is shown in Figure 4(b).
Unlike the adiabatic temperature profile shown in Figure 1(a), here the perturbation
temperature T1 behind the flame now returns to zero. Thus the physical temperature T
regains the ambient value θa behind the flame, as must occur when Newtonian cooling
at rate β is incorporated into the model.

The (X,G) phase plane for the nonadiabatic case is shown in Figure 5, for the same
case as illustrated in Figure 4. The travelling wave is shown as a thick solid curve
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F 4. (a) Mass fraction and (b) temperature profile for a travelling wave, with parameters as given in
the text.
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F 5. The nonadiabatic solution in the (X,G) phase plane. The three steady states are indicated by
thick black circles. There is a saddle at (X∗, 0) and the travelling wave, indicated with a red heavy solid
line, forms a connection between it and the degenerate stable node at (X0, 0). The eigenvectors are shown
with green arrows from these two points. Other contours not associated with the travelling wave are also
shown, in blue. (Colour available online.)

that connects the saddle at (X,G) = (X∗, 0) with the degenerate stable node at (X0, 0).
A number of solution contours not directly associated with the travelling wave are
sketched using thin solid lines, and they are all eventually drawn into the stable node
at (X0, 0). These solution curves were obtained by numerical integration of the system
(4.5). The eigenvectors (4.9) and (4.10) are also drawn on the phase plane in Figure 5,
near the appropriate points.

5. Conclusion

In this note, an asymptotic approximation has been given to the full fourth-order
equations that describe the travelling wave in a competitive endothermic–exothermic
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F 6. Numerical solution of the full system of partial differential equations for the nonadiabatic
system. The initial temperature was a simple Gaussian profile, shown in red, and the behaviour of the
temperature profile in space x is displayed for 75 different times, over 0 < t < 150. (Colour available
online.)

reaction system. By ignoring the effects of material diffusion, appropriate to a solid
fuel system, the equations are reduced to third order, and then by approximating the
Arrhenius-like temperature-dependent reaction rates, the system is integrated to give a
second-order equation for the temperature perturbation T1 in the purely adiabatic case.
This then admits a full analysis in the phase plane, which is reasonably straightforward
to undertake. The key results of this asymptotic analysis are that an explicit formula
is obtained for the propagation speed of the travelling wave front, along with the
condition δ > 0 required for such a wave to exist. The results obtained are nevertheless
in agreement with more complex combustion models.

When Newtonian cooling to ambient temperature is readmitted to the model, a
simple phase-plane analysis for temperature is no longer possible. However, the
equation for the burnt mass fraction X of the fuel can still be integrated to give a phase-
plane system, when the Arrhenius reaction rates are subject to the same asymptotic
approximation as previously. The wave speed is again available in a simple closed-
form expression, and a rather complete analysis of the system is possible.

As an independent check on the reliability of the asymptotic approximations made
in this paper, the original partial differential equations (4.1)–(4.2) have been solved
numerically using the method of lines, with rate functions (2.9). A grid of 1501 mesh
points was placed equally spaced along the x-axis, over the interval −150 < x < 150,
and the equations discretized in space were integrated forward in time using Matlab.
The mass fraction was set initially to the value X(x, 0) = X0 and the initial temperature
was taken to be a simple Gaussian profile, T1(x, 0) = 0.03 exp(−x2). A solution is
shown in Figure 6, for the same values of the parameters as in Figures 4 and 5. As time
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progresses, two wave fronts develop, each moving away from the site of the original
disturbance. Their profiles slowly approach a time-independent shape moving at a
constant speed, and the shape matches closely that shown in Figure 4(b). The unburnt
fraction remaining in the portion between the two outwardly moving fronts in Figure 6
approaches the value X∗ = 0.1074 obtained in Section 4. It is more difficult to estimate
the wave speed that is approached by the fronts in Figure 6 for large times, from the
numerical solution of the full system (4.1)–(4.2), although the average speed over the
time interval 100 < t < 150 is about c ≈ 0.74, which is in reasonable agreement with
the value c = 0.7746 calculated from equation (4.8). A comparison such as this gives
confidence in the asymptotic analysis presented here.
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