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Wall-pressure and velocity statistics in the turbulent boundary layer (TBL) on a cambered
controlled-diffusion aerofoil at 8◦ incidence, a Mach number of 0.25 and a chord-based
Reynolds number Rec = 1.5 × 105 are analysed at four locations on the suction side
with zero and adverse pressure gradients (ZPG and APG), characterised by increasing
Reynolds numbers based on momentum thickness, Reθ = 319, 390, 877 and 1036. The
strong APG yields a highly non-equilibrium TBL at the trailing edge that significantly
affects the turbulent flow statistics. Different normalisations of the full wall-pressure
statistics involved in trailing-edge noise are analysed for the first time in such strong
APG with convex curvature, and compared with available experimental and numerical
data. Good overall agreement is found in the ZPG region, and most results obtained in
previous APG TBL can be extended to the present highly non-equilibrium case. The
presence of strong APG augments the intensity of wall-pressure fluctuations noticeably
at low frequencies, shortens the streamwise and broadens the spanwise coherence of
wall-pressure fluctuations in both time and space, and significantly reduces the convection
velocity. The wall-pressure power spectral density are found to scale with the displacement
thickness, the Zaragola–Smits velocity and the root-mean-squared pressure, the latter
possibly being replaced by the local maximum Reynolds shear stress. The other two
key parameters to trailing-edge noise modelling, the spanwise coherence length and
the convection velocity, rather scale with displacement thickness and friction velocity,
respectively.
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1. Introduction

The wall-pressure fluctuations induced by a turbulent boundary layer (TBL) constitute an
important source of noise and vibration in many applications. Such fluctuations, caused by
eddies correlated over limited regions in the boundary layer, result in flow-induced loads
that can either radiate noise directly or excite the underlying structure generating vibration
and noise, mainly in the low to mid audio frequency range, where human annoyance
to noise is particularly important. This topic is also of interest for many engineering
problems. A few examples among many are fatigue cracking on panels of an aircraft
fuselage induced by high-speed turbulent flow, or cabin noise transmitted by flexible
structures loaded by TBLs excitation. In marine transportation, the noise generated by
wall-pressure fluctuations has become quite important when considering the need for
improved inboard comfort in high-speed ships. In particular, acoustic waves created by the
scattering of the wall-pressure fluctuations at a sharp-edged body, such as a wing or a fan
blade, are the cause of broadband noise, also known as trailing-edge (TE) noise (Tam & Yu
1975; Brooks & Hodgson 1981; Lee et al. 2021). As indicated in most aerofoil TE noise
models based on acoustic analogies (Curle 1955; Ffowcs-Williams & Hall 1970; Howe
1978), the wall-pressure fluctuations can be an efficient sound source of dipole type that
can be dominant at low Mach numbers. Indeed, such a noise mechanism is responsible for
part or most of the airframe, propeller, low- and high-speed rotor and wind turbine noise,
as well as other noise problems.

In order to predict the disturbance produced by such turbulent flows, it is first necessary
to model all the fluctuating properties that characterise the flow field. Indeed, as indicated
in Blake (1970, 1986) and Bull (1996) for instance, the common modelling approach used
to evaluate the structural response to a wall-pressure excitation induced by TBL requires
a proper representation of the underlying structural forcing function, which presumes
the correct representation of single and two-point turbulent wall-pressure statistics, i.e.
power spectral densities (PSDs), spatial and wavenumber spectra, convection or phase
velocities. Furthermore, to address TE noise problems, Amiet’s model and its extension
(Amiet 1976; Roger & Moreau 2005; Moreau & Roger 2009; Roger & Moreau 2012),
which relies on Curle’s analogy combined with a compressible linearised Euler model
for the wall-pressure fluctuations on an infinitely thin flat plate at zero incidence, is one
of the most popular methods as it only requires the prescription of PSD spectra near the
TE, as well as the spatial cross-spectrum and convection velocities. Indeed, the PSD of
the far-field acoustic pressure at any observer located at X = (X1, X2, X3), for any angular
frequency ω, generated by a flat plate of chord length c and span L reads

Spp(X , ω) ≈
(

kcX2

4πS2
0

)2
L
2

∣∣∣∣I
(

ω

Uc
, k

X3

S0

)∣∣∣∣φpp(ω) Lz

(
ω, k

X3

S0

)
, (1.1)

where k is the acoustic wave number, S0 is the corrected distance to the observer, I is
the analytical radiation integral (or acoustic transfer function) given in Roger & Moreau
(2005), Uc is the streamwise convection velocity, φpp is the wall-pressure spectrum and Lz
is the spanwise coherence length. It is then clear that a comprehensive study on scaling
laws should consider all three parameters.

In such a context, TBL characterisation, both in measurements, simulations and
modelling, has received a considerable amount of attention. Several experimental
measurements have been carried out over the years on TBL wall-pressure fluctuations
in order to estimate the statistical properties of the flow, mostly in zero pressure
gradient (ZPG) TBLs on flat plates or inside tubes (Willmarth 1956; Corcos 1962;
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Effect of adverse pressure gradient on wall-pressure statistics

Bull 1967; Blake 1970; Farabee & Casarella 1991; Arguillat et al. 2010). Among them,
Arguillat et al. (2010) performed direct measurements of the wavenumber-frequency
spectrum of wall-pressure fluctuations beneath a turbulent plane channel flow in an
anechoic wind tunnel, using a rotative array of 63 remote microphone probes; they
analysed the acoustic and the aerodynamic contributions from wall-pressure fluctuations
by transforming space-frequency data into wavenumber-frequency spectra, underlining
the importance of considering both contributions for an accurate noise prediction.
Recently, Van Blitterswyk & Rocha (2017) has published a more complete analysis of the
physical relationship between wall-pressure and turbulence, combining a high-resolution
wall-mounted microphone array and single hot wires to simultaneously measure both
wall-pressure and velocity fluctuations induced by low-Reynolds-number ZPG TBLs. By
performing simple statistical analysis and using a wavelet transform, Van Blitterswyk &
Rocha (2017) was able to estimate the contributions from the buffer, logarithmic and
outer layers to wall-pressure fluctuations, showing the effect of the hairpin structures
contributing to the large-scale motions with increasing Reynolds numbers based on
momentum thickness. Fewer authors have focused in depth on adverse pressure gradient
(APG) TBL measurements (Bradshaw 1967; Schloemer 1967; Simpson, Ghodbane &
McGrath 1987; Salze et al. 2014, 2015). Among these, Schloemer (1967) has studied the
effects of different pressure gradients, such as ZPG, mild APG and favourable pressure
gradient (FPG), in a low-turbulence subsonic wind tunnel, comparing his findings for
the ZPG case with previous published measurements. Schloemer (1967) drew several
conclusions, such as a lower convection velocity ratio in the APG case with respect
to the ZPG case, a more rapid loss of coherence in the streamwise direction for the
APG rather than for ZPG, as well as an increase of the dimensionless spectral density
in the low-frequency content due to APG. Later, Salze et al. (2014, 2015) used a setup
similar to Arguillat et al. (2010) to analyse wall-pressure fluctuations with both ZPG
and APG TBLs. In the case of Salze et al. (2014, 2015), the mean pressure gradient
was achieved by inclining the ceiling of the test section, the wall-pressure fluctuations
were measured by using a pinhole microphone together with a high-frequency-calibration
procedure and the wavenumber-frequency spectra were obtained using a rotating linear
antenna of remote microphones. As discussed in the experimental review of Willmarth
(1975) and Eckelmann (1988), accurate measurements are difficult due to the pressure
transducer size or the wide range of pressure fluctuations or the probes sensitivity. Still
today, a complete characterisation of TBL wall-pressure spectral data is lacking, and
no consistent experimental measurements are available in literature. From a modelling
point of view, Bull (1996), Graham (1996), Graham (1997), Caiazzo, D’Amico & Desmet
(2016), Caiazzo et al. (2018) and others have shown that a stochastic source reconstruction
is considered as a good alternative to computational fluid dynamics (CFD) simulations to
account for TBL excitations in an early design stage. On the other hand, detailed CFD
simulations, i.e. large eddy simulations (LES) or direct numerical simulations (DNS),
guide engineering in modelling such turbulent statistics very precisely, addressing most of
the complicated nonlinear phenomena (Ciappi et al. 2019). Kim (1989) has computed DNS
of ZPG turbulent channel flow. Later Choi & Moin (1990) revisited this work, computing
three-dimensional (3D) wavenumber-frequency spectrum of the wall-pressure fluctuations
and defined scaling laws for PSD and convection velocities. They have shown that an
appropriate scaling for the different spectra is with outer variables at low frequencies
and with inner variables at high frequencies; they observed that a discrepancy can be
found between convection velocities as a function of the wavenumber and as a function
of frequency and that the hypothesis of a constant convection velocity is valid only for
large-scale structures, corresponding to low frequencies and low wavenumbers. A standard
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reference case for ZPG TBL flows is the work of Spalart (1988), who has analysed flows at
three Reynolds numbers based on momentum thickness θ (Reθ ≡ Ueθ/ν = 300, 670 and
1410, with Ue the TBL edge velocity and ν the kinematic viscosity). Na & Moin (1998)
performed DNS of two TBLs, attached and separated, over a flat plate with different
pressure gradients, observing that one of the major effects of a pressure gradient is to
distort the turbulent velocity profiles. Their results reproduce the experiments of Watmuff
(1989). More numerical work on TBL wall-pressure fluctuations on flat plate under APG
has been carried out by Abe, Matsuo & Kawamura (2005) and Abe (2017), who have
investigated the Reynolds-number dependence of the pressure fluctuations. Over the past
years, several researchers have discussed the effect of ZPG and APG (Lee & Sung 2008;
Schlatter et al. 2009a,b; Schlatter & Örlü 2010; Monty, Harun & Marusic 2011; Kitsios
et al. 2016; Bobke et al. 2017; Vila et al. 2017; Volino 2020). In general, due to the
limitation found in experimental measurements, DNS have become increasingly used to
understand the physics of turbulence and to test scaling laws. Recently, Cohen & Gloerfelt
(2018) have studied the influence of the pressure gradients on wall-pressure beneath a TBL
by carrying out LES for TBL under FPG, ZPG and both strong and weak APG, denoted
as ‘APGs’ and ‘APGw’, respectively; they used inclined plates with different slopes to set
the pressure gradients and compared their findings with various data available. However,
all these studies involve equilibrium TBLs. As recalled by Cohen & Gloerfelt (2018), this
mainly involves three main conditions:

(i) a power-law relationship between the TBL edge velocity Ue and the curvilinear
abscissa s along the wall;

(ii) a linear variation of the outer length scale with s; and
(iii) some mean gradient parameters remaining constant along s.

Moreover, only a few studies on curved surfaces, i.e. on aerofoils, can be found in which
turbulence statistics are studied more in depth (Vinuesa et al. 2017; Tanarro, Vinuesa &
Schlatter 2020). Furthermore, most of low- and high-speed compressing turbomachinery
applications involve cambered, highly loaded aerofoils often operating in strong APG on
the verge of separation, characterised by strong variations of Clauser parameter (βc) and
acceleration parameter (K) and consequently strongly non-equilibrium TBLs not studied
before.

The present study thus focuses on both ZPG and varying APG effects in strongly
non-equilibrium TBLs, by comparing turbulent statistics (both wall-pressure and velocity
fields) developed over the same curved suction side of a cambered controlled diffusion
(CD) aerofoil. A 3D compressible Navier–Stokes (NS-)DNS, described in Wu et al.
(2018), of the flow over a CD aerofoil at a 8◦ geometrical angle of attack, is used.
The considered chord-based Reynolds number is Rec = 1.5 × 105 and the free-stream
Mach number is M = 0.25. The purpose of this study is to enrich the lack of DNS
data in ZPG and APG TBLs on aerofoils by investigating in detail turbulent statistics
at four increasing Reynolds numbers based on the momentum thickness. Such a CD
profile, used in several previous studies by Roger & Moreau (2005), Wang et al. (2009),
Wu et al. (2018), Wu, Moreau & Sandberg (2019) and others, belongs to a family of
thin aerofoils with small relative thickness and mild camber typical of compressing
machines. Indeed, it is also representative of many modern industrial applications, i.e.
turboengine compressor and fan blades, automotive engine cooling fan and aerospace heat
and ventilation air-conditioning systems. It employs specific characteristics to carefully
control flow and aerodynamic losses around the aerofoil surface by controlling the growth
of the boundary layer (i.e. its diffusion). The CD aerofoil has been studied extensively
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both experimentally and numerically, and represents a solid database for studies on
both aerodynamics and aeroacoustics (Moreau 2016). This aerofoil is characterised by
a chord length c = 0.1356 m, a 4 % thickness to chord ratio and a camber angle of
12◦. The numerical case considered here has been developed in order to reproduce the
experimental set-up performed in the anechoic open jet wind-tunnel of the Université
de Sherbrooke (UdeS) (Padois et al. 2015; Jaiswal 2020), in which remote microphone
probes are distributed over the pressure and suction sides of the CD aerofoil to measure
wall-pressure fluctuations. The boundary layer developing over the suction side of the
CD aerofoil first encounters a laminar separation bubble (LSB) at the leading edge (LE)
that triggers the transition to turbulence. The TBL then encounters a FPG, followed by a
ZPG around mid-chord and, finally, an APG growing fast until the TE due to the aerofoil
camber. The same sensor locations on the CD aerofoil as in the experimental set-up have
been considered for statistical analyses in the compressible NS-DNS (Wu et al. 2018).
In particular, data from four sensors on the suction side of the aerofoil are studied here.
Those are representative of TBLs with ZPG or APG. Note that the short FPG region is not
directly considered here, but its effect on the ZPG statistics is also assessed.

