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ON THE NUMBER OF STRUCTURES OF REFLEXIVE AND 
TRANSITIVE RELATIONS 

K. A. BROUGHAN 

If for each permutat ion the number of part ial orderings fixed by t h a t 
permuta t ion is known, it is possible to count the number of non-isomorphic 
part ial orderings on a finite set using a lemma of Burnside. In this paper it is 
shown t h a t knowledge of the numbers of partial orderings fixed by permuta­
tions will enable the number of non-isomorphic pre-orderings to be counted 
also. 

1. I n t r o d u c t i o n . In the first section the basic objects and actions which will 
be needed are defined. The reader is directed to [3] where a more detailed 
development is set out. 

Let n and j be positive integers with n ^ j . Let N = {1, 2, . . . , n\ and 
J = {1, 2, . . . ,j}. Let Sur(N,J) be the set of surjective functions with 
domain N and range J.lix £ N we will write (x)f for the value of/ £ Sur (N, J) 
a t the point x. 

Let An be the set of n X n binary matrices representing pre-orderings on 
N, and Bj the set of j X j binary matrices representing partial orderings 
on J . 

We will represent the elements of An and B3 by capital letters T, 5 , etc. 
For each / £ Sur(7V, / ) define a function / : Bj —» An by sending T —» 5 , 

where sab = /(«)/(&)/V (a, b) in N X N. Clearly, (T)f is well defined and is 
an element of An. 

Let Sp be the group of permutat ions on p letters, p being a positive integer. 
Let x G N and T G An. 

T h e interrelationships between the following actions were developed in [3]. 

(a) Sn X Sur(iV, J) -> Sur(iV, J) 

( * , / ) - > * • / where (x) ( « • / ) = ( (* )0 ) / . 

(b) Sur (TV, J ) X S i -> Sur(iV, J ) 

(/, cr) - > / • o- where (*) ( / • <r) = ((x)/)cr. 

(c) An X ow > An 

(d) Bj X Sj —> Bj in the same way as in (c). 

If / € Sur(2V, / ) let | | / || = ( | / - > ( D | , I / " 1 (2)I, • • • , l / ^O ' ) ! ) where \Q\ 
s tands for the cardinali ty of the set Q. 
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Let Norm(iV, J) be the set {||/| | |/<E Hom(N,J)}. 
Define an action Norm (N, J) X Sj —> Norm (N, J) by sending 

(11/11. <0-> l l / -<H| . 
If A G Sn and / G Sur (TV, J) we say A is special for f if and only if there 

exists a a& G 5^ such that A • / = / • aA. 
If X is an element of An, Bh Sur (TV, J) etc. let SV{X) be the subgroup 

of elements of Sv fixing X under one of the given actions. 

2. Counting relations. In this section the preliminary lemmas and the 
theorems are proved. 

LEMMA 1. Let T and V be in Bhf and g in Sur (TV, J). Then 

[(T)f = (V)g] «=> (3 c 6 S,)\j =g.„andV= ( 2 > ] . 

Proof. The necessity is trivial and we need only prove sufficiency. If 
(T)f = (V)g then tii)fU)f = vii)g(j)g\/ (ij) G TV2. Because T and V are anti­
symmetric, (i)f = j(f) <=> (i)g = j(g). Because of this if g\\ J —> N is any 
map satisfying gig = idj, gif is a permutation of J, a say, with the property 
f = g. a. Also 

hi)0<rU)0* = hi)/U)f = V(i)g(j)gV (i, j) G TV2. 

But g is surjective. Thus t^i)(T^m)a = Vim\/ (/, m) G J2. This means V = (T)<r, 
completing the proof of the Lemma. 

H. Gupta in [2] wrote down a summation for the number of preorderings 
on a finite set in terms of the numbers of partial orderings. He took isomorphic 
relations to be distinct. In the following lemma a set theoretic form of Gupta's 
result is derived. 

LEMMA 2. Let [f] be the equivalence class to which f belongs under the relation 
f r^ g<^ (3o- G Sj) such that f = g • a. Then 

n 

An = U U (Bj)f. 
j=l [f]\fÇ&UT(N,J) 

The sets in the unions form a partition of An into disjoint subsets. 

Proof. Clearly 

4 3 U U (Bj)f. 
3=1 /l/€Sur(iV,J) 

If M G An suppose that the rows rn, r2i, • . . , rkli are identical but distinct 
from the rest; rows r12j r22, . . . , rk22 are identical but distinct from the rest; 
and so on until finally rows rljy . . . , rkjj are identical but distinct from the 
others; &i, J2, . . . , ̂  = 1- Then the r's are the numbers 1, 2, . . . , n in some 
order. Let T be the j X j matrix formed by deleting the rows and columns 
of M apart from rows and columns numbered rn, ri2, . . . , ri;-. 
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Then, if / G Sur(iV, J) is denned by the rule f(rpq) = q, we have M = (T)f 
with T G Bj. Thus 

n 

An = U U {B,)j. 
3=1 /l/€SurOV, J) 

It is easy to see that the union over j is disjoint. Suppose now that j is fixed, 
t h a t / and g are in Sur (TV, / ) and that (Bj)f C\ (Bj)g ^ 0. Then there exist 
T and F in B3- such that ( r ) / = (V)g. By Lemma 1, this implies / ~ g. On 
the other hand if / ~ g then (Bj)f = (Bj)g: If a G 5^ is such t h a t / = g • a 
then ^ x \ 

( S , ) / = (B,)g-v= ((Bj)a)g= (B})£. 

These remarks show that the sets in the unions are disjoint as claimed. 