The paper is organised as follows. Firstly, in § 2, the details of the numerical set-up are
recalled, together with a summary of the signal processing methods adopted. In § 3, the
TBL characteristics and velocity statistics are presented. A discussion of the higher-order
statistics results is given in § 4, compared with wall-pressure measurements taken in
the anechoic wind tunnel at UdeS and with previous published DNS data obtained in
similar conditions. In particular, the dependence of the convection velocity ratios on
wavenumbers, frequency and spatial separations is discussed in detail for the ZPG and
APG parts of the aerofoil boundary layer. Finally, some conclusions are drawn for this
highly non-equilibrium TBL with curvature effect.

2. Numerical case

This section briefly recalls the numerical set-up used to generate the database analysed
in the present study. It corresponds to a 3D compressible NS-DNS performed by Wu
et al. (2019) of the airflow over the CD aerofoil embedded in the potential core of
the jet of the anechoic wind tunnel at UdeS as discussed in Padois et al. (2015). A
computational six-block H–O–H structured mesh of 3341 × 279 × 194 grid points is
used in the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. The
total grid size is 345 × 106 nodes. The compressible Navier–Stokes equations are solved
with the multi-block structured code HiPSTAR (High Performance Solver for Turbulence
and Aeroacoustics Research) (Sandberg 2015). The spatial discretisation involves both
a five-point fourth-order central standard-difference scheme with Carpenter boundary
stencils in the streamwise and crosswise directions (Carpenter, Nordström & Gottlieb
1999), and a spectral method using the FFTW3 library in the spanwise direction. The
time discretisation is achieved by an ultra-low-storage five-step fourth-order Runge–Kutta
scheme (Kennedy, Carpenter & Lewis 1999). Characteristic-based boundary conditions
are also used to prevent spurious reflections at the computational domain boundaries
(Sandberg & Sandham 2006; Jones, Sandberg & Sandham 2008). A complete analysis
of the numerical set-up that allowed the analysis of both aerodynamics and acoustics is
documented in Wu et al. (2019) and Wu, Moreau & Sandberg (2020).

The volume data around the aerofoil are recorded at a sampling frequency of 78 kHz for
7 flow-through times, T = c/U∞, with free-stream velocity U∞ = 16 m s−1. A constant
dimensionless time step of �t = 7.5 × 10−6 is used. The space–time database is extracted
at different locations on the aerofoil assuming a spanwise extent of 12 % chord; this length
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LE

TE

7 9

21
24

Figure 1. Remote microphone probes locations on the CD aerofoil. Numbers show sensor indices designated
in Wu et al. (2019).

is determined to be sufficient to get fully decorrelated turbulence in the span (Moreau
& Roger 2005; Wang et al. 2009; Wu et al. 2019). The locations of the experimental
wall-pressure probes considered over the suction side of the CD aerofoil are along the
streamwise direction as shown in figure 1. Sensors 7 and 9 are approximately located at
mid chord and sensors 21 and 24 near the TE.

The mean pressure distribution over the surface of the CD aerofoil is analysed in figure 2
through the mean wall-pressure coefficient distribution,

− Cp = − p̄ − p∞
1
2ρU2∞

, (2.1)

where p∞ and ρ are the reference static pressure and air density taken at the inlet
respectively. The mean wall-pressure coefficient calculated from the DNS is also compared
with wall-pressure measurements by Jaiswal et al. (2020) and Jaiswal (2020), taken at
several locations over the suction and pressure side of the CD aerofoil. As shown in
figure 2, a small plateau between x/c = −1 and x/c = −0.9 indicates a small laminar
recirculation bubble at the aerofoil LE that triggers the transition to turbulence in the
bubble shear layer and consequently an attached turbulent flow. After the reattachment
point, the pressure gradient increases along the CD aerofoil. The flow is first subjected
to a FPG, then to a ZPG around mid-chord and finally to an APG downstream due to the
aerofoil camber. On the pressure side, the flow is laminar and attached until the TE where it
transitions to turbulence with a small vortex shedding appearing in the near wake, mixing
with the turbulent flow on the suction side (Neal 2010; Moreau et al. 2011; Wu et al. 2018).
By comparison with the set of experimental data produced at UdeS (Jaiswal 2020; Jaiswal
et al. 2020), the DNS distribution gives a good prediction of the pressure coefficient on
the aerofoil, except for a slightly higher pressure plateau within the thin LSB at the LE
(Wu et al. 2020), see figure 2.

As shown in figure 1, the four points of the aerofoil suction side analysed correspond
to ZPG (sensors 7 at x/c = −0.60 and 9 at x/c = −0.47) and APG (sensors 21 at x/c =
−0.14 and 24 at x/c = −0.08) locations. For each location, a volume of data containing
the pressure and velocity distributions is extracted.

2.1. Signal processing
A summary of the signal processing adopted throughout the paper is presented here. The
DNS volume data are appropriately scaled to obtain dimensional quantities. In particular,
the numerical pressure data are rescaled by ρU2∞. The wall-pressure statistics are then
computed for the four locations corresponding to sensors 7, 9, 21 and 24.

For all four sensor locations and even for those close to the TE in the strong APG
region, the local pressure field has been found homogeneous in planes parallel to the
wall and stationary in time, both numerically (Grasso et al. 2019) and experimentally
(Jaiswal 2020; Jaiswal et al. 2020). In practical applications, only single time histories of
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–1.0 –0.8 –0.6 –0.4 –0.2 0

x/c

–1

0

1

2

–Cp

Figure 2. Pressure coefficient distribution, Cp, on the CD aerofoil: ——, DNS (Wu et al. 2019);
•, experiment (Jaiswal 2020; Jaiswal et al. 2020).

the stochastic variable are available, and thus the stationary process is normally assumed
to be ergodic. Under such conditions, the space–time cross-correlation function of the
wall-pressure fluctuations p′ = p − p̄ at two arbitrary space–time points is defined as

Rpp(ξ ; τ) = lim
T→∞

1
T

∫ T

0
p′(x, t)p′(x + ξ , t + τ) dt, (2.2)

where ξ is the spatial separation vector between two points located at x and x + ξ with
time delay τ . In this way, the random sample in space and time is compressed into a much
shorter function of ξ and τ . The cross-spectral density (CSD) is then calculated with a
simple fast Fourier transformation using a Welch periodogram technique and Hanning
windowing with zero padding (Salze et al. 2014),

Ψpp(ξ ;ω) = 1
2π

∫ ∞

−∞
Rpp(ξ , τ ) exp(−iωτ) dτ. (2.3)

The spectra are computed using a Welch periodogram method with 16 windows, each
containing 512 points, and with 50 % overlap. The high-frequency numerical noise is
filtered out using a Butterworth filter. By doing a two-dimensional (2D) spatial Fourier
transform of Ψpp(ξ ;ω) with the cross-correlation spectra for each time block averaged
together, the CSD function in the wavenumber-frequency domain is then computed by
discretising the following Fourier integral

Ψpp(k;ω) = 1
(2π)2

∫ ∫ ∞

−∞
Ψpp(ξ ;ω) exp(−ikξ) dξ , (2.4)

where k = (kx, kz) is the 2D wavevector (Bull 1996), with kx and kz the streamwise and
spanwise wavenumbers, respectively. The PSD or single-point wall-pressure spectrum
(i.e. auto-spectrum), φpp, at a given angular frequency ω, is related to the space–time
correlation function and the wavenumber-frequency spectrum by

φpp(ω) = 1
2π

∫ ∞

−∞
Rpp(0; τ) exp(−iωτ) dτ,

=
∫ ∫ ∞

−∞
Ψpp(k;ω) dk. (2.5)
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The resolved normalised frequency range is 0 ≤ ωδ∗/U∞ ≤ 5.53 (where δ∗ is the
boundary layer displacement thickness) with a frequency resolution of �ω = 1.4 ×
10−3U∞/δ∗ and a wavenumber resolution of �kx = 0.12/δ∗ in the streamwise direction
and �kz = 0.14/δ∗ in the spanwise direction.

3. Boundary layer development

The TBL characteristics calculated from the DNS data on the aerofoil suction side of
figure 1 are shown and discussed here. These distributions are compared with results
of several available numerical and experimental data sets (Schloemer 1967; Brooks &
Hodgson 1981; Spalart 1988; Watmuff 1989; Na & Moin 1998; Schlatter et al. 2009a,b;
Vinuesa et al. 2017; Cohen & Gloerfelt 2018; Tanarro et al. 2020; Hu 2021).

In table 1, the properties of the TBL for the current DNS at the four sensors locations
are summarised. The flow properties for DNS cases of Choi & Moin (1990), Spalart
(1988), Tanarro et al. (2020) and Na & Moin (1998) (including both ZPG TBL, x = 0.50,
attached APG TBL, x = 0.85, and separated APG TBL at x/δ∗

in = 120) are also reported
in table 1. In addition, the ZPG, APGs and APGw cases of Cohen & Gloerfelt (2018) are
also included in table 1. These data are also considered later for comparison of PSD and
the convection velocities.

Here, Reτ = uτ δ/ν ≡ δ+ is the friction Reynolds number or Kármán number, with
uτ = √

τw/ρ the friction velocity, τw = μ(∂U/∂y)|y=0 the wall shear stress (U is the
streamwise mean velocity component and y is the wall-normal distance from the wall)
and δ the boundary layer thickness. The latter is calculated based on the conservation
of the stagnation pressure pt = ρu2

t /2 + p∞ outside the boundary layer for the present
low-speed flow; u2

t is the velocity magnitude squared. The edge of the boundary layer is
considered reached when pt is 95 % of its maximum value in the wall-normal direction
(Sanjosé & Moreau 2018; Griffin, Fu & Moin 2021). This criterion was also used in
the boundary-layer data extraction by Christophe et al. (2015); the criterion is necessary
as the edge velocity is not constant around the aerofoil in the jet potential core. Here
βc = δ∗/τw(dp/ds) is the Clauser parameter, with dp/ds the streamwise mean pressure
gradient on the wall. The acceleration parameter is K = ν/U2

e (dUe/ds) and H = δ∗/θ
is the shape factor. Both βc and K vary strongly along the curvilinear abscissa s, which
confirms a strongly non-equilibrium TBL on the CD aerofoil suction side according to
criterion (iii). To quantify this non-equilibrium state, in figure 3, the evolution of βc as
a function of the defect shape factor G ≡ [(H − 1)/H]uτ /Ue or the friction Reynolds
number Reτ is shown for the current case and compared with the theoretical equilibrium
turbulent boundary-layer data of Mellor & Gibson (1966), the quasi-equilibrium cases
corresponding to constant and varying βc simulated by Bobke et al. (2017) (m in caption
is the power-law exponent of varying streamwise velocity at the top boundary to yield
near-equilibrium APG flow conditions, based on definition by Townsend (1961)), and
the non-equilibrium flow data from NACA0012 and NACA4412 aerofoils (Tanarro et al.
2020). The present simulation is noticeably further away from the theoretical equilibrium
G-factor and presents a faster growth of βc, yielding a TBL on the verge of separation for
Kármán numbers typical of highly loaded low-speed fans.

The normalised velocity profiles for the current DNS case are presented in figure 4. The
profiles obtained at mid-chord locations are similar. Near the TE, a thicker boundary layer
with a lower wall shear stress τw is observed, due to APG.

In figure 5, the skin-friction coefficient, Cf = τw/(0.5ρU2
e ), and the shape factor, H,

are plotted against Reynolds number based on momentum thickness. The skin-friction
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Figure 3. Clauser pressure-gradient parameter βc as function of (a) defect shape factor G and (b) friction
Reynolds number Reτ . − · −, present CD aerofoil DNS; — (light blue), theoretical equilibrium data (Mellor
& Gibson 1966); flat plate DNS for constant and non-constant βc-cases (Bobke et al. 2017): — (green), m =
−0.13 with βc = [0.86; 1.49], — (blue), m = −0.16 with βc = [1.55; 2.55], — (purple), m = −0.18 with
βc = [2.15; 4.07], — (orange), βc = 1 and —- (olive) βc = 2; — (red) NACA4412 and — (black) NACA0012
aerofoil DNS (Tanarro et al. 2020).

Case x/c Reθ Reτ βc K H = δ∗/θ
×106

Sensor 7, ZPG −0.60 19 178 0.005 −0.09 1.61
Sensor 9, ZPG −0.47 390 185 0.28 −0.97 1.61
Sensor 21, APG −0.14 877 210 4.82 −3.85 1.86
Sensor 24, APG −0.08 1036 203 8.31 −2.66 2.00
Choi & Moin (1990), ZPG — 287 180 — — 1.62
Cohen & Gloerfelt (2018), ZPG — 1693 608 0 0 1.46
Cohen & Gloerfelt (2018), APGw — 2462 692 0.44 −0.16 1.53
Cohen & Gloerfelt (2018), APGs — 3125 688 1.41 −0.3 1.63
Na & Moin (1998), ZPG 0.50/c 586 329 −0.35 0.93 1.41
Na & Moin (1998), APG 0.85/c 1229 424 1.78 −1.4 1.54
Spalart (1988), ZPG − 300 150 — — 1.66
Tanarro et al. (2020), APG (NACA4412) 0.75 1666 366 3.59 — 1.74
Hu (2021), ZPG — 4889 1439 0.1 — 1.41
Hu (2021), APG — 8670 1388 6.0 — 1.75
Schloemer (1967), ZPG — 4500 1603 — — 1.34
Schloemer (1967), APG — 7380 1710 3.34 — 1.58

Table 1. Properties of the TBL for the current DNS data and for several existing studies in the literature.

coefficient decreases with higher Reθ as the boundary layer develops. Also shown are
the empirical correlation based on the 1/7 power law of the form Cf = 0.024Re1/4

θ by
Smits et al. (1983), aerofoil data by Vinuesa et al. (2017) and Tanarro et al. (2020),
and additional reference data (Spalart 1988; Na & Moin 1998; Schlatter et al. 2009a,b;
Cohen & Gloerfelt 2018). In the ZPG zone around Reθ = 320, the skin-friction coefficient
and the shape factor matches well with the correlation values (Monkewitz et al. 2007;
Schlatter & Örlü 2010). At higher Reθ , the trend of Cf and H with Reθ starts to differ: Cf
decreases and H increases much faster in comparison to ZPG correlations. This is caused
by the strong APG effects of this highly non-equilibrium flow as the TE is approached.
Such a variation is qualitatively inline with previous notable studies on aerofoils
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Figure 4. Dimensionless velocity profiles: ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47
(thick grey line); APG locations x/c = −0.14 (thin black line), x/c = −0.08 (thick black line).

(Vinuesa et al. 2017; Tanarro et al. 2020), but with a stronger APG on the verge of
separation, typical of highly loaded low-speed fans. The Cf corrected with (1 + βc/10)

as proposed by Volino (2020) is plotted in figure 5(b). This correction with the Clauser
pressure gradient parameter improves the Cf correlation, and collapses all aerofoil data.
However, a scatter (though reduced) is still present considering both airfoil and ZPG
data, as shown by the current DNS results with modified Volino (2020) corrections with
different βc multipliers of 0.12 and 0.15. Therefore, the constant of 0.1 used by Volino
(2020) is not universal and depends on the mean pressure gradient. Figure 6 shows the
streamwise variations of δ, δ∗ and θ normalised by c, compared with laminar and turbulent
flat plate ZPG boundary layer solutions, obtained assuming fully laminar or fully TBL
from the LE. In figure 6(a), a hump of δ/c near the LE is shown as the LSB develops; after
the hump, the boundary layer thickness over the CD aerofoil increases after the transition
to turbulence, noticeably so around x/c = −0.6 in the ZPG region, where δ/c matches
the ZPG turbulent flat plate boundary layer solution. The red dotted box in figure 6(a)
represents the aerofoil region considered in figure 6(b–d), which starts around mid-chord
at sensor 7 (x/c = −0.6).

The boundary layer displacement thickness (figure 6c) and the boundary layer
momentum thickness (figure 6d) are obtained by integration of the corresponding velocity
profile across the boundary layer,

δ∗(x) =
∫ δ

y=0

(
1 − U

Ue

)
dy, θ(x) =

∫ δ

y=0

U
Ue

(
1 − U

Ue

)
dy. (3.1a,b)

The increasing growth rate of the boundary layer as shown by all three thicknesses is
due to the APG experienced by the boundary layer as it develops in the aft portion of
the CD aerofoil. The departure from ZPG turbulent solutions is consistent with the fact
that the TBL is subjected to strongly non-equilibrium APG. In figure 7, the variations
of δ∗/δ∗

in and θ/θin in the APG region are plotted versus the momentum-thickness-based
Reynolds number, together with the turbulent flat plate solution (black dotted-dashed line).
Such a normalisation is consistent with that of Na & Moin (1998) and Cohen & Gloerfelt
(2018) (also shown in figure 7); the subscript ‘in’ indicates quantities at an upstream ZPG
location. For the present DNS, the ‘in’ location is taken at the location x/c = −0.6 (i.e.
sensor 7). The present boundary-layer growth on the CD aerofoil is much faster than in
the equilibrium cases of Na & Moin (1998) and Cohen & Gloerfelt (2018), and only the
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Figure 5. (a) Skin friction coefficient, Cf , (b) corrected with (1 + βc/10) and (c) shape factor, H, versus
momentum-thickness-based Reynolds number: − · − (black), DNS data on the surface of the CD aerofoil, − · −
(blue), Cf (1 + 0.12βc), − · − (red), Cf (1 + 0.15βc), APG locations �, x/c = −0.14 and +++, x/c = −0.08; · · · ,
empirical correlation by Smits, Matheson & Joubert (1983) for Cf and correlation form by Monkewitz, Chauhan
& Nagib (2007) for H; ◦, NACA4412 data by Vinuesa et al. (2017); �, NACA4412 data by Tanarro et al. (2020);
+, data by Spalart (1988); and •, data by Schlatter et al. (2009a,b); �, FPG (blue), ZPG (black), APGs (red)
and APGw (magenta) data by Cohen & Gloerfelt (2018); · · · (red) attached TBL distribution by Na & Moin
(1998); �, data (x = 0.5 m to x = 0.85 m) for attached TBL (black) and separated TBL (red) (x/δ∗

in = 120) by
Na & Moin (1998).

separated TBL case in Na & Moin (1998) displays similar rapid increase of boundary layer
thicknesses, stressing again the strong non-equilibrium state near the TE close to flow
separation. Streamwise mean velocity profiles scaled on inner variables U+ = U/uτ are
plotted versus the normalised wall-normal distance y+ = yuτ /ν in figure 8. The present
DNS results are compared with the DNS data by Spalart (1988) at Reθ = 300, Na &
Moin (1998) for x = 0.5 m and x = 0.85 m, Cohen & Gloerfelt (2018), as well as the
experimental data of Watmuff (1989) for x = 0.5 and x = 0.85. Figure 8(a) compares
the ZPG data, whereas figure 8(b) considers the APG data. The von Kármán constant κ

(von Kármán 1931) and the constant B are prescribed as in Wu et al. (2019): κ = 0.41
and B = 4.5 for the ZPG cases, and κ = 0.30 and B = −1.38 for the APG cases. Wu
et al. (2019) showed that an attached APG flow is characterised by lower κ values than
in a ZPG flow, as well as a negative intercept (B) value, consistently with what Nickels
(2004), Nagib & Chauhan (2008) and Monty et al. (2011) found, for instance. The present
ZPG profiles compare well with the ZPG data of Spalart (1988), Na & Moin (1998) and
Watmuff (1989). Moving towards the TE, a stronger wake region is observed due to APG
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Figure 6. Normalised boundary layer parameters distribution on the surface of the CD aerofoil: (a,b) boundary
layer thickness based on 95 % of total pressure; (c) boundary layer displacement thickness; and (d) boundary
layer momentum thickness; · · · , laminar flat plate; and − · −, turbulent flat plate (Schlichting & Gersten 2017).
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8

θ/θin

(a) (b)

Figure 7. Normalised boundary layer parameters distribution versus momentum-thickness-based Reynolds
number. (a) Boundary layer displacement thickness and (b) boundary layer momentum thickness: —, DNS
data on the surface of the CD aerofoil; �, FPG (blue), ZPG (black), APGs (red), APGw (magenta) data by
Cohen & Gloerfelt (2018); · · · (red) attached TBL distribution by Na & Moin (1998); �, data (x = 0.5 m to
x = 0.85 m) for attached TBL (black) and separated TBL (red) (x/δ∗

in = 120) by Na & Moin (1998); − · −,
turbulent flat plate (Schlichting & Gersten 2017).

effect, as also observed in previous studies (Monty et al. 2011; Kitsios et al. 2016; Bobke
et al. 2017; Vila et al. 2017; Volino 2020).

In figure 9, wall-normal profiles of root-mean-square (r.m.s.) streamwise and crosswise
velocities, urms and vrms, scaled with inner variables, with Ue, and with the Zaragola–Smits
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Figure 8. Streamwise velocity profiles as a function of the wall-normal distance scaled on inner variables: (a)
ZPG profile and (b) APG profile. Present DNS: ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47
(thick grey line); APG locations x/c = −0.14 (thin black line), x/c = −0.08 (thick black line). Symbols: +,
ZPG data by Spalart (1988) with Reθ = 300; −−, ZPG data x = 0.5 m (black) and APG data x = 0.85 m
(red) data by Watmuff (1989); ◦, ZPG data x = 0.5, �, APG data x = 0.85 for attached TBL (black) and
separated TBL x/δ∗

in = 130 (grey) by Na & Moin (1998); �, ZPG (black), APGs (red) and APGw (magenta)
data by Cohen & Gloerfelt (2018); · · · , dimensionless linear law U+ = y+ and − · −, logarithmic law U+ =
(1/κ) ln( y+) + B.

scaling UZS = Ueδ
∗/δ are shown for the four sensor locations, compared with the ZPG

data of Spalart (1988) and both the ZPG and APG data of Na & Moin (1998) and Cohen
& Gloerfelt (2018). Figures 9(a,b) show profiles of urms and vrms normalised by uτ . A
slightly higher peak for u+

rms in sensors 7 and 9 in comparison with Spalart (1988) can
be attributed to the FPG region prior to those streamwise locations. The higher u+

rms
and v+

rms in APG region than in ZPG region is mainly because of the decrease of wall
friction (figure 5). The smaller wall friction in the present DNS than in the reference
studies (associated with stronger APG herein) also explains the larger u+

rms and v+
rms

peaks in the present study. The inner peak elevations remain almost unchanged. Yet, a
second peak forms in the outer layer in the urms profile. The differences between the
outer-peak locations (in wall units) in the present case and in the studies of Na & Moin
(1998) and Cohen & Gloerfelt (2018) are most likely attributed to a combination of
differences in APG, Reynolds number and wall curvature. An effect of Reynolds number
on the outer-layer peak location was discussed by Lee & Sung (2008), for instance. In
figure 9(c,d), the outer-layer velocity fluctuations normalised by Ue display large deviation
from each other, and only collapse at the boundary-layer edge. However, when the APG
cases are normalised by UZS (figure 9e, f ), the outer-layer velocity fluctuations are almost
collapsed. This suggests that the Zaragola–Smits scaling applies to the outer portion of
the boundary layer even under strong APG as in the present flow. This is consistent with
the self-similarity in the outer region of APG TBL found by Maciel, Rossignol & Lemay
(2006), Cohen & Gloerfelt (2018) and also verified by Rozenberg, Robert & Moreau (2012)
to develop their semi-empirical model of wall-pressure fluctuations.