Finally, we will show that this is equivalent to the formula of Gupta. The 
number of ways in which n distinct objects may be placed in exactly j like 
boxes is represented by u(n,j) and is equal to the size of the set 
{ [ / ] | /Sur( iV,7)} . Because/ is injective [3, Lemma l(i)], \(Bj)f\ = \Bj\. 
Thus 

n 

\An\ = X ufaj^Bjl 

which is Gupta's result. 
If T G An let [T] be the equivalence class to which T belongs in the relation 

T~S^ (3<x G Sn)[T = (S)a]. Let An = {[T] \T G An) and B, = {[T] \ 
T G Bj}. The following theorem uses the result of Lemma 1 to form a parti­
tion of Àn into disjoint subsets. 

THEOREM 1. Let f*: Bj—* Ân be the map T-*[(T)f], and let [[/]] be the 
equivalence class to which f belongs in the relation f c^. g <=> / = A • g • a for 
some pair (A, a) in Sn X Sj. Then 

An = U U {Bj)f*. 
3=1 [[/]]l/6Sur(AT,j') 

The sets in the unions are pairwise disjoint. 

Proof. From Lemma 2 we obtain the equation 

An = U U (Bj)f. 
3=1 [/]l/€Sur(iV,J) 

Firstly, i f / ~ g then (Bj)f = (Bj)g*, as 

(Bj)f = (Bj)A -g-a= (Bj)aA • g = (Bj)gA 

for some pair (A, a) in Sn X Sj. 
Also, if (Bj)f H (Bj)g* j£ 0, there is an M G An and a (A, 0) in Sn

2 such 
that (M)A = (T)f and (Af)0 = ( F ) | for some (7\ F) in B?. Thus 

(T)fA-1 = (V)g(l)-1 and hence (7") A"1 • / = (V)^-1 • g. By Lemma 1 there exists 
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a a in Sj such that <£ • A-1 • / = g • a. Therefore / ~ g. The theorem now follows 
from these remarks. 

In [1], Davis observed that the problem of counting the number of non-
isomorphic relations of a special type could be reduced to the problem of 
counting the number of relations fixed by each permutation, by using Burn-
side's lemma. That is if a group G acts on a set S, the number of orbits, £, 
satisfies the equation 

*|G| = £ fw 
where f(ir) is the number of elements in 5 fixed by w in G. We will use this 
formula in the proof of Theorem 2. 

If AÇ5 W let An(A) = {T G A_n \ T = (T)A\. Define Bj(a) similarly. 
Theorem 2 derives a formula for \An\ in terms of the numbers \Bj(a)\. Three 
lemmas precede this derivation. 

If A is special fo r / G Sur (TV, J) there is a relationship between An(A) and 
BJ((TA). This relationship is described in the next two Lemmas. 

LEMMA 3. Iff G Sur (TV, J) then {Bf)jr\An{A) ^ 0 <̂> A is special for f. 

Proof. (=>) If M G (Bj)fC\ An(A) there is a T in 5 , with M = (T)f and 

( r ) / = (T)fA. Thus ( r ) / = ( r )A • / and (by Lemma 1) there is a a in 5 i f 

such that / = A - f - a. Therefore A • / = / • c - 1 and A is special for / . 
(<=) Let T be such that ( 7> A = T. Then 

( r ) / A = (r)/.(TA = (T)vAf= (T)f. 

Thus ( r ) / 6 (Bj)fr\An(A), completing the proof. 

LEMMA 4. If A is special for f then (Bf)j C\ An(A) and Bj(aA) are of the 
same size. 

Proof. It is easy to check that / \Bjfa) induces a bijection. 

LEMMA 5. Let Sn
f = {A G Sn\ A is special for f }. Then 

Sn'/Sn(f)^S,(\\f\\) 
as groups. 

Proof. The map <j>: Sn
f —>5^(||/ ||) sending A —> aA is a surjective homo-

morphism with kernel Sn(f ). 

THEOREM 2. 

m\Ân\ = ± £ i\sn(f)\ E \B,(e)\\. 
3=1 [/]|/€SurOV,J) ^ *€<Sy(||/||) / 

Proof. From the formula given in Lemma 2 we may write 

An(A) = U U M « ( A ) n CB,)jr}. 
i = l [/U/€Sur(iV,J) 
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Because the sets in the unions are disjoint it follows that 

K(A)|=Z E \An(A) n (Bj)f\. 
3=1 [f]\fesuv(N,j) 

When A is special for / we will write CTA as a^j. Then 

M.(A)| = E E \BM.r)\ 
3=1 [f]\f€Sur(N,J) and 

A special for / 

by Lemma 4. From the formula for the number of orbits generated when Sn 

acts on An: 

n\\An\ = E K(A)| = 2 Î E !£,(<*,,) |. 
A£Sn A££n i = l [/]|/€Sur(JV,J-) and 

A special for / 
Now let 

Then 

x(7,A,/) = {l^(o'A'/)1' i fA € 5 / 
0, otherwise. 

»P«I = HT, E x(i,A,/), 
A6Sn i = l [/]|/€Sur(iV,J-) 

= E E JEx(i,A,/)}, 

= E E { E, l̂ (<*.r)i}, 

= Ê E j|S.(/)l E l*,to 
using the isomorphism in Lemma 5. This completes the proof. 

Conclusion. From Burnside's formula, 

7P,| = E |a,(<r)|. 
If one could calculate the numbers \Bj(a)\ one could not only count the 
number of non-isomorphic partial orderings but also, by the result of Theorem 
2, count the number of non-isomorphic preorderings. 
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