The wall-normal profiles of Reynolds shear stress in inner scaling at the four streamwise
locations are plotted in figure 10. In the ZPG region, the profiles compare well with that of
Spalart (1988); the same is observed for the u′ and v′ intensities (figure 9a,b). The peaks
of the Reynolds shear stress shift away from the wall in the APG region, moving into the
logarithmic layer and even toward the edge of the outer region. This indicates enhanced
turbulent mixing at locations farther away from the wall (Monty et al. 2011; Vila et al.
2017; Wu et al. 2019). As discussed by Lee & Sung (2008), who analysed the effect of

960 A17-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.157


A. Caiazzo, S. Pargal, H. Wu, M. Sanjosé, J. Yuan and S. Moreau

100 101 102 103

y+

0

1

2

3
u+ rm

s

100 101 102 103

y+

0

1

2

v
+ rm

s

y/δ
0

0.04

0.08

0.12

0.16

u rm
s/

U
e

0.5 1.0 1.5 0.5 1.0 1.5

y/δ
0

0.02

0.04

0.06

0.08

v
rm

s/
U

e

y/δ
0

0.2

0.4

0.6

0.8

1.0

u rm
s/

U
ZS

0.5 1.0 1.5 0.5 1.0 1.5

y/δ
0

0.2

0.4

v
rm

s/
U

ZS

(a) (b)

(c) (d )

(e) ( f )

Figure 9. Comparison of r.m.s. velocities urms and vrms, in the wall-normal direction: (a,b) uτ scaling; (c,d)
Ue scaling; (e, f ) UZS = Ueδ

∗/δ scaling. ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick
grey line); APG locations x/c = −0.14 (thin black line), x/c = −0.08 (thick black line). Symbols: +, ZPG
data by Spalart (1988) with Reθ = 300; ◦, ZPG data x = 0.5 m, �, APG data x = 0.85 m, for attached TBL
(black) by Na & Moin (1998); �, ZPG (black), APGs (red) and APGw (magenta) data by Cohen & Gloerfelt
(2018).

APG with similar Reθ , the plateau observed so far for the strongest APG for y+ between
10 and 50 may be due to the hairpin-type vortices developing away from the wall next
to the TE region, also shown in the present DNS in figure 11, which shows the swirling
strength criterion (Λci) in the mid-chord (ZPG) region and near the TE (APG region).
A forest of large hairpin structures are shown to be lifted by the strong APG (see white
dotted lines). Therefore, the APG, characterised by a different momentum distribution
mechanisms across the boundary layer, considerably affects the turbulent flow statistics
(figure 10).

The results above show that boundary layer characteristics and single-point velocity
statistics at the four sensor locations are consistent with existing results in the literature.
The agreements are quantitative at the ZPG locations. Overall, the peak location of the
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Figure 10. Reynolds stress component normalised with inner scale along wall-normal direction: ZPG locations
x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey line); APG locations x/c = −0.14 (thin black line),
x/c = −0.08 (thick black line); +, ZPG data by Spalart (1988) with Reθ = 300.

0 0.5 1.0 1.7 × 100–8.0 × 10–1 0 0.5 1.0 1.7 × 100–8.0 × 10–1

u u
(a) (b)

Figure 11. Swirling strength criterion (Zhou et al. 1999; Wu et al. 2017) isocontours coloured by streamwise
velocity component by Wu et al. (2019): (a) ZPG portion (mid-chord) and (b) APG (or TE) portion.

turbulent statistics and the wall-normal profiles are comparing very well with Spalart
(1988) (see grey lines up to y+ ≈ 60 in figures 9 and 10). The agreement is qualitative
at the APG locations because of the different Reynolds numbers, pressure gradients and
wall curvature. Interestingly, the self-similarity in the outer region of the boundary layer
provided by the Zaragola–Smits scaling is verified in the present strong non-equilibrium
TBL, suggesting that the Zaragola–Smits velocity might be a relevant velocity scale for all
attached TBL. The discussion on variation of boundary layer parameters serves as a guide
on normalising wall-pressure statistics. For instance, turbulence statistics, when made
dimensionless by Zaragola–Smits scaling, gives a collapse in outer region and thus may
serve as an optimal velocity scale to collapse low-frequency wall-pressure spectra. The
development of boundary layer thicknesses discussed in figure 6 can also guide in choosing
the correct normalising length scale for wall-pressure spectra in highly non-equilibrium
cases. Moreover, the high sensitivity of Cf to APG, more aptly wall shear, suggests that it
may not be an optimal parameter to non-dimensionalise pressure fluctuations, even though
most semi-empirical models for wall-pressure spectra use it as a pressure scale. This is
shown in detail in the next section.
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4. Wall-pressure statistics

Statistics of the wall-pressure field on the surface of the CD aerofoil particularly relevant to
TE noise modelling are presented here. PSD, two-point correlation, coherence functions,
wavenumber-frequency spectra and convection velocity are discussed at the four locations
corresponding to sensors 7, 9, 21 and 24. They are compared with available data (Burton
1973; Schewe 1983; Simpson et al. 1987; Spalart 1988; Choi & Moin 1990; Na & Moin
1998; Skote, Henningson & Henkes 1998; Abe et al. 2005; Cohen & Gloerfelt 2018).

4.1. PSD distribution
The PSD of the wall-pressure fluctuations at a given frequency, φpp( f ), is calculated from
the wall-pressure CSD, as defined in § 2.1. The spanwise-averaged wall-pressure spectra in
decibels with respect to the reference pressure 2 × 105 Pa for a spectral resolution of 1 Hz
(dB Hz−1 in short) are shown in figure 12 for the four locations on the aerofoil suction
side indicated in figure 1. The PSD calculated from DNS are compared with the available
experimental data from UdeS measurements (Jaiswal 2020; Jaiswal et al. 2020). Note
that the experimental results for sensor 7 are missing because of a microphone failure.
In figures 12(a,b), for the ZPG regions 7 and 9, the semi-empirical spectrum defined
by Goody (2004) is also represented. Such a model compares well with experimental
data over a large range of Reynolds numbers (Hwang, Bonness & Hambric 2009), and
is able to describe the essential properties of the single-point wall-pressure spectrum
for ZPG boundary layers based on a limited numbers of variables. Note that at low
frequencies, the same −0.4 slope is recovered as observed in the APG DNS of Na &
Moin (1998). For sensor 24 (figure 12d) the DNS spectrum shows a small hump around
10 kHz. This hump in the higher-frequency range is also shown in the experimental data
(grey line) and corresponds to an extra acoustic source in the wake (Wu et al. 2020).
Going towards the TE, there is an increase in spectral levels of approximately 10 dB Hz−1

at the low frequencies, and a faster roll-off decrease towards high frequency. This is an
APG effect, also observed in previous studies (Na & Moin 1998; Cohen & Gloerfelt
2018). In the low-frequency range a plateau below 500 Hz is observed for sensors 21 and
24, whereas sensors 7 and 9 show the characteristic ZPG quadratic rise with frequency
following Goody’s empirical model. Overall, the DNS and experimental results are in
good agreement. The difference of PSDs between numerical and experimental results in
the low-frequency range, approximately under 500 Hz, is most likely related to installation
effects, either attributed to jet noise (Moreau et al. 2003) or to the unsteady interaction
between the jet shear layer and the aerofoil, as well as the low background turbulence
intensity (less than 0.4 %) observed in the experiments (Padois et al. 2015) and not
included in this DNS (Wu et al. 2020).

In order to deduce the main contributors to the wall-pressure fluctuations in different
frequency bands, the PSD and the frequency are then normalised based on several inner,
outer and mixed scalings in figure 13. Different normalisations have been proposed over
the years (Schloemer 1967; Choi & Moin 1990; Farabee & Casarella 1991; Keith, Hurdis
& Abraham 1992; Bull 1996; Na & Moin 1998; Cipolla & Keith 2000). There is no single
universal scaling that leads to an acceptable collapse of data in the entire frequency range
due to the multiscale nature of turbulence. However, as observed by Bull (1996) for ZPG
flows, the wall-pressure fluctuations at low frequencies originate predominately from the
outer layer, whereas those at high frequencies, where the spectrum varies as ω−5 (Gravante
et al. 1998; Na & Moin 1998; Moreau & Roger 2005), originate mostly from the buffer
layer. Consequently, the wall-pressure PSD scales on outer variables at lower frequencies
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Figure 12. Spanwise-averaged wall-pressure spectra at four locations on the aerofoil suction side: ——,
DNS-NS; − · −, Goody’s model, and —— (grey), UdeS measurements; (a) x/c = −0.60, (b) x/c = −0.47,
(c) x/c = −0.14 and (d) x/c = −0.08.

and inner variables at high frequencies. In the mid-frequency range, a scale-independent
overlap region exists, where the PSD is proportional to ω−1 (Bradshaw 1967; Gravante
et al. 1998). This range is associated with motions in the logarithmic region.

The best inner variable scaling for the high-frequency range has been found by plotting
φpp(ω)u2

τ /τ
2
wν versus ων/u2

τ and is used in figure 13(a). For the mid-frequency range,
a satisfactory data collapse is usually obtained by scaling φpp(ω) using the mixed
inner–outer variables, Ue, δ∗ and τw, with dimensionless frequency ωδ∗/Ue (Choi &
Moin 1990; Keith et al. 1992; Na & Moin 1998). This is shown in figure 13(b). Finally,
in figure 13(c,d), common outer variable scalings for the low-frequency range are used:
φpp(ω)Ue/p2

rmsδ
∗ and φpp(ω)Ue/q2

eδ
∗, both versus ωδ∗/Ue (Choi & Moin 1990; Na &

Moin 1998). Here, qe is the dynamic pressure at the edge of the boundary layer.
First, the focus is given to the ZPG data sets. Normalisation with inner variables

(figure 13a) collapses the spectra at high frequencies as expected, consistently with the
findings of Na & Moin (1998) and Choi & Moin (1990). Moreover, the present spectra
at sensors 7 and 9 collapse well in the whole spectral range with that of Choi & Moin
(1990), as the flow is characterised by a similar range of Reθ (see table 1). In figure 13(b),
the scaling with Ue/τ

2
wδ∗ gives an overall collapse at low to mid frequencies, which was

also observed by Na & Moin (1998), Choi & Moin (1990) and Cohen & Gloerfelt (2018).
In addition, the effect of Reynolds numbers on the PSD is shown. As observed by Goody
(2004), the main effect of Reynolds number on the wall-pressure spectrum is to widen
its overlap range and shift the roll-off towards higher frequencies. This is indeed shown
in figure 13(c,d), comparing data from Cohen & Gloerfelt (2018) with those from Choi
& Moin (1990) and those from sensor 7 to those from sensor 24 at a higher Reynolds
number, for example. This is caused by the widening of the spectrum of turbulent motions
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Figure 13. Dimensionless spanwise-averaged wall-pressure spectra at four locations on the aerofoil suction
side: (a) inner variables scaling, (b) mixed inner–outer variables scaling and (c,d) outer variables scaling.
ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey line); APG locations x/c = −0.14
(thin black line), x/c = −0.08 (thick black line); •, data by Choi & Moin (1990); ◦, ZPG data x = 0.5 m, and
�, APG data x = 0.85 m for attached TBL by Na & Moin (1998); �, ZPG (black), APGs (red) and APGw
(magenta) data by Cohen & Gloerfelt (2018).

and a larger logarithmic region associated with a higher-Reynolds-number boundary layer.
Furthermore, a region of the spectra with a −5 slope in the high-frequency range, linked
to the turbulent motions inside the buffer zone, is also shown in figure 13(c).

As the pressure gradient changes from zero to adverse (from sensor 9 to sensor 24),
an overall increase in spectral levels normalised by the inner velocity scale is shown in
figure 13, suggesting an augmentation of wall-pressure r.m.s. due to the APG, relative to
uτ . In the presence of an APG the inner variables normalisation does not collapse the
spectra at high frequencies, consistently with the observations of Na & Moin (1998) and
Cohen & Gloerfelt (2018). This is because of the decrease in wall shear stress under APG.
When the spectra are normalised by wall-pressure r.m.s. and δ∗ (figure 13c), a collapse in
the low- to mid-frequency range is observed. This is expected because p2

rms represents the
integral of the spectrum. The scaling with local dynamic pressure (figure 13d), on the other
hand, does not give a good collapse in the low- to mid-frequency range, which is consistent
with what Brooks & Hodgson (1981) observed on the NACA0012 aerofoil (figure 11 in
Brooks & Hodgson 1981). This is because the APG leads to augmentation of wall-pressure
fluctuations at low frequencies, whereas it is associated with free-stream deceleration,
i.e. a reduction in the edge dynamic pressure. Na & Moin (1998) also observed similar
comparison between ZPG and APG wall-pressure spectra for the normalisations analysed
herein. Given that all cases plotted here differ in Reynolds numbers, pressure gradients
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Figure 14. Spanwise-averaged wall-pressure spectra at four locations on the aerofoil suction side scaled with
Zaragola–Smits scaling, UZS = Ueδ

∗/δ: ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick
grey line); APG locations x/c = −0.14 (thin black line), x/c = −0.08 (thick black line); �, ZPG (black), APGs
(red), APGw (magenta) data by Cohen & Gloerfelt (2018). (a,b) Outer and (c) mixed inner–outer variables
scaling.

and wall curvature, the spectra do not overlap over the entire frequency range. In addition,
both ZPG and APG data of Cohen & Gloerfelt (2018) display a faster roll-off at high
frequencies, which is most likely a consequence of the spatial cut-off of the LES. These
results also indicate that scalings used in popular semi-empirical models, especially using
wall shear stress as the pressure scale, may be inappropriate for strong APG flows.

In figure 14, the pressure spectra are plotted again normalised using δ instead of δ∗,
which is equivalent to using the Zaragola–Smits scaling instead of Ue in figure 13 (because
ω δ/Ue = ω δ∗/UZS and Ue/δ = UZS/δ

∗). ZPG and APG data of Cohen & Gloerfelt
(2018) for which all parameters are available are also shown. As shown by figure 6(b,c)
and also indicated by Keith et al. (1992) and Farabee & Casarella (1991), δ and δ∗ are
not equivalent length scales given that their ratio varies with Reynolds number. For the
outer scaling, both figure 14(a,b) show a significantly improved collapse compared with
figure 13(c,d). This indicates that δ is a better length scale in the low- to mid-frequency
range than δ∗, or equivalently that UZS is a better velocity scale than Ue. Similarly, for
the mixed inner–outer variable scaling, figure 14(c) shows a slightly better merge of the
normalised spectra at mid-to-high frequencies for both ZPG and APG regions than in
figure 13(b). Finally, the best overall collapse of normalised spectra in the whole frequency
range is found in figure 14(a), which stresses that prms is a better pressure scale than
qe for the present highly non-equilibrium TBL. Hence, in development of wall-pressure
spectra models, more focus is needed on modelling pressure gradient effects on prms or on
variables that scale with it.
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Figure 15. Root-mean-square values of (a) pressure fluctuations r.m.s. along wall-normal direction and (b)
streamwise distribution of the wall-pressure r.m.s. normalised with local Reynolds shear stress ( · · · ) or
dynamic pressure (− ·−). ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey line); APG
locations x/c = −0.14 (thin black line), x/c = −0.08 (thick black line). Na & Moin (1998) data: − · −, ZPG
data at x = 0.5 m, −−, APG data at x = 0.85 m for attached TBL (black); ——, x/δ∗

in = 80, −− x/δ∗
in = 120,

· · · , x/δ∗
in = 160 for separated TBL (red).

In figure 15(a), the wall-pressure r.m.s. normalised by ρU2
in (where Uin is taken equal to

the edge velocity at sensor 7) as a function of wall-normal distance is compared with that
of Na & Moin (1998), for both attached and separated TBLs. Three different TBL cases by
Na & Moin (1998) are also considered, characterised by ZPG at x/δ∗

in = 80, a weak APG
at x/δ∗

in = 120 and a stronger APG just after the detachment at x/δ∗
in = 160 therein. A local

maximum of prms is observed and both its elevation and magnitude increase as the flow
moves downstream (with strengthened APG) in accordance with the trend shown by Na &
Moin (1998). Close to the TE (sensors 21 and 24) the levels and the hump size are close to
those near the onset of separation in the flow studied by Na & Moin (1998) (x/δ∗

in = 160),
highlighting the high load of the present case, consistently with the shape factor shown in
figure 5(c) and in table 1. The streamwise increase of the pressure fluctuations at the wall
is also shown in figure 15(b), which shows the streamwise distribution of the wall-pressure
r.m.s. normalised by the local maximum magnitude of Reynolds shear stress or the local
dynamic pressure. There is clearly less streamwise variation of the wall-pressure r.m.s.
when normalised with local peak Reynolds shear stress, as also shown by Na & Moin
(1998). Thus, the peak Reynolds shear stress magnitude could be a better scaling variable
for wall-pressure fluctuations than U2

e for all APG flows including the present strong
non-equilibrium TBL case.

In figures 16(a,b) the root-mean-square values of the wall-pressure scaled with τw or
the dynamic pressure versus the friction Reynolds number, Reτ = uτ δ/ν, are shown at the
four locations. In figure 16(c), the CD aerofoil distribution of p+

rms is also plotted versus the
momentum-thickness-based Reynolds number. ZPG data of Choi & Moin (1990), DNS
data of Abe et al. (2005) and ZPG data of Spalart (1988), Cohen & Gloerfelt (2018),
Skote et al. (1998) and Schewe (1983) are considered for comparison of ZPG data. The
empirical law of p+

rms versus Reτ developed for ZPG flows by Farabee & Casarella (1991) is
also plotted in figure 16(a), in which ( p+

rms)
2 = 6.5 + 1.86 ln(Reτ /333) for Reτ > 333 and

( p+
rms)

2 = 6.5 for Reτ ≤ 333. For APG flows, data of Cohen & Gloerfelt (2018), Simpson
et al. (1987) and Burton (1973) are compared here. The data show that p+

rms weakly
increases with Reτ in ZPG flows following the empirical law proposed by Farabee &
Casarella (1991). For APG flows, a greater scatter is observed, particularly in figure 16(a)
(see APG locations x/c = −0.14 and x/c = −0.08 in the present flow and strong APG
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Figure 16. Root-mean-square values of the wall-pressure r.m.s.: (a) τw scaling and (b) dynamic pressure
scaling vs the friction Reynolds number; (c) τw scaling versus the momentum-thickness-based Reynolds
number. ZPG locations ◦, x/c = −0.60 and �, x/c = −0.47; APG locations �, x/c = −0.14 and +++, x/c =
−0.08; •, Choi & Moin (1990)’s data; Abe et al. (2005)’s data (�, grey, Reτ = 180; ♦, Reτ = 395; ♦, grey,
Reτ = 640); �, Spalart (1988)’s data; �, ZPG (black), APGs (red) and APGw (magenta) data by Cohen &
Gloerfelt (2018); �, Simpson et al. (1987) APG’s data; �, Burton (1973) APG’s data; . . . , empirical law from
Farabee & Casarella (1991); • (green), ZPG data by Skote et al. (1998) Reθ = 350 − 525; − · − CD aerofoil
distribution; � (blue) data by Schewe (1983).

data of Burton (1973) and Simpson et al. (1987)). APG leads to higher p+
rms than in a ZPG

flow at the same Reynolds number. In comparison, less scatter is observed in figure 16(b),
indicating a better correlation between the wall-pressure r.m.s. and the edge dynamic
pressure than that with τw. Finally, the sharp increase in prms with x shown in figure 16
for the present aerofoil further confirms the strong non-equilibrium state of the boundary
layer at the TE, subject to a sharp APG.

In summary, the usual inner or inner–outer variable scalings are observed to work in
the ZPG regions of the CD aerofoil (despite the possible history effects of the upstream
FPG region), but not in the APG regions, with larger departures for higher βc, as found
in previous studies. The best scaling parameters are found to be the outer variables Ue,
δ and prms or equivalently UZS, δ∗ and prms. This indirectly stresses that the overall
wall-pressure fluctuations are dominated by the large turbulent scales, the contribution
of which increases with higher βc. In turn, prms is observed to scale more with outer
variables such as the dynamic pressure qe than with inner scales such as τw. As found
previously by Na & Moin (1998) and Abe (2017), for instance, a quasi invariant is obtained
when scaling prms with the local maximum Reynolds shear stress magnitude for the
whole range of Reynolds number considered here in a strong non-equilibrium TBL typical
of low-speed rotating machines. This has an important implication in choosing correct
scalings in wall-pressure spectra models. For instance, most models use the wall shear
stress as the pressure scale. However, our results show that prms or the peak Reynolds shear
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stress magnitude are more appropriate low-frequency pressure scales. Another important
finding is that, for low-Reynolds-number cases such as the current case, using δ and Ue
as length and velocity scales may give good overall collapse of wall-pressure spectra, as
shown in figure 14(a).

4.2. Two-point correlations and coherence functions
The contour plots of the two-point correlation functions of wall-pressure fluctuations,
introduced in § 2.1, are shown in figure 17 as a function of streamwise (ξx) and temporal
(�t) separations and normalised with inlet parameters. The slope d(ξx)/d(�t) gives the
propagation speed of the eddies, the signatures of which are reflected in wall-pressure
fluctuations. As a reference, these slopes of the cross-correlation at each spatial separation
found in Na & Moin (1998) flat-plate case of attached TBL, with ZPG at x = 0.50 m
and with APG at x = 0.85 m, are also indicated by dotted-dashed and dashed red lines,
respectively. As expected, a larger propagation speed is observed in the ZPG region,
whereas in the APG region the convection speed of the turbulent structures is reduced
and the contour plots are broader. This is associated with a longer correlation time of
wall-pressure fluctuations in APG region, and it suggests a lower convection velocity of
turbulent structures, which are discussed later. Variations of both the slope and broadness
of the contours with APG are in agreement with the observations of Na & Moin (1998),
despite different Reθ ranges and a stronger APG reached in the present flow.

By Fourier transforming the two-point correlation function, the CSD Ψpp(ξ ;ω)

is calculated (see § 2.1). The cross-spectrum Ψpp(ξ ;ω) is useful for studying the
wall-pressure spatial coherence as a function of frequency (Moreau & Roger 2005; Roger
& Moreau 2005). In general, the coherence function between two points on the aerofoil
surface can be defined as

γ 2(ξ ;ω) = |Ψpp(ξ ;ω)|2
φpp(ω)2 . (4.1)

The coherence function describes the correlation between two points with a spatial
separation of ξx in the longitudinal (or streamwise) direction and ξz in the lateral (or
spanwise) direction at a given frequency. The contours of the calculated coherence
distributions are shown along the streamwise and spanwise directions in figures 18 and 19,
respectively. On the one hand, both streamwise and spanwise coherence functions are not
observed to vary much in the ZPG regions, with a larger coherence in the streamwise
direction. On the other hand, the streamwise coherence is observed to be reduced by APG
for the whole frequency range, whereas the spanwise coherence overall increases with
APG, especially at low frequencies, as already noted by Wang et al. (2009) based on
the first LES on the present aerofoil. Figure 19 also indicates that the spanwise extent
of the computational domain (i.e. 0.12 C) is sufficient for proper flow development in
both ZPG and APG regions for most frequencies beyond 200 Hz, as already pointed out
by Wang et al. (2009) and confirmed experimentally in several test facilities (Moreau &
Roger 2005; Jaiswal 2020; Jaiswal et al. 2020). A slight increase of coherence level in the
high-frequency range is found for sensor 24, which is caused by an acoustic contamination
by an extra noise source in the wake, as already shown in the wall-pressure PSD in
figures 12–14 and as mentioned by Wu et al. (2020).

More quantitative estimates are provided by the magnitudes of the normalised
longitudinal and lateral CSD, γ (ξx, ω) = |Ψpp(ξx, 0, ω)|/φpp(ω) and γ (ξz, ω) =
|Ψpp(0, ξz, ω)|/φpp(ω), respectively. First, figures 20 and 21 show these normalised CSD
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Figure 17. Contour plot of two-point correlation of wall-pressure fluctuations versus streamwise spatial and
temporal separations: (a) x/c = −0.60; (b) x/c = −0.47; (c) x/c = −0.14; and (d) x/c = −0.08. Contour
levels are from 0.15 to 0.9 with increments of 0.15. Red lines are collections of outermost point of each
iso-contour line for the attached TBL by Na & Moin (1998) to indicate inclinations of the iso-contours: − · −
(red), ZPG data at x = 0.5 m, and −− (red), APG data at x = 0.85 m.

versus the normalised frequency ωδ∗
in/U∞ for different spatial separations, indicated with

horizontal red dotted lines in figures 18 and 19. In figure 20, the normalised longitudinal
CSD in APG is shown to be systematically below that for a ZPG, as already noted by
Schloemer (1967). The levels are higher at sensor 7 than at sensor 9, most likely a history
effect of the upstream FPG flow. The decay of coherence with frequency is also shown to
be faster in APG (with a power-law slope of −0.4) than in ZPG (with a slope of −0.32).
In figure 20, γ (ξx, ω) is also compared with distributions provided by Hu (2021), who
measured wall-pressure fluctuations induced by TBL with different pressure gradients
by installing a NACA0012 aerofoil above a flat plate with an adjustable angle of attack.
Even though the Reynolds numbers Reθ are much larger in the latter experiments, good
agreement is found in the variation of streamwise coherence with frequencies for both
ZPG and APG conditions. Only at high frequencies, a slightly faster decay in ZPG is
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Figure 18. Contours of streamwise coherence of fluctuating pressure for ZPG and APG regions: (a) x/c =
−0.60; (b) x/c = −0.47; (c) x/c = −0.14; and (d) x/c = −0.08. Symbols: · · · (red) spatial separations ξx/c =
0.007, 0.013, 0.016 used in figures 20 and 21; − · − (blue) frequencies of 1600 and 5000 Hz used in figure 22
and 23.

observed in the distributions of Hu (2021), but the correlations are low and bear the
largest experimental uncertainties. Such a good match underlines that the streamwise
wall-pressure coherence is quite insensitive to a significant variation in Reθ , similar to what
was observed in the velocity correlations by Sillero, Jiménez & Moser (2014) in ZPG TBL
on flat plates and by Pargal et al. (2022) with the present DNS data of a CD aerofoil and
with another DNS of flow on a flat plate with the same external mean pressure gradient.
In figure 21, the normalised lateral CSD are shown to vary far less with flow conditions
than the longitudinal versions. Only at low to mid frequencies is a systematic increase of
spanwise coherence observed with APG, consistently with the observations of Wang et al.
(2009). This coherence increase in a given frequency range is predominantly associated
with large turbulent structures formed during APG.

Next, figures 22 and 23 show the coherence, γ 2, versus various streamwise and spanwise
separations at two increasing frequencies, indicated with vertical blue dashed-dotted
lines in figures 18 and 19, for the four locations on the aerofoil. A faster decay of
coherence with distance (in both x and z) is observed for higher frequencies, regardless
of the mean pressure gradient. The streamwise coherence in figure 22(a) decays rapidly
with longitudinal distance when moving downstream, indicating shorter coherence in
the APG region than in the ZPG region. However, the spanwise coherence decay with
lateral distance in figure 23(b) does not show significant difference between the four
chordwise locations. As also observed in Schloemer (1967), the spanwise coherence
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Figure 19. Contours of spanwise coherence of fluctuating pressure for ZPG and APG regions: (a) x/c =
−0.60; (b) x/c = −0.47; (c) x/c = −0.14; and (d) x/c = −0.08. Symbols: · · · (red), spatial separations
ξz/c = 0.0019, 0.0025, 0.0049 used in figures 20 and 21; − · − (blue) frequencies 1600 and 5000 Hz used
in figures 22 and 23.

decays faster with distance than the streamwise coherence in both ZPG and APG regions
for both frequencies. A similar trend was also found by Brooks & Hodgson (1981) on the
NACA0012 aerofoil (figure 16 in Brooks & Hodgson 1981).

All of this is also consistent with what has been observed previously for the main
contributors to wall-pressure fluctuations in a TBL: on the one hand, the wall-pressure
behaviour at high frequencies is predominantly controlled by smaller structures in the inner
layer, with short delay times and steep coherence decay rates with distance (Schloemer
1967; Van Blitterswyk & Rocha 2017); on the other hand, the bigger outer-layer structures,
characterised by longer decay lengths, dominate the wall-pressure coherence at low to mid
frequencies (Bull 1996; Palumbo 2012). The observed increase of spanwise coherence
with APG in the low- to mid-frequency range can be related to the larger lifted turbulent
structures shown in figure 11(b).

In figures 24 and 25, the magnitude of the normalised longitudinal and lateral CSD
are plotted vs the phase ωξx,z/Uc, with Uc the convective velocity, for several spatial
separations for ZPG and APG cases. The streamwise γ (ξx, ω) and spanwise γ (ξz, ω)

measure the loss of coherence of the eddies as they move downstream and, similarly, the
decrease of coherence of the eddies in the spanwise direction, respectively (Schloemer
1967). In figures 24 and 25, the dashed-dotted lines represent the curves found to fit the
data of Corcos (1964) for ZPG TBL on a flat plate, exp(−αxωξx/Uc) with αx = 0.11
and exp(−αzωξz/Uc) with αz = 0.8 and 0.714. The convection velocities considered here
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Figure 20. Streamwise γ (ξx, ω) frequency distribution for different spatial separations at four location on the
aerofoil suction side: (a) ξx/c = 0.007 and ξx/δ

∗
in = 2.61; (b) ξx/c = 0.013 and ξx/δ

∗
in = 5.19; (c) ξx/c = 0.016

and ξx/δ
∗
in = 6.23. ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey line); APG

locations x/c = −0.14 (thin black line), x/c = −0.08 (thick black line). Symbols: · · · ZPG data by Hu (2021)
(blue for ξx/δ

∗ = 4.3, red for ξx/δ
∗ = 6.0 and turquoise for ξx/δ

∗ = 6.3); − · − APG data by Hu (2021) (blue
for ξx/δ

∗ = 2.0 and red for ξx/δ
∗ = 2.7).

correspond to about Uc ≈ 0.8U∞ for ZPG flow and Uc ≈ 0.5U∞ for APG flow, similarly
to what was found by Na & Moin (1998), who observed a mean convection velocity of
Uc ≈ 0.79U∞ in ZPG flow and Uc ≈ 0.56U∞ in APG flow, or by Schloemer (1967) who
found a mean convection velocity of Uc ≈ 0.75U∞ in ZPG flow and Uc ≈ 0.54U∞ in
APG flow. The decay rates αx and αz at the four locations analysed here are obtained by
fitting the data at different streamwise spatial separations and are plotted in the figures for
each location using black solid lines. As shown in figure 24, the APG results display lower
values of γ (ξx, ω) for a fixed ωξx/Uc compared with the ZPG results, which corresponds
to an increase of αx in the APG region. Indeed, a good fit to the data is found for the
exponential decay of αx = 0.11 and αx = 0.14 for the ZPG locations and αx = 0.23 and
αx = 0.29 for the APG locations. For the present CD aerofoil, the ZPG coherence decays
with the phase similarly (sensor 7) or more rapidly (sensor 9) than what was found by
Corcos (1964). These trends in both ZPG and APG are consistent with the findings of Hu
(2021), Brooks & Hodgson (1981) and Schloemer (1967). For instance, Hu (2021) reported
αx = 0.14 in ZPG flow and αx = 0.2 in APG flow. In a flow with milder APG, Brooks &
Hodgson (1981) observed an αx = 0.19. Given the difference in flow condition, this again
suggests that the streamwise decay coefficient αx hardly depends on the Reynolds number,
consistently with the results of Sillero et al. (2014) and Pargal et al. (2022) on velocity
correlations. In turn, this suggests that the empirical correlation of αx with friction velocity
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Figure 21. Spanwise γ (ξz, ω) frequency distribution for different spatial separations at four location on the
aerofoil suction side: (a) ξz/c = 0.0019; (b) ξz/c = 0.0025; (c) ξz/c = 0.0049. ZPG locations x/c = −0.60
(thin grey line) and x/c = −0.47 (thick grey line); APG locations x/c = −0.14 (thin black line), x/c = −0.08
(thick black line).
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Figure 22. Coherence functions, γ 2, at various streamwise separations on the aerofoil suction side:
(a) 1600 Hz and (b) 5000 Hz. ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey line);
APG locations x/c = −0.14 (thin black line) and x/c = −0.08 (thick black line).

or Reynolds number based on momentum thickness (equations (2) and (4) in Hu 2021) may
not apply at lower Reθ . In figure 24, the curves for different streamwise separations tend
to collapse for frequencies higher than a characteristic value, which varies with sensor
location, decreasing as it moves downstream. The collapse implies a constant decay rate
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Figure 23. Coherence functions, γ 2, at various spanwise separations on the aerofoil suction side: (a) 1600 Hz
and (b) 5000 Hz. ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey line); APG locations
x/c = −0.14 (thin black line) and x/c = −0.08 (thick black line).
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Figure 24. Streamwise γ (ξx, ω) vs the phase ωξx/Uc for ZPG and APG positions: (a) x/c = −0.60; (b) x/c =
−0.47; (c) x/c = −0.14; and (d) x/c = −0.08. Symbols — (blue), ξx/c = 0.013; — (purple), ξx/c = 0.016;
– – (turquoise), ξx/c = 0.021; · · · (red), ξx/c = 0.026; · · · (green), ξx/c = 0.037; · · · (olive), ξx/c = 0.061;
− · − (red), exp(−0.11ωξx/Uc); −, exp(−αxωξx/Uc) with αx = 0.11 for (a), αx = 0.14 for (b), αx = 0.23 for
(c) and αx = 0.29 for (d).

of the wall-pressure fluctuations for the high-frequency range. These results are consistent
with the comparisons shown in figures 18–22.

On the other hand, in figure 25, similar smaller changes in γ in the spanwise direction
between ZPG and APG flows are found as observed by Schloemer (1967), Brooks &
Hodgson (1981) and Hu (2021). In figure 25, a good fit to the data is found for the
exponential decay with αz = 0.76 and αz = 0.70 for the two locations in the ZPG region,
respectively, and αz = 0.48 and αz = 0.55 for the APG regions, which yields a 36 %
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Figure 25. Spanwise γ (ξz, ω) versus the phase ωξz/Uc: (a) x/c = −0.60; (b) x/c = −0.47; (c) x/c =
−0.14; and (d) x/c = −0.08. Symbols: — (blue), ξz/c = 0.0019; — (purple), ξz/c = 0.0025; – – (turquoise),
ξz/c = 0.0031; · · · (red), ξz/c = 0.0037; · · · (green), ξz/c = 0.0043; · · · (olive), ξz/c = 0.0056; − · −
exp(−0.714ωξz/Uc) and (red) exp(−0.8ωξz/Uc); —, exp(−αzωξz/Uc) with αz = 0.76 for (a), αz = 0.70 for
(b), αz = 0.48 for (c) and αz = 0.55 for (d).

variation in the spanwise direction compared with about a factor of two in the streamwise
direction. For instance, Hu (2021) reported αz = 0.75 in ZPG and αz = 0.5 for the APG
TBL in table 1, which yields a similar 33 % variation in the spanwise direction. This, in
turn, suggests that the spanwise decay coefficient αz is weakly dependent on the Reynolds
number, consistently with the results of Sillero et al. (2014) and Pargal et al. (2022) on
velocity correlations. The variations of αz in ZPG and APG flows are also consistent with
the data shown in figures 19–23. The observed similarity in the decay coefficient variations
across a wide range of Reynolds numbers can help modelling the spatial coherence of
wall-pressure fluctuations, as an essential part of TE noise prediction.

In the present compressible DNS case, the range of frequency considered is 0.069 ≤
ωδ∗/U∞ ≤ 1.12 to neglect the high-frequency acoustic contribution (i.e. additional noise
source in the wake), which produces an increase of the spanwise γ (ξz, ω) and streamwise
γ (ξx, ω) distributions as indicated in figure 25(c) for ξz/c = 0.0043 (green dotted line). In
addition, for a given pressure gradient, the decay rates are quite sensitive to a change in
the convection velocity. Specifically, a lower Uc shifts γ (ξx,z, ω) towards higher ωξx,z/Uc,
which gives a smaller decay rate.

A coherence length of wall-pressure fluctuations at each frequency can then be defined
by the following expression in both streamwise and spanwise directions:

Lx,z( f ) =
∫ ∞

0
γ (ξx,z, f ) dξx,z. (4.2)

The coherence length distributions in the same frequency range as previously are plotted
in figure 26 for the four positions on the CD aerofoil. The measurements of Hu (2021)
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Figure 26. Normalised coherence lengths for ZPG locations (◦, x/c = −0.60, and �, x/c = −0.47) and APG
locations (�, x/c = −0.14, and +++, x/c = −0.08) in (a) streamwise and (b) spanwise directions: • (blue), ZPG
data by Hu (2021) at Reθ = 4889; � (red), APG data by Hu (2021) at Reθ = 8670.

over a more limited frequency range for the ZPG and APG flow conditions in table 1 are
also shown. Despite the different Reθ , the two sets of data show very similar results in the
ZPG region for both coherence lengths. In the APG the trends are similar with smaller
streamwise coherence length and larger spanwise length than in ZPG, but their roll-off
occurs at a higher reduced frequency ω δ∗/Ue closer to 1 (Reynolds number effect similar
to what is observed for the PSD of the wall-pressure fluctuations). Consequently both Lz
for ZPG and APG merge almost a decade later in frequency in the data of Hu (2021). The
effect of APG on the coherence lengths is, in fact, consistent with what was found in Hu
(2021) and Van Blitterswyk & Rocha (2017). The difference in the roll-off between APG
and ZPG profiles, for both Lx( f ) and Lz( f ), reflects the effect of APG on the PSD spectra
(see figure 12). At low frequencies, both coherence lengths Lx,z( f ) increase with APG
significantly. At middle to high frequencies, lower levels are found for the APG profiles
compared with the ZPG profiles, with a drop in the streamwise coherence length Lx much
more marked than in the spanwise length Lz that stays almost similar at all locations.
Indeed, as also observed by Van Blitterswyk & Rocha (2017) at a higher Reθ , the intensity
of smaller-scale structures with faster decay increases, as well as the size of large-scale
structures.

Comparison between the streamwise correlation lengths normalised using inner
(figure 27a) and outer (figure 27b) variables shows that a better collapse at all four
locations is obtained with an inner scaling. However, for the spanwise correlation length, a
better collapse is obtained using the outer variables (figure 28b compared with figure 28a).

4.3. Wavenumber-frequency spectra
The wavenumber-frequency spectral density of the wall-pressure fluctuations, Ψpp(k;ω),
is related to the CSD Ψpp(ξ ;ω) by a 2D spatial Fourier transform (see § 2.1). In
figures 29 and 30, the normalised 2D wavenumber-frequency spectra, Ψ pp(k;ω) =
Ψpp(k;ω)(U∞/τ 2

wδ∗3
in ), is plotted in the normalised wavenumber domain (kxδ

∗
in, kzδ

∗
in)

at three dimensionless frequency values, with kx and kz the streamwise and spanwise
wavenumbers, respectively. Note that the same dimensionless frequencies are used for the
four locations: a low frequency ωδ∗

in/U∞ = 0.34, a middle frequency ωδ∗
in/U∞ = 0.76

and a high frequency ωδ∗
in/U∞ = 1.73. At the low frequency, the convective contribution

centred around the convective wavenumber kx = kc (with kc = ω/Uc) is predominant.
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Figure 27. Normalised streamwise coherence lengths for ZPG locations (◦, x/c = −0.60, and �, x/c =
−0.47) and APG locations (�, x/c = −0.14, and +++, x/c = −0.08) in (a) inner and (b) outer variable
scalings.
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Figure 28. Normalised spanwise coherence lengths for ZPG locations (◦, x/c = −0.60, and �, x/c = −0.47)
and APG locations (�, x/c = −0.14, and +++, x/c = −0.08) in (a) inner and (b) outer variable scalings.

On the other hand, the acoustic contribution centred around the acoustic wavenumber
kx = k0 is not visible. At the high frequency ωδ∗

in/U∞ = 1.73, however, the acoustic
contribution appears and separates from the convective contribution, as shown in figure 30.
The trace of the acoustic domain matches an ellipse with its centre at (k0M/β2, 0),
a major radius of k0/β

2 and a minor radius of k0/β with the Prandtl–Glauert factor
given by β = √

1 − M2 (see dashed red lines in figures 29 and 30), as also found in the
compressible LES of Cohen & Gloerfelt (2018). At the low frequency, the red ellipse
merges with the convective domain, whereas at the higher frequencies it is clearly visible.
As noted by Cohen & Gloerfelt (2018), it is rare to capture the acoustic contribution and
this is a first case in such a non-equilibrium TBL with high APG. At higher frequencies
(≈10 kHz for APG locations as shown in figure 30), the acoustic contribution to the
fluctuations becomes significant. Indeed, for higher frequencies, darker contours around
the acoustic wavenumber and lighter contours in the convective region are shown in
figures 29 and 30. The convective contribution shown in the figures has an antisymmetric
distribution along kx and an elongated elliptical shape with a major axis in the kz direction.
The convective ridge in kx in the ZPG spectra in figure 29 is slightly smaller (with higher
Uc) than in the APG spectra in figure 30. This behaviour is consistent with what was
found by Cohen & Gloerfelt (2018), Salze et al. (2015) and Bull (1996). Thus, as shown
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Figure 29. Normalised 2D wavenumber-frequency spectra Ψ pp(k;ω) = Ψpp(k;ω)(U∞/τ 2
wδ∗3

in ) measured at
three dimensionless frequencies: (a,d) ωδ∗

in/U∞ = 0.34; (b,e) ωδ∗
in/U∞ = 0.76; (c, f ) ωδ∗

in/U∞ = 1.73. ZPG
locations: (a–c) x/c = −0.60; (d– f ) x/c = −0.47. Trace of the acoustic domain (red dashed line) (Cohen &
Gloerfelt 2018) and centre of the convective ridge (red dotted line).

previously, the wall-pressure field is more coherent in the streamwise direction for the ZPG
region than for the APG region (see § 4.2).

In figure 31, the normalised wavenumber-frequency spectra for the four locations are
also plotted as functions of frequency for increasing kxδ

∗
in in the range 0.36 ≤ kxδ

∗
in ≤

2.11, with increments of 0.25 going from top (solid black line) to the bottom (solid thick
grey line) of the plot. The maximum of each spectrum in figure 31 corresponds to the
primary convective peak. For higher kxδ

∗
in (i.e. solid thick grey line with kxδ

∗
in = 2.11 in

figure 31), the primary convective peak moves to higher frequencies (Choi & Moin 1990;
Bull 1996). In the same way, as indicated in the contour plots of figures 29 and 30, as the
frequency increases the convective ridge moves to higher wavenumbers. This behaviour
can be analysed in more detail if considering, for example, figure 29(a) for x/c = −0.60; in
this case, the convective ridge is centred around kxδ

∗
in = 0.36 for ωδ∗

in/U∞ = 0.34. Thus,
at this normalised frequency, in figure 31(a), a maximum is shown for the solid black curve
which corresponds to kxδ

∗
in = 0.36 (see the red dotted line in figures 29a and 31a). For

APG, the acoustic peak is also observed at higher frequencies. If considering, for example,
figure 29( f ), for x/c = −0.08, the acoustic domain is centred around kxδ

∗
in = 0.40 for

960 A17-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.157


Effect of adverse pressure gradient on wall-pressure statistics

−5 0 5

−5

0

5

k zδ
∗ in

−5 0 5

−5

0

5

−5 0 5

−5

0

5

−5 0 5

kxδ
∗
in

−5

0

5

k zδ
∗ in

−5 0 5

kxδ
∗
in

−5

0

5

−5 0 5

kxδ
∗
in

−5

0

5

(a) (b) (c)

(d ) (e) ( f )

Figure 30. Normalised 2D wavenumber-frequency spectra Ψ pp(k;ω) = Ψpp(k;ω)(U∞/τ 2
wδ∗3

in ) measured at
three dimensionless frequencies: (a,d) ωδ∗

in/U∞ = 0.34; (b,e) ωδ∗
in/U∞ = 0.76; (c, f ) ωδ∗

in/U∞ = 1.73. APG
locations: (a–c) x/c = −0.14; (d– f ) x/c = −0.08. Trace of the acoustic domain (red dashed line) (Cohen &
Gloerfelt 2018).

ωδ∗
in/U∞ = 1.73. Thus, around this frequency in figure 31(d), a maximum is shown for

the solid black curve which corresponds to a closer kxδ
∗
in of 0.36. The result shows that the

high-frequency humps observed in wall-pressure PSD in a non-equilibrium flow such as
the present case are due to acoustic contribution. Therefore, it may not be appropriate to
model high-frequency humps of this kind directly based on aerodynamic boundary layer
parameters (e.g. by Dominique et al. 2022).

4.4. Convection velocity
In this section, the convection velocity Uc is calculated from the DNS database for the four
locations under analysis. Generally speaking, the convection velocity of a Fourier mode is
expressed as Uc = ω/kx = fλx. However, for a given frequency a spectrum of wavenumber
is found, and vice versa, as shown in figures 29, 30 and 31 (Del Álamo & Jiménez 2009).
In general, Taylor’s frozen turbulent approximation (Taylor 1938) that assumes a uniform
Uc equal to the local mean velocity is commonly used. Such an approximation, acceptable
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Figure 31. Normalised 2D wavenumber-frequency spectra as function of frequency at increasing kxδ
∗
in. kxδ

∗
in =

0.36 (solid black line) to kxδ
∗
in = 2.11 (solid thick grey line), with increments of 0.25: (a) x/c = −0.60;

(b) x/c = −0.47; (c) x/c = −0.14; and (d) x/c = −0.08.

for low frequencies and low wavenumbers, neglects the dependence of Uc on eddy size
leading to errors in the interpretation of large-scale structures in jets for instance (Del
Álamo & Jiménez 2009). To overcome this limitation, different definitions of Uc have been
proposed, which consider its dependence on wavenumber, frequency and spatial separation
(Wills 1964; Goldschmidt, Young & Ott 1981; Hussain & Clark 1981).

In the following section, the convection velocities as functions of frequency,
wavenumber or spatial separation are calculated for ZPG and APG TBLs on the CD
aerofoil and compared with available data by Choi & Moin (1990), Na & Moin (1998),
Cohen & Gloerfelt (2018) and Burton (1973).

4.4.1. Convection velocity as a function of frequency
The convection velocity Uc(ω) is extracted from a linear interpolation of the phase ωξx/Uc
in the cross-spectrum, Ψpp(ξ ;ω), and scaled with inner and outer boundary layer variables,
as shown in figure 32. The range of spatial separations ξx for which the phase is linear
within approximately 10 % is considered for the extraction of Uc(ω).

The inner variables scaling shown in figure 32(a) shows a good collapse of the spectra.
In general, the convection velocity increases with frequency, reaching a maximum and
then slightly decreases with frequency, as the size of structures in the boundary layer,
proportional to the wavelength, decreases (Schloemer 1967). For a given value of ωδ/uτ ,
the ratio Uc(ω)/U∞ is lower for APG than for ZPG, because the smallest turbulent
structures located near the wall are subjected to a slower flow, and the largest turbulent
structures lifted from the wall mostly convect with the bulk velocity that is also lower (see
figure 11). Therefore, smaller mean convection velocities of the turbulent eddies are found.
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Figure 32. Normalised convection velocities as function of dimensionless frequency at four locations on the
aerofoil suction side: ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey line); APG
locations x/c = −0.14 (thin black line) and x/c = −0.08 (thick black line); •, data by Choi & Moin (1990);
(a) inner variables scaling; (b) outer variables scaling.

In figure 32, as the frequency increases, Uc(ω)/U∞ reaches approximately 0.8 for the ZPG
cases and 0.5 for the APG cases, as previously found by Bull (1996) and used in § 4.2.
Moreover, in APG the high-frequency limit slightly decreases. On the other hand, for ZPG
the ratio Uc(ω)/U∞ increases to a maximum asymptotic value. The ratio found for the
ZPG regions, at sensor 9 noticeably, is in good agreement with Choi’s ZPG data (Choi &
Moin 1990). At lower frequencies, the ratio decreases. This behaviour, also observed in
Choi’s ZPG data, is linked to the loss of coherence of the turbulent structures described in
§ 4.2 (figure 24). The convection velocity is slightly higher at sensor 7 most likely because
of the history effect of the upstream FPG region (figure 15c in Schloemer 1967). The mean
convection velocities calculated from these distributions are Uc ≈ 0.87 U∞ for sensor 7,
Uc ≈ 0.80 U∞ for sensor 9, Uc ≈ 0.50 U∞ for sensor 21 and Uc ≈ 0.44 U∞ for sensor
24. In turn, these ratios correspond to coherence decay rates αx = 0.13 and αz = 0.82
at sensor 7, and αx = 0.25 and αz = 0.49 at sensor 24, whereas at sensors 9 and 21 the
coherence decay rates are as indicated in figures 24 and 25.

Overall, figure 32 shows uniform distributions for Uc(ω), consistent with previous
measurements in both ZPG (see, for instance, figure 15a in Schloemer (1967)) and APG
flows (see, for instance, figure 15b in Schloemer (1967) and figure 19 in Brooks & Hodgson
(1981)). The results also indicate that the convection velocity scales well with friction
velocity for the majority of the frequency range, even in highly non-equilibrium flows.
The differences observed at sensor 24 at low frequencies could be due to the vicinity of
this location to the TE (Messiter 1970; Wu et al. 2020). Note also that the data presented
do not extend to lower frequencies where the ratio may be sensitive to the sampling period.

4.4.2. Convection velocity as a function of streamwise wavenumber
The convection velocity can be defined from the wavenumber-frequency spectra,
Ψpp(kx, ω), as function of the streamwise wavenumber by considering the maximum
of the frequency spectrum at a given wavenumber [∂Ψpp(kx, ω)/∂ω]ω=ωc(kx) = 0. Such
a maximum corresponds to the convective frequency that gives Uc(kx) = −ωc(kx)/kx.
This scheme was proposed by Wills (1964) to consider the dependence of Uc on both
wavenumber and frequency, overcoming the artifact of Taylor’s approximation that is
most likely not verified in the present highly sheared strongly non-equilibrium TBL (Moin
2009). Similarly, Uc(kx) can be defined considering the maximum of the wavenumber
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Figure 33. Normalised convection velocities as function of dimensionless streamwise wavenumber at four
locations on the aerofoil suction side: ZPG locations x/c = −0.60 (thin grey line) and x/c = −0.47 (thick grey
line); APG locations x/c = −0.14 (thin black line), x/c = −0.08 (thick black line); •, data by Choi & Moin
(1990) and − · −, the model of Panton & Linebarger (1974) for Reτ = 178 and Reτ = 185, corresponding to
sensors 7 (thin grey line) and 9 (thick grey line), respectively; (a) inner variables scaling; (b) outer variables
scaling.

spectrum at a given frequency (Comte-Bellot & Corrsin 1971). The normalised convection
velocities as functions of dimensionless streamwise wavenumber at the four locations on
the aerofoil suction side are plotted in figure 33.

Inner and outer variable scaling are obtained using uτ and U∞, respectively. The results
are then compared with data by Choi & Moin (1990) and the model of Panton & Linebarger
(1974). In figures 33(a,b), a good agreement is found for the ZPG distributions with Choi &
Moin (1990), and in the low- to mid-wavenumber range (kxδ below 20) with the model of
Panton & Linebarger (1974) (see both dashed dotted lines). Indeed, according to Panton &
Linebarger (1974), a convective velocity overlap law, similar to the friction mean velocity
log-law, can be defined in the mid-wavenumber range, in which large and small structures
are both important. This overlap law depending upon the friction Reynolds number is
plotted here for Reτ = 178 and Reτ = 185 corresponding to sensors 7 and 9, respectively
(see table 1). The inner variable scaling of figure 33(a) shows a good collapse of the spectra
upon kx ≈ 15/δ, with APG levels of the same order as the ZPG levels. In figure 33(b), for
small-scale structures (or high kx), the ratio Uc/U∞ is around 0.6 for ZPG. It decreases in
the APG region to 0.2 and 0.1 at sensors 21 and 24, respectively. For large-scale structures
(or low kx), the ratio Uc/U∞ is higher around 0.8 for ZPG. It again decreases in the
APG region to 0.7 and 0.5 at sensors 21 and 24, respectively. Due to the difficulty in
extracting the maxima of the wavenumber-frequency spectra in a discrete frequency range,
the distributions of convective velocities in figure 33 are quite scattered particularly at low
wavenumbers (or at the lowest frequencies), which corresponds to the noisiest part of
the spectra. Nevertheless, at lower kx, the convection velocities can be seen to slightly
decrease, probably because for those wavenumbers the contribution of the outer region of
the boundary layer is lower and the middle region contribution picks up.

As already observed by Choi & Moin (1990), at high frequencies and wavenumbers,
a discrepancy between Uc(ω) and Uc(kx) is observed: Uc(ω) ≈ 0.8U∞ and Uc(kx) ≈
0.6U∞ for ZPG; and Uc(ω) ≈ 0.5U∞ and Uc(kx) ≈ 0.2U∞ for APG. This is probably
due to the Ψpp(k;ω) characterised by a higher aspect ratio at high frequencies and
wavenumbers, as also shown in figure 9 in Choi & Moin (1990) (see § 4.3 and Wu et al.
(2019)). Overall, as discussed for Uc(ω), as kx increases, the decrease of Uc(kx) is more
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Figure 34. (a) Normalised convection velocities as function of longitudinal separation and (b) peaks of the
longitudinal space–time correlation at four locations on the aerofoil suction side: ZPG locations x/c = −0.60
(thin grey line) and x/c = −0.47 (thick grey line); APG locations x/c = −0.14 (thin black line), x/c = −0.08
(thick black line); •, data by Choi & Moin (1990); ◦, ZPG data x = 0.5, and �, APG data x = 0.85 for attached
TBL and separated TBL (grey) at x/δ∗

in = 120 by Na & Moin (1998); �, ZPG (black), APGs (red) and APGw
(magenta) data by Cohen & Gloerfelt (2018); �, APG data by Burton (1973).

evident for APG than for ZPG, probably due to the smaller (Lee & Sung 2008) and
slower-moving eddies near the wall in an APG flow.

4.4.3. Convection velocity as a function of longitudinal separation
The convection velocity is also commonly defined from the cross-correlation Rpp(ξx, τ )

as function of the streamwise separation as Uc(ξx) = ξx/τmax(ξx) where the time delay
τmax is given by the maximum [∂R(ξx, τ )/∂τ ]τ=τmax(ξx) = 0. In figure 34, the normalised
convection velocities as function of longitudinal separation ξx/δ

∗ are shown, together with
the peaks of the longitudinal space–time correlation at the four locations on the aerofoil
suction side.

In figure 34(a), the ratio Uc(ξx)/Ue is shown to increase almost monotonously for all
data sets as the longitudinal separation increases. In fact, as a group of turbulent eddies
travel downstream, the smaller eddies die out more rapidly and the larger eddies (with
higher Uc and a longer life time) dominate the wall-pressure correlation, as evidenced in
figure 34(b). Indeed, as shown in figure 17, the time delay corresponding to the peaks
of the longitudinal space–time correlation for a particular eddy is shorter in ZPG than in
APG, so lower values of correlation and longer delay times are found in the APG flow.
The relationship between APG and ZPG flows is similar to what it is found for Uc(ω)

and Uc(ξx). For a given value of ξx/δ
∗ the convective velocity is lower for APG than

for ZPG (Schloemer 1967; Na & Moin 1998). In figure 34(a), the convection velocities
at large separations ξx are close to what is found at low kx: approximately 0.7 Ue at
ξx = 11δ∗ (or 0.85 U∞) for ZPG and approximately 0.5 Ue at ξx = 5δ∗ (or approximately
0.55 U∞) for APG. On the other side, the convection velocities at small ξx separations
are close to what is found at high kx (see figure 33b). A good agreement with the
reference data is found for both APG and ZPG (Burton 1973; Choi & Moin 1990; Na
& Moin 1998; Cohen & Gloerfelt 2018). This is also consistent with the APG region on
the NACA0012 aerofoil as shown in figure 21 in Brooks & Hodgson (1981). Figure 34
shows how an increase of Reynolds number is characterised by a faster decay in ξx with
the low-frequency wall-pressure fluctuations retained for extended streamwise distances.
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This is a characteristic of hairpin structures (Van Blitterswyk & Rocha 2017), or long
coherent motions containing a large number of smaller events.

In summary, for all three definitions of the convection velocity in the present highly
non-equilibrium turbulent flow, the APG is shown to significantly reduce the convection
velocity (by a factor 2–3), consistently with previously measured ZPG and APG TBL.
In terms of scaling, good collapse is found when all defined convection velocity are
normalised by the friction velocity uτ .

5. Conclusions and discussion

In the present study, recent DNS results have been used to examine statistics of flows under
mean ZPG and APG at low free-stream Mach number on a curved surface on which grows
a highly non-equilibrium TBL. The DNS database has been obtained previously from a
3D compressible DNS of the flow over a CD aerofoil by Wu et al. (2018), which has
been developed in order to reproduce the experimental set-up performed in the anechoic
open jet wind-tunnel of the Université de Sherbrooke (Padois et al. 2015; Jaiswal 2020).
Single-point turbulent statistics and higher-order statistics for wall-pressure fluctuations
are investigated at four locations on the aerofoil corresponding to increasing Reθ = 319,
390, 877 and 1036, as well as Reτ = 178, 185, 210 and 203. Those locations correspond to
ZPG (sensors 7 and 9) and APG (sensors 21 and 24) locations on the suction side of the
CD aerofoil, respectively.

The turbulence statistics show that the strong APG has a significant effect on the
mean velocity profiles and velocity fluctuations, as well as on wall-pressure statistics
(PSD distributions, two-point correlations, coherence and wavenumber-frequency spectral
density of wall-pressure fluctuations). This effect is more prominent on the outer region of
the boundary layer. Single-point turbulent velocity statistics and mean-flow distributions
are in agreement with data available in the literature by Spalart (1988), Abe et al. (2005),
Schlatter & Örlü (2010), Vinuesa et al. (2017), Watmuff (1989) and Smits et al. (1983)
for instance. On the one hand, the boundary layer thicknesses (δ, δ∗ and θ ), as well
as the shape factor (H), increase moving downstream from ZPG to APG. Even though
the transition to turbulence is triggered by a LSB at the LE, the boundary-layer state at
mid-chord for sensors 7 and 9 are close to a fully turbulent flat-plate boundary layer.
Further downstream, the airfoil camber triggers a strong variation of mean pressure
gradients shown by the Clauser parameter βc, indicating the non-equilibrium state of the
TBL near the TE. On the other hand, the skin friction coefficient Cf decreases slowly
in the ZPG region and much faster towards the TE at increasing Reynolds numbers
based on momentum thickness because of the strong APG. The scaling of Cf proposed
by Volino (2020) partially holds but with a larger correction factor most likely caused
by the present stronger APG. Moreover, the self-similarity of velocity fluctuations in
the outer region of the boundary layer provided by the Zaragola–Smits scaling is also
verified in the present strong non-equilibrium TBL. Particular attention has then been
given for the first time to the effect of APG and of increasing Reynolds numbers on
all higher-order wall-pressure statistics that are necessary parameters in a physical-based
TE noise model as proposed by Amiet (1976) and Roger & Moreau (2005). The present
wall-pressure data compare well with both measurements of Jaiswal (2020) and numerical
results of Choi & Moin (1990), Na & Moin (1998), Spalart (1988), Abe et al. (2005) and
Cohen & Gloerfelt (2018) for instance. All wall-pressure spectra exhibit a high-frequency
range with a −5 slope attributed to the buffer layer. The mid-frequency range shows a
−1 slope, the width of which slightly increases with the Reynolds number. It indicates
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more prominent contribution from the logarithmic layer to wall-pressure fluctuations. The
spectra in the APG region exhibit higher levels at low to mid frequency and a faster
roll-off at high frequencies, a sign of transfer of energy from high to low frequencies
consistent with the change of near-wall eddies in the TBL. As observed previously,
the scalings of wall-pressure spectrum with outer and inner variables to collapse the
low- and high-frequency range, respectively, applies in the ZPG region only, and not
in the APG region. For the current strong APG flow, the best scaling variables are
found to be Ue, δ and the wall-pressure r.m.s. (prms), or equivalently UZS, δ∗ and prms.
This suggests that the Zaragola–Smits velocity might be a relevant velocity scale for all
attached TBLs. Moreover, this also stresses that, in a strong non-equilibrium TBL typical
of low-speed rotating machines as shown here, the overall wall-pressure fluctuations are
dominated by the large turbulent scales, the contribution of which increases with APG.
This also shows that the usual friction velocity considered in all previous analytical
models of wall-pressure spectra is not the proper velocity scale in a flow with strong
APG. An alternative pressure scale is also found to be the local maximum Reynolds
shear stress magnitude, the ratio of which with prms remains almost constant for the
whole range of Reynolds number considered here, as also found previously by Na &
Moin (1998) and Abe (2017) for instance. Considering second-order statistics, normalised
longitudinal and lateral CSD of wall-pressure fluctuations yield consistent results with
previous measurements from Schloemer (1967), Brooks & Hodgson (1981) and Hu (2021).
Streamwise cross-correlations are observed to decay rapidly with increasing longitudinal
separation when moving downstream, indicating shorter coherence in the APG region
than in the ZPG region. On the other hand, the decay of spanwise coherence with lateral
separation is much slower. Moreover, the spanwise coherence decays faster with distance
than the streamwise one in both ZPG and APG regions for all considered frequencies.
Both streamwise and spanwise decay coefficients are also found to be quite insensitive to
Reynolds numbers based on momentum thickness (at least over a decade), consistently
with the results of Sillero et al. (2014) and Pargal et al. (2022) on velocity correlations.
Streamwise and spanwise correlation lengths can then be defined and compared: in APG,
smaller streamwise coherence length and larger spanwise length are obtained than in ZPG.
Consistently with the trend observed on wall-pressure spectra, APG coherence lengths
are larger at low frequencies and decay faster at high frequencies. When scaled with
the outer variables (boundary-layer displacement thickness and Zaragola–Smits velocity)
the spanwise coherence lengths, the second key parameter to TE noise predictions, are
observed to better collapse at low and mid frequencies for all positions (both ZPG and
APG). On the other hand, the streamwise coherence lengths are found to better scale with
inner variables at all locations on the aerofoil suction side.

Finally, three different ways of defining the convection velocity in the present highly
non-equilibrium turbulent flow have been studied to investigate its dependence on
frequency, wavenumber and spatial separation. The results compare favourably with the
numerical data of Choi & Moin (1990), Na & Moin (1998) and Cohen & Gloerfelt
(2018), and the measurements of Burton (1973). In the APG region, the convection
velocities increase with longitudinal separation and decrease with increasing frequency
and wavenumber, whereas in the ZPG region an asymptotic value is found for large
separations and frequencies in agreement with previous observation of ZPG TBLs.
Moreover, compared with the free-stream velocity, the APG convection velocity is much
lower (≈0.5U∞) than the ZPG convection velocity (≈0.8U∞), and its value decreases
with increasing Clauser parameter. Both trends on coherence lengths and convection
velocity with APG can, in turn, be related to a change in the TBL structure as the flow
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moves downstream next to the TE, with larger lifted hairpin-type vortices developing away
from the wall. When scaled with the friction velocity uτ (inner variables), the convection
velocity, the third key parameter to TE noise predictions, is observed to collapse over a
large range of frequencies or streamwise wavenumbers for all four positions (both ZPG
and APG). This is consistent with the observed scaling of the streamwise correlation
length. This study details non-equilibrium APG effects on a boundary layer and provides
significant implications for TE noise modelling.
